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The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence,
a major challenge in modeling intracellular transport is to analyze stochastic processes
within complex environments. Broadly speaking, there are two basic mechanisms for
intracellular transport: passive diffusion and motor-driven active transport. Diffusive
transport can be formulated in terms of the motion of an over-damped Brownian parti-
cle. On the other hand, active transport requires chemical energy, usually in the form of
ATP hydrolysis, and can be direction specific, allowing biomolecules to be transported
long distances; this is particularly important in neurons due to their complex geometry.
In this review we present a wide range of analytical methods and models of intracellular
transport. In the case of diffusive transport, we consider narrow escape problems, dif-
fusion to a small target, confined and single-file diffusion, homogenization theory, and
fractional diffusion. In the case of active transport, we consider Brownian ratchets,
random walk models, exclusion processes, random intermittent search processes, quasi-
steady-state reduction methods, and mean field approximations. Applications include
receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-
DNA interactions, virus trafficking, and the self–organization of subcellular structures.
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I. INTRODUCTION

The efficient delivery of proteins and other molecular
products to their correct location within a cell (intracel-
lular transport) is of fundamental importance to normal
cellular function and development (Alberts et al., 2008).
Moreover, the breakdown of intracellular transport is a
major contributing factor to many degenerative diseases.
Broadly speaking, there are two basic mechanisms for in-
tracellular transport; passive diffusion within the cytosol
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or the surrounding plasma membrane of the cell, and ac-
tive motor–driven transport along polymerised filaments
such as microtubules and F-actin that comprise the cy-
toskeleton. Newly synthesised products from the nucleus
are mainly transported to other intracellular compart-
ments or the cell membrane via a microtubular network
that projects radially from organising centres (centro-
somes). The same network is used to transport degraded
cell products back to the nucleus. Moreover, various ani-
mal viruses including HIV take advantage of microtubule-
based transport in order to reach the nucleus from the cell
surface and release their genome through nuclear pores
(Damm and Pelkmans, 2006). The challenges of intra-
cellular transport are particularly acute for brain cells
(neurons), which are amongst the largest and most com-
plex cells in biology, in particular, with regards to the
efficient trafficking of newly synthesized proteins from
the cell body or soma to distant locations on the axon
or dendrites. In healthy cells, the regulation of protein
trafficking within a neuron provides an important mech-
anism for modifying the strength of synaptic connections
between neurons (Bredt and Nicoll, 2003; Choquet and
Triller, 2003; Newpher and Ehlers, 2008; Triller and Cho-
quet, 2005), and synaptic plasticity is generally believed
to be the cellular substrate of learning and memory. On
the other hand, various types of dysfunction in protein
trafficking appear to be a major contributory factor to
a number of neurodegenerative diseases associated with
memory loss including Alzheimers (de Vos et al., 2008).

Over the past 20 years, intracellular transport has been
a major application area within the statistical physics
community, and has driven a large number of papers on
the stochastic modeling and analysis of molecular motors
and diffusion in complex environments. Many excellent
reviews have been written on topics relevant to intracel-
lular transport including anomalous diffusion (Bouchaud
and Georges, 1990; Metzler and Klafter, 2000, 2004),
molecular motors (Julicher et al., 1997; Keller and Bus-
tamante, 2000; Kolomeisky and Fisher, 2007; Lipowsky
and Klumpp, 2005; Reimann, 2002), reaction kinetics
(Hanggi et al., 1990), confined diffusion (Burada et al.,
2009), random intermittent search processes (Benichou
et al., 2011b), and exclusion processes (Chou et al., 2011;
Evans and Hanney, 2005; Schadschneider et al., 2010).
However, as far as we are aware, there has not been a
substantial review in which intracellular transport itself
is the central topic.

The overall goal of the current review is to provide an
up to date and unified perspective on stochastic models
of intracellular transport. One of the major aims is to
cover a wide range of models and analytical methods,
highlighting links between them wherever possible. Al-
though it is not possible to cover every topic in complete
detail, sufficient details are provided to make the review
as self-contained and pedagogical as possible. Another
aim of the review is to highlight aspects of stochastic

processes that are particularly relevant to intracellular
transport, some of which have not been emphasised in
other reviews. These include the following:

1. Since the aqueous environment (cytosol) of a cell is
highly viscous at the length scale of macromolecules (low
Reynolds number), a diffusing particle can be treated as
an overdamped Brownian particle where inertial effects
are ignored.

2. One of the characteristics of diffusive transport inside
the cell is that often a particle is confined to a domain
with small exits on the boundary of the domain. Exam-
ples include an ion looking for an open ion channel within
the cell membrane (Grigoriev et al., 2002), the trans-
port of newly transcribed mRNA from the nucleus to the
cytoplasm via nuclear pores (Gorski et al., 2006; Mis-
telli, 2008), the confinement of neurotransmitter recep-
tors within a synapse of a neuron (Holcman and Schuss,
2004), and the confinement of calcium and other signal-
ing molecules within sub cellular compartments such as
dendritic spines (Biess et al., 2011). This has led to recent
interest in using Green’s function and asymptotic meth-
ods to solve the so–called narrow escape problem (Beni-
chou and Voituriez, 2008; Grigoriev et al., 2002; Holcman
and Schuss, 2004; Pillay et al., 2010; Schuss et al., 2007;
Singer et al., 2006a,b).

3. A related class of problems involves the search for
a small target within the interior of a cellular domain.
In this case it is necessary to extend the Smoluchowski
theory of diffusion limited reaction rates to bounded do-
mains or to more complex transport processes than sim-
ple diffusion. One example is the arrival of a receptor at
a localised reaction site on the surface of an immune cell,
which is a key step in the signaling cascade responsible
for activating the cell (Coombs et al., 2009). Another
important example is a promotor protein searching for
its binding site on DNA, which is facilitated by an in-
termittent search process in which the particle switches
between 3D and 1D diffusion (Berg et al., 1981; Coppey
et al., 2004; Halford and Marko, 2004; Kolomeisky, 2011;
Mirny et al., 2009; Sheinman et al., 2012).

4. The intracellular environment is extremely crowded
with macromolecules, subcellular compartments and con-
finement domains, suggesting that anomalous subdiffu-
sion is likely to occur (Dix and Verkman, 2008). The
plasma membrane is also a complex heterogeneous en-
vironment (Jacobson et al., 2007; Kusumi et al., 2005;
Vereb et al., 2003). Thus, many papers model diffusion
in such environments in terms of continuous time ran-
dom walks and fractional Brownian motion. However,
it is still unclear to what extent intracellular diffusion is
anomalous in the long–time limit rather than just at in-
termediate times. This motivates studying diffusion in
the presence of obstacles and transient traps whereby
normal diffusion is recovered asymptotically (Bressloff
and Earnshaw, 2007; Santamaria et al., 2006; Saxton,
1994, 2007).
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5. Another common form of diffusion within cells is
the transport of particles through a narrow biological
pore or channel (Hille, 2001; Roux et al., 2004; Schuss
et al., 2001). Restricting the volume of the phase space
available to the diffusing particles by means of confining
boundaries or obstacles causes striking entropic effects
(Burada et al., 2009). Moreover, various mechanisms of
facilitated diffusion can occur through interactions be-
tween a diffusing particle and proteins within the chan-
nel, as exemplified by nuclear pore complexes, which are
the sole mediators of exchange between the nucleus and
cytoplasm (Fahrenkrog et al., 2004; Macara, 2001; Rout
et al., 2003; Tran and Wente, 2006). When a channel
becomes sufficiently narrow, particles are no longer able
to pass each other (single-file diffusion), which imposes
strong constraints on the diffusive motion. In particu-
lar, a tagged particle exhibits anomalous subdiffusion on
long time scales (Barkai and Silbey, 2009; Harris, 1965;
Lebowitz and Percus, 1967; Levitt, 1973)

6. There have been many stochastic models of motor-
driven transport at multiple spatial and temporal scales,
ranging from Brownian ratchet models (Reimann, 2002)
to random walk models (Lipowsky and Klumpp, 2005;
Muller et al., 2008b) to systems of partial differential
equations (PDEs) (Reed et al., 1990; Smith and Sim-
mons, 2001). However, many of these treatments neglect
the fact that the goal of such transport is to deliver molec-
ular cargo to specific sites. This then naturally leads to
a connection with random intermittent search processes
(Bressloff and Newby, 2009; Loverdo et al., 2008; Newby
and Bressloff, 2010a,b). It also raises the important ques-
tion regarding signaling mechanisms responsible for lo-
calizing a motor complex at a target. Another issue in
active transport involves exclusion effects due to multi-
ple motors moving along the same filament track (Blythe
and Evans, 2007; Chou et al., 2011; Schadschneider et al.,
2010).

7. Most cellular structures including the cytoskeleton
and various organelles are highly dynamic, open systems
that are constantly exchanging energy and molecules
with the cytosol or other compartments. The formation
and maintenance of such dynamic structures have prop-
erties suggestive of far from equilibrium self-organizing
systems (Heinrich and Rapoport, 2005; Mistelli, 2001;
Semplice et al., 2012). One of the challenges in cellular
biology is understanding how the coupling of diffusive or
vesicular transport with chemical reactions and cell sig-
naling generates self-organizing structures within a cell.
One clear example is given by the actin and microtubular
cytoskeletons, which not only provide tracks for intracel-
lular transport, but also determine cell shape and polar-
ity (Lacayo et al., 2007), drive cell motility (Mogilner and
Edelstein-Keshet, 2002; Rafelski and Theriot, 2004), and
form the spindle apparatus during cell division (Eggert
et al., 2006; Glotzer, 2009). Self-organization of the cy-
toskeleton and its regulation by cell signaling also plays a

crucial role in axonal growth and guidance during neuro-
genesis and cortical development (Goldberg, 2003; Gra-
ham et al., 2006; Suter and Miller, 2011).

The structure of the paper is as follows. In Sec. II, dif-
fusive transport is developed from the perspective of the
Langevin equation for an overdamped Brownian particle,
and various first passage time problems are considered
(points 1-3). In Sec. III, the anomalous effects of molec-
ular crowding, trapping and confinement are discussed
(points 4 and 5). The differences in diffusive behavior at
multiple timescales are highlighted. In Sec. IV, the the-
ory of motor-driven active transport is reviewed, empha-
sizing the connection with random intermittent search
processes (point 6). A method for reducing the complex-
ity of molecular motor models is also described, and used
to study the effects of local signaling. Finally, in Sec. V
some examples illustrating the role of intracellular trans-
port in self-organizing systems are presented (point 7).

II. DIFFUSIVE TRANSPORT: FIRST-PASSAGE
PROBLEMS

A. Derivation of the diffusion equation

1. Random walks

Consider a particle that hops at discrete times between
neighboring sites on a one–dimensional (1D) lattice with
unit spacing. At each step, the random walker moves a
unit distance to the right with probability p or to the left
with probability q = 1− p. Let Pn(r) denote the proba-
bility that the particle is at site r at the Nth time step.
The evolution of the probability distribution is described
by the discrete-time master equation

PN (r) = pPN−1(r − 1) + qPN−1(r + 1), r ∈ Z. (2.1)

If q = p = 1/2 then the random walk is symmetric or
unbiased, whereas for p > q (p < q) it is biased to the
right (left). In order to solve this equation, introduce the
discrete Laplace-Fourier transform

P̃ (k, z) =

∞∑
N=0

zN
∞∑

r=−∞
eikrP (r,N). (2.2)

Applying this transform to the master equation and mul-
tiplying by an extra factor of z, it is straightforward to
show that

P̃ (k, z)−
∞∑

r=−∞
P0(r)eikr = z(peik + qe−ik)P̃ (k, z).

Assuming that the particle starts at the origin so that
P0(r) = δr,0, we have

P̃ (k, z) =
1

1− zu(k)
, u(k) = peik + qe−ik. (2.3)
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Here u(k) is the Fourier transform of the single-step hop-
ping probability. The original probability distribution
can now be reconstructed using the inverse transform

PN (r) =

∮
dz

2πizN+1

∫ π

−π

dk

2π
e−ikrP̃ (k, z) (2.4)

with the z-contour taken around the unit circle. Tay-
lor expanding the solution for P̃ (k, z) in terms of z thus
yields

PN (r) =
1

2π

∫ π

−π
e−ikru(k)Ndk (2.5)

=
1

2π

∫ π

−π
e−ikr

N∑
m=0

(
N
m

)
pmqN−me−ik(N−2m)dk

=
N !(

N + r

2

)
!

(
N − r

2

)
!

p(N+r)/2q(N−r)/2.

Using Stirling’s approximation for large N ,

log n! ≈ n log n− n+
1

2
log(2πn),

and assuming p, q ≈ 1/2, it can be shown that

PN (r) ∼ 1√
2πN

e[r−N(p−q)]2/2N .

(To be more precise, PN (r) should be multiplied by a fac-
tor of 2, since N−r must be even). Indeed, the Gaussian
form of PN (r) in the large time limit arises universally
whenever the mean and variance of the displacement ∆r
in a single step are finite. This is basically a statement
of the central-limit theorem. One way to see this is to
note that when 〈∆r〉 and 〈∆r2〉 are both finite, u(k) has
the small-k series expansion

u(k) = 1 + ik〈∆r〉 − 1

2
k2〈∆r2〉+ . . . ∼ eik〈∆r〉−

1
2k

2〈∆r2〉.

Substituting this approximation into the first line of
equation (2.5) using the fact that the integral is domi-
nated by the behavior in the region around k = 0 when
N is large, the resulting Gaussian integral yields the ap-
proximation

PN (r) ∼ 1√
2πN〈∆r2〉

e(r−N〈∆r〉)2/2N〈∆r2〉. (2.6)

Having analyzed the discrete random walk, it is now
possible to take an appropriate continuum limit to obtain
a diffusion equation in continuous space and time. First,
introduce infinitesimal step lengths δx and δt for space
and time and set PN = ρ(x, t)δx with x = rδx, t = Nδt.
Substituting into the master equation (2.1) gives the fol-

lowing equation for the probability density ρ(x, t):

ρ(x, t) = pρ(x− δx, t− δt) + qρ(x+ δx, t− δt)

≈ (p+ q)

[
ρ(x, t)− ∂ρ

∂t
δt

]
− (p− q)∂ρ

∂x
δx

+
(p+ q)

2

∂2ρ

∂x2
δx2,

where ρ has been Taylor expanded to first order in δt
and to second order in δx. Note that p+ q = 1. Dividing
through by δt and taking the continuum limit δx, δt→ 0
such that the quantities V,D are finite, where

V = lim
δx,δt→0

(p− q)δx
δt
, D = lim

δx,δt→0

δx2

2δt
,

yields the Fokker–Planck (FP) equation with constant
drift

∂ρ(x, t)

∂t
= −V ∂[ρ(x, t)]

∂x
+D

∂2ρ(x, t)

∂x2
. (2.7)

Note that p = 0.5+κδx and q = 0.5−κδx with κ = O(1).
Applying the same continuum limit to the Gaussian dis-
tribution (2.6) gives the density

ρ(x, t) =
1√

4πDt
e−(x−V t)2/4Dt, (2.8)

which is the fundamental solution of equation (2.7) un-
der the initial condition ρ(x, 0) = δ(x). Although we will
mainly consider continuum models of diffusion, it should
be noted that random walk models are particularly help-
ful in developing theories of diffusion in complex hetero-
geneous media and associated phenomena such as anoma-
lous diffusion (Bouchaud and Georges, 1990; Hughes,
1995; Metzler and Klafter, 2000), see also section IIIA.

2. Langevin equation

Consider a microscopic particle moving in a water solu-
tion such as found in the interior of cells (the cytoplasm).
Suppose that it is subject to some external force of size F .
Collisions with fluid molecules have two distinct effects.
First, they induce an apparent diffusive or Brownian mo-
tion of the particle, and second they generate an effective
frictional force that opposes motion induced by the ex-
ternal force. In the case of microscopic particles, water
acts as a highly viscous medium (low Reynolds number)
so that any particle quickly approaches terminal veloc-
ity and inertial effects can be ignored. The effects of all
collisions on the motion of the particle can then be repre-
sented in terms of the Langevin or stochastic differential
equation (Gardiner, 2009)

dX(t)

dt
=
F (X(t))

γ
+ ξ(t), (2.9)
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where X(t) is the stochastic position of the particle at
time t, γ is a drag coefficient, and ξ(t) is a Gaussian
noise term with

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (2.10)

Suppose, for the moment, that F is a constant. Formally
integrating equation (2.9) with X(0) = 0 shows that

X(t) = V t+

∫ t

0

ξ(t′)dt′

with V = F/γ the terminal velocity. Averaging with
respect to the noise then implies that

〈X(t)〉 = V t, 〈(X(t)− V t)2〉 = 2Dt.

Thus the mean-square displacement about the determin-
istic trajectory x(t) = V t is given by 〈∆X(t)〉 = 2Dt,
which suggests identifying D as a diffusion coefficient.
Moreover, X(t) is itself a Gaussian process whose proba-
bility density p(x, t) evolves according to the FP equation
(2.7). Under the initial condition p(x, 0) = δ(x), this can
be solved to give the Gaussian distribution (2.8).

We now present a more formal derivation of the FP
equation applicable to position–dependent forces F (x).
Since X(t) is a stochastic variable, each simulation of
the Langevin equation generates one sample out of the
set of all possible trajectories. This motivates an alter-
native way of thinking about such a stochastic process,
namely in terms of the conditional probability density
p(x, t|x0, t0) that the particle is at x at time t, given
that it started at x0 at time t0. Exploiting the fact that
the stochastic process is Markovian, that is, X(t + δt)
only depends on the state at the previous time step
X(t), it follows that p(x, t|x0, t0) satisfies the Chapman–
Kolmogorov equation

p(x, t|x0, t0) =

∫ ∞
−∞

p(x, t|x′, t′)p(x′, t′|x0, t0)dx′ (2.11)

for any t′ ∈ [t0, t]. Such an equation is a defining property
of a Markov process. Consider an infinitesimal version of
this equation by taking t → t + δt, t′ → t and setting
w(x, t;u, δt) = p(x+ u, t+ δt|x, t):

p(x, t+ δt) =

∫ ∞
−∞

w(x− u, t;u, δt)p(x− u, t)du,

where the initial argument (x0, t0) has been suppressed.
Now suppose that over a sufficiently small time window
δt, large jumps u in position are highly unlikely, so that
u can be treated as a small variable. Performing a Taylor
expansion with respect to u gives

p(x, t+ δt) = α0(x, t)p(x, t)− ∂x[α1(x, t)p(x, t)]

+
1

2
∂2
xx[α2(x, t)p(x, t)] + . . . (2.12)

where

αn(x, t) =

∫ ∞
−∞

w(x, t;u, δt)undu. (2.13)

The Langevin Eq. (2.9) can be used to calculate the
coefficients αn. First, rewrite Eq. (2.9) in the infinitesi-
mal form

X(t+ δt) = x+ F (x)δt/γ + δtξ(t),

given that X(t) = x. This implies that the transition
probability w can be written as

w(x, t;u, δt) = 〈δ(x+ u−X(t+ δt))〉ξ
= 〈δ(u− F (x)δt/γ − δtξ(t))〉ξ.

Discretizing time in units of δt means that ξ(t) becomes
a Gaussian random variable with zero mean and variance
2D/δt. The corresponding probability density is

p(ξ) =
√
δt/4πDe−ξ

2δt/4D.

Hence, averaging with respect to ξ(t),

w(x, t;u, δt) =

√
1

4πDδt
e−(u−F (x)δt/γ)2/4Dδt.

It follows that

α0 = 1, α1 = F (x)δt/γ, α2 = 2Dδt+ α2
1, (2.14)

and αm = O(δt2) for m > 2. Substituting these results
into Eq. (2.12) and taking the limit δt→ 0 finally leads
to the Fokker–Planck (FP) equation

∂p(x, t)

∂t
= − 1

γ

∂[F (x)p(x, t)]

∂x
+D

∂2p(x, t)

∂x2
. (2.15)

Note that it is straightforward to generalize the above
analysis to higher dimensions. Assuming for simplicity
isotropic diffusion and friction, Eq. (2.9) becomes

dXi

dt
=
Fi(X)

γ
+ ξi(t), i = 1, . . . , d (2.16)

with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = 2Dδi,jδ(t − t′). The
corresponding multivariate FP equation is

∂p(x, t)

∂t
= − 1

γ
∇ · [F(x)p(x, t)] +D∇2p(x, t). (2.17)

The 1D FP Eq. (2.15) can be rewritten as a probability
conservation law according to

∂p(x, t)

∂t
= −∂J(x, t)

∂x
, (2.18)

where

J(x, t) =
1

γ
F (x)p(x, t)−D∂p(x, t)

∂x
(2.19)
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is the probability flux. An equilibrium steady-state solu-
tion corresponds to the conditions ∂p/∂t = 0 and J ≡ 0.
This leads to the first-order ODE for the equilibrium den-
sity P (x): DP ′(x) − γ−1F (x)P (x) = 0, which has the
solution

P (x) = N e−Φ(x)/γD. (2.20)

Here Φ(x) = −
∫ x

F (y)dy is a potential energy function
and N is a normalization factor (assuming that it ex-
ists). Comparison of the equilibrium distribution with
the Boltzmann-Gibbs distribution of statistical mechan-
ics yields the Einstein relation

Dγ = kBT, (2.21)

where T is the temperature (in degrees Kelvin) and kB ≈
1.4 × 10−23JK−1 is the Boltzmann constant. This for-
mula relates the variance of environmental fluctuations to
the strength of dissipative forces and the temperature. In
the case of a sphere of radius R moving in a fluid of vis-
cosity η, Stoke’s formula can be used, that is, γ = 6πηR.
For water at room temperature, η ∼ 10−3kgm−1s−1 so
that a particle of radius R = 10−9m has a diffusion coef-
ficient D ∼ 100µm2s−1.

So far, we have considered diffusive–like motion from
the probabilistic perspective of a single microscopic par-
ticle moving in a fluid medium. However, it is possi-
ble to reinterpret Eq. (2.15) or (2.17) as a deterministic
advection–diffusion equation for the concentration u(x, t)
of many particles. That is, ignoring any interactions or
correlations between the particles, set u(x, t) = Np(x, t)
where N is the total number of particles (assumed large).
Multiplying both sides of Eq. (2.15) by N then leads to
the corresponding advection–diffusion (or Smoluchowski)
equation for u(x, t) with NJ(x, t) interpreted as the par-
ticle flux arising from a combination of advection and
Fickian diffusion. In this review we will often switch be-
tween the microscopic probabilistic formulation of dif-
fusion and the macroscopic deterministic formulation,
which can be viewed as a mean-field limit of the former.
However, the relationship between macroscopic and mi-
croscopic formulations is more complicated when chemi-
cal reactions are included. Macroscopically, reactions are
described in terms of the deterministic law of mass action,
whereas microscopically they are modeled stochastically
using a chemical master equation. Differences between
the two levels of modeling become significant when the
number of interacting molecules becomes small (Kam-
pen, 1992).

Finally, note that another important issue arises in the
case of space–dependent diffusion coefficients. From the
macroscopic picture of Fickian diffusion, the conserva-
tion equation ∂tu = −∇ · J can lead to two different
forms of the diffusion equation, depending on whether
J(x, t) = ∇[D(x)u(x, t)] or J(x, t) = D(x)∇u(x, t).
(These are equivalent when D is a constant). In order to

distinguish between the two cases, it is necessary to incor-
porate details regarding the microscopic dynamics using,
for example, kinetic theory (Bringuier, 2009; van Milligen
et al., 2005). From the perspective of the FP equation, a
space–dependent diffusion coefficient arises when the cor-
responding Langevin equation is driven by multiplicative
(state-dependent) noise, and the position of the diffusion
coefficient will depend on whether the noise is interpreted
in the sense of Ito or Statonovich (Gardiner, 2009; Kam-
pen, 1992). The situation is even more complicated in
anisotropic heterogeneous media, where it is no longer
possible to characterize the rate of diffusion in terms of a
single coefficient. One now needs to consider a diffusion
tensor, see Sec. IVE.

B. First passage times

One of most important ways of quantifying the effi-
cacy of diffusive transport is in terms of the first passage
time to reach a target (Gardiner, 2009; Redner, 2001).
In the case of intracellular transport, such a target could
represent a substrate for a subsequent biochemical re-
action or an exit from some bounded domain such as a
chemical synapse. (Although we will focus on spatially
continuous processes, an analogous theory of first pas-
sage times can be developed for spatially discrete random
walks (Hughes, 1995; Kampen, 1992)). Consider a parti-
cle whose position evolves according to the 1D Langevin
Eq. (2.9) with motion restricted to the bounded domain
x ∈ [0, L]. Suppose that the corresponding FP Eq. (2.15)
has a reflecting boundary condition at x = 0 and an ab-
sorbing boundary condition at x = L:

J(0, t) = 0, p(L, t) = 0. (2.22)

We would like to determine the stochastic time T (y) for
the particle to exit the right hand boundary given that it
starts at location y ∈ [0, L] at time t. As a first step, we
introduce the survival probability P(y, t) that the particle
has not yet exited the interval at time t:

P(y, t) =

∫ L

0

p(x, t|y, 0)dx. (2.23)

It follows that Prob[T (y) ≤ t] = 1 − P(y, t) and we can
define the first passage time (FPT) density according to

f(y, t) = −∂P(y, t)

∂t
. (2.24)

The FPT density satisfies a backwards FP equation,
which can be derived from the Chapman-Kolmogorov Eq.
(2.11) by differentiating boths sides with respect to the
intermediate time t′ and using the forwards equation. Us-
ing the fact that ∂t′p(x, t|x′, t′) = −∂tp(x, t|x′, t′), which
follows from time-translation invariance, then yields the
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backwards FP equation for p:

∂tp(x, t|x′, t′) = A(x′)∂x′p(x, t|x′, t′)+D∂2
x′x′p(x, t|x′, t′),

(2.25)
where A(x) = F (x)/γ. Taking x′ → y, t′ = 0 and inte-
grating with respect to x shows that P(y, t), and hence
f(y, t), also satisfy a backwards FP equation:

∂P(y, t)

∂t
= A(y)

∂P(y, t)

∂y
+D

∂2P(y, t)

∂y2
. (2.26)

A quantity of particular interest is the mean first pas-
sage time (MFPT) τ(y) defined according to

τ(y) = 〈T (y)〉 ≡
∫ ∞

0

f(y, t)tdt (2.27)

= −
∫ ∞

0

t
∂P(y, t)

∂t
dt =

∫ ∞
0

P(y, t)dt,

after integration by parts. Hence, integrating both sides
of Eq. (2.26) shows that the MFPT satisfies the ODE

A(y)
dτ(y)

dy
+D

d2τ(y)

dy2
= −1. (2.28)

Eq. (2.28) is supplemented by reflecting and absorbing
boundary conditions for the backwards FP equation:

τ ′(0) = 0, τ(L) = 0. (2.29)

It is straightforward to solve Eq. (2.28) by direct inte-
gration (Gardiner, 2009). First, introduce the integration
factor

ψ(y) = exp

(
1

D

∫ y

0

A(y′)dy′
)

= exp (−V (y)/kBT ) ,

where D−1A(y) = (Dγ)−1F (y) = −(kBT )−1V ′(y) and
V (y) is a potential energy. Eq. (2.28) becomes

d

dy
[ψ(y)τ ′(y)] = −ψ(y)

D

so that

ψ(y)τ ′(y) = − 1

D

∫ y

0

ψ(y′)dy′,

where the boundary condition τ ′(0) = 0 has been used.
Integrating once more with respect to y and using τ(L) =
0 then gives

τ(y) =

∫ L

y

dy′

ψ(y′)

∫ y′

0

ψ(y′′)
D

dy′′. (2.30)

In the case of pure diffusion (A(x) = 0), we have ψ(y) = 1
and τ(y) = (L2 − y2)/2D. It follows that for any finite
L−y, τ(y)→∞ as L→∞. Thus, although 1D diffusion
is recurrent i.e. the particle surely reaches the origin, the

average time it takes is infinite. (This can also be un-
derstood in terms of the scaling properties of the FPT
density, see below). Now suppose that L is finite and
the particle starts at the left–hand boundary. The corre-
sponding MFPT is then τ = L2/D. Within the cytosol
of cells, macromolecules such as proteins tend to have
diffusivities D < 1µm2s−1, which is due to effects such
as molecular crowding, see Sec. III. This implies that
the mean time for a diffusing particle to travel a distance
100µm is at least 104s (a few hours), whereas to travel
a distance 1mm is at least 106s (10 days). Since neu-
rons, which are the largest cells in humans, have axonal
and dendritic protrusions that can extend from 1mm up
to 1m, the mean travel time due to passive diffusion be-
comes prohibitively large, and an active form of transport
becomes essential.

It is also possible to extend the above analysis to the
case where the particle can exit from either end (Gar-
diner, 2009; Redner, 2001). It is often of interest to keep
track of which end the particle exits, which leads to the
concept of a splitting probability. Let G0(x, t) denote the
probability that the particle exits at x = 0 after time t,
having started at the point x. Then

G0(x, t) = −
∫ ∞
t

J(0, t′|x, 0)dt′ (2.31)

with

J(0, t|x, 0) = A(0)p(0, t|x, 0)−D ∂p(y, t|x, 0)

∂y

∣∣∣∣
y=0

.

Differentiating with respect to t and using the backwards
FP Eq. (2.25) gives

∂G0(x, t)

∂t
= J(0, t|x, 0) = −

∫ ∞
t

∂J(0, t′|x, 0)

∂t′
dt′

= A(x)
∂G0(x, t)

∂x
+D

∂2G0(x, t)

∂x2
. (2.32)

The hitting or splitting probability that the particle ex-
its at x = 0 (rather than x = L) is Π0(x) = G0(x, 0).
Moreover, the probability that the particle exits at time
t through x = 0, is Prob(T0(x) > t) = G0(x, t)/G0(x, 0),
where T0(x) is the corresponding conditional FPT. Since
the conditional MFPT satisfies

τ0(x) = −
∫ ∞

0

t
∂Prob(T0(x) > t)

∂t
dt =

∫ ∞
0

G0(x, t)

G0(x, 0)
dt,

Eq. (2.32) is integrated with respect to t to give

A(x)
∂Π0(x)τ0(x)

∂x
+D

∂2Π0(x)τ0(x)

∂x2
= −Π0(x), (2.33)

with boundary conditions Π0(0)τ0(0) = Π0(L)τ0(L) = 0.
Finally, taking the limit t → 0 in Eq. (2.32) and noting
that J(0, 0|x, 0) = 0 for x 6= 0,

A(x)
∂Π0(x)

∂x
+D

∂2Π0(x)

∂x2
= 0, (2.34)
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with boundary conditions Π0(0) = 1,Π0(L) = 0. A simi-
lar analysis can be carried out for exit through the other
end x = L such that Π0(x) + ΠL(x) = 1.

The above formalism extends to higher spatial dimen-
sions. In particular, suppose that a particle evolves ac-
cording to the Langevin Eq. (2.16) in a compact domain
Ω with boundary ∂Ω. Suppose that at time t = 0 the
particle is at the point y ∈ Ω and let T (y) denote the
first passage time to reach any point on the boundary ∂Ω.
The probability that the particle has not yet reached the
boundary at time t is then

P(y, t) =

∫
Ω

p(x, t|y, 0)dx, (2.35)

where p(x, t|y, 0) is the solution to the multivariate FP
Eq. (2.17) with an absorbing boundary condition on ∂Ω.
The FPT density is again f(y, t) = −dP(y, t)/dt which,
on using Eq. (2.17) and the divergence theorem, can be
expressed as

f(y, t) = −
∫
∂Ω

[−A(x)p(x, t|y, 0) +D∇p(x, t|y, 0)] · dσ

with A = F/γ. Similarly, by constructing the corre-
sponding backwards FP equation, it can be shown that
the MFPT satisfies the equation

A(y) · ∇τ(y) +D∇2τ(y) = −1 (2.36)

with ∂nτ(y) = 0 for y ∈ ∂Ω.
In the case of 1D diffusion, it is straightforward to

calculate the FPT density explicitly. In the absence of
boundaries we can set the conditional probability density
p(x, t|x0, 0) = p(x− x0, t). Similarly the FPT density of
arriving for the first time at x at time τ starting from
x0 can be written as f(x, τ |x0, 0) = f(x − x0, τ). The
densities p and f are related according to the integral
equation

p(x− x0, t) =

∫ t

0

p(x− x′, t− τ)f(x′ − x0, τ)dτ. (2.37)

Taking Laplace transforms,

p̃(x− x0, s) = p̃(x− x′, s)f̃(x′ − x0, s). (2.38)

Laplace transforming the Gaussian distribution (2.8) for

V = 0 yields p̃(x, s) = 1√
4πDs

e−
√
x2s/D, so that

f̃(x− x0, s) = e−
√

(x−x0)s/D.

The inverse Laplace transform then yields the Levy-
Smirnov distribution

f(x− x0, t) =
1

t

√
(x− x0)2

4πDt
e−(x−x0)2/4Dt. (2.39)

This inverse-Gaussian decays asymptotically as f(x, t) ∼
t−3/2, which immediately establishes that it does not
have a finite first moment, that is, the MFPT from x0

to x diverges. On the other hand,
∫∞

0
f(x− x0, t)dt = 1

so that the diffusing particle will almost surely hit any
point x during its motion.

C. Narrow escape problems

Within the context of intracellular transport, there has
been a growing interest in a particular class of first pas-
sage processes, namely, the escape of a freely diffusing
molecule from a 2D or 3D bounded domain through small
absorbing windows on an otherwise reflecting boundary
(Benichou and Voituriez, 2008; Grigoriev et al., 2002;
Holcman and Schuss, 2004; Schuss et al., 2007). Exam-
ples include the FPT for an ion to find an open ion chan-
nel situated within the cell membrane or the FPT of a
protein receptor to locate a particular target binding site.
Within the context of intracellular transport in neurons,
recent applications include analyzing the confinement of
neurotransmitter receptors within the synapse of a neu-
ron (Bressloff and Earnshaw, 2009; Holcman and Schuss,
2004; Holcman and Triller, 2006) and the the role of den-
dritic spines in confining signaling molecules such as cal-
cium (Biess et al., 2007; Holcman et al., 2005). (A re-
lated class of problems is the FPT for a particle to find a
small target within the interior of a cellular domain. One
example concerns the arrival of receptors at a localized
reaction site on the surface of an immune cell, which is a
key step in the signaling cascade leading to the activation
of the cell (Coombs et al., 2009), see Sec. II.D). In order
to develop the basic theory, we will focus on diffusion in a
two–dimensional domain Ω ⊂ R2 whose boundary can be
decomposed as ∂Ω = ∂Ωr ∪ ∂Ωa, where ∂Ωr represents
the reflecting part of the boundary and ∂Ωa the absorb-
ing part. We then have a narrow escape problem in the
limit that the measure of the absorbing set |∂Ωa| = O(ε)
is asymptotically small, that is, 0 < ε � 1. It follows
from the analysis of exit times, see Eq. (2.36), that the
MFPT to exit the boundary ∂Ωa satisfies the equation
(in the absence of external forces)

∇2τ(x) = − 1

D
, x ∈ Ω (2.40)

with boundary conditions

τ(x) = 0, x ∈ ∂Ωa = ∪Nj=1∂Ωj (2.41)

and

∂nτ(x) = 0, x ∈ ∂Ωr. (2.42)

The absorbing set is assumed to consist of N small dis-
joint absorbing windows ∂Ωj centered at xj ∈ ∂Ω. In the
2D case, each window is a small absorbing arc of length
|∂Ωj | = εlj with lj = O(1). It is also assumed that the
windows are well separated, that is, |xi − xj | = O(1) for
all i 6= j. An example of a Brownian particle in a 2D
unit disk with small absorbing windows on the circular
boundary is illustrated in Fig. 1.

Since the MFPT diverges as ε → 0, the calculation
of τ(x) requires solving a singular perturbation prob-
lem. There have been a number of studies of the narrow
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FIG. 1 Example trajectory of a Brownian particle moving in
a 2D unit disk with small absorbing windows on an otherwise
reflecting circular boundary. Inset: a local coordinate system
around the jth arc.

escape problem using a combination of singular pertur-
bation theory and Green’s function methods for a vari-
ety of geometries in two and three dimensions (Benichou
and Voituriez, 2008; Chevalier et al., 2011; Cheviakov
et al., 2010; Holcman and Schuss, 2004; Pillay et al., 2010;
Schuss et al., 2007; Singer et al., 2006a,b). Here we will
review the particular approach of Ward and collabora-
tors (Pillay et al., 2010; Ward, 2000). The basic idea is
to construct the asymptotic solution for the MFPT in
the limit ε→ 0 using the method of matched asymptotic
expansions. That is, an inner or local solution valid in a
O(ε) neighborhood of each absorbing arc is constructed
and then these are matched to an outer or global solution
that is valid away from each neighborhood.

In order to construct an inner solution near the jth
absorbing arc, Eq. (2.40) is rewritten in terms of a local
orthogonal coordinate system (z, s), in which s denotes
arc length along ∂Ω and z is the minimal distance from
∂Ω to an interior point x ∈ Ω, as shown in the inset of
Fig. 1. Now introduce stretched coordinates ẑ = z/ε
and ŝ = (s − sj)/ε, and write the solution to the inner
problem as τ(x) = w(ẑ, ŝ). Neglecting terms of O(ε), it
can be shown that w satisfies the homogeneous equation
(Pillay et al., 2010)

∂2w

∂2ẑ
+
∂2w

∂2ŝ
= 0, 0 < ẑ <∞, −∞ < ŝ <∞ (2.43)

with the following boundary conditions on ẑ = 0:

∂w

∂ẑ
= 0 for |ŝ| > lj/2, w = 0 for |ŝ| < lj/2. (2.44)

The resulting boundary value problem can be solved by
introducing elliptic cylinder coordinates. However, in or-
der to match the outer solution we need only specify the
far-field behavior of the inner solution, which takes the
form

w(x) ∼ Aj [log |y| − log dj + o(1)] as |y| → ∞, (2.45)

where dj = lj/4, |y| = |x − xj |/ε =
√
ẑ2 + ŝ2 and Aj

is an unknown constant (that is determined by matching
with the outer solution).

As far as the outer solution is concerned, each absorb-
ing arc shrinks to a point xj ∈ ∂Ω as ε → 0. Each
point xj effectively acts as a point source that generates
a logarithmic singularity resulting from the asymptotic
matching of the outer solution to the far–field behavior
of the inner solution. Thus the outer solution satisfies

∇2τ(x) = − 1

D
, x ∈ Ω, (2.46)

with reflecting boundary condition

∂nτ = 0 for x ∈ ∂Ω\{x1, . . . ,xN} (2.47)

and

τ(x) ∼ Aj
µj

+Aj log |x− xj | as x→ xj , j = 1, . . . , N,

(2.48)
where

µj ≡ −
1

log(εdj)
. (2.49)

This can be solved in terms of the Neumann Green’s
function, defined as the unique solution of

∇2G(x,x′) =
1

|Ω|
− δ(x− x′), x ∈ Ω (2.50a)

G(x,xj) ∼ −
1

π
log |x− xj |+R(xj ,xj) as x→ xj ∈ ∂Ω

(2.50b)

∂nG(x,x′) = 0, x ∈ ∂Ω,

∫
Ω

G(x,xj)dx = 0, (2.50c)

where R(x,x′) is the regular part of G(x,x′). It follows
that the outer solution can be expressed in terms of the
Green’s function G and an unknown constant χ,

τ(x) = −π
N∑
j=1

AiG(x,xj) + χ. (2.51)

Integrating both sides of Eq. (2.51) shows that χ is the
MFPT averaged over all possible starting positions:

χ = τ ≡ 1

|Ω|

∫
Ω

τ(x)dx. (2.52)

The problem has reduced to solving N +1 linear equa-
tions for N + 1 unknowns Ai, χ. The first N equations
are obtained by matching the near-field behavior of the
outer solution as x → xj with the far–field behavior of
the corresponding inner solution (2.45). After cancella-
tion of the logarithmic terms, we have

−πAjRj − π
∑
i 6=j

AiGji + χ =
Aj
µj
, (2.53)
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for j = 1, . . . , N , where Gji ≡ G(xj ,xi) and Rj ≡
R(xj ,xj). The remaining equation is obtained by noting

that ∇2τ(x) = −π
∑N
j=1Aj∇2G(x,xj) and, hence

π|Ω|−1
N∑
j−1

Aj =
1

D
. (2.54)

In the case of a single absorbing window of arc length
2ε (d = 1/2), Eqs. (2.53) and (2.54) are easily solved to
give A1 = Ω|/πD and

τ(x) ∼ |Ω|
D

[
− 1

π
log(ε/2) +R(x1,x1)−G(x,x1)

]
,

(2.55)

τ ∼ |Ω|
D

[
− 1

π
log(ε/2) +R(x1,x1)

]
.

All that remains is to calculate the regular part of the
Neumann Green’s function R(x,xj), which will depend
on the geometry of the domain Ω. In certain cases such as
the unit disk or a rectangular domain, explicit formulae
for R can be obtained, otherwise numerical methods are
required (Holcman and Schuss, 2004; Pillay et al., 2010;
Singer et al., 2006a,b). The Green’s function for a unit
disk when the source xj is on the unit circle has the well
known formula

G(x,xj) = − 1

π
log |x− xj |+

|x|2

4π
− 1

8π
. (2.56)

It immediately follows that R(xj ,xj) = 1/8π (since
|xj |2 = 1) and

τ =
1

D
[− log(ε) + log 2 + 1/8] . (2.57)

For a rectangular domain of width L2 and height L1,
the Green’s function can be solved using separation of
variables and expanding the result in terms of logarithms,
see (Bressloff and Newby, 2011; Pillay et al., 2010).

D. Diffusion-limited reaction rates

Another important type of first passage process arises
in Smoluchowski rate theory for diffusion–controlled re-
actions (Collins and Kimball, 1949; Keizer, 1982; Red-
ner, 2001; Rice, 1985; Smoluchowski, 1917). The simplest
version of the theory concerns the bimolecular reaction
A+B → AB for which the concentrations evolve accord-
ing to the following law of mass action:

d[AB]

dt
= k[A][b]. (2.58)

We assume that an A molecule and a B molecule re-
act immediately to form the complex AB when they en-
counter each other within a reaction radius, so that the

speed of reaction k is limited by their encounter rate
via diffusion. (Also note that k has units of volume
s−1). One can then formulate the problem as an idealized
first passage process, in which one molecule is fixed and
treated as the target, whilst the other reactants diffuse
and are absorbed if they hit the target. It is assumed that
the density of the particles is sufficiently small, so that re-
actions amongst the diffusing particles can be neglected,
that is, a reaction only occurs if one of the background
diffusing particles comes within the reaction radius of the
target molecule. The steady–state flux to the target (if
it exists) is then identified as the reaction rate k. Let
Ω denote the target domain (which is often treated as a
sphere of radius a) and ∂Ω its absorbing boundary. We
then need to solve the diffusion equation for the concen-
tration c(x, t) of background molecules exterior to the
domain Ω:

∂c(x, t)

∂t
= D∇2c(x, t), c(x ∈ ∂Ω, t) = 0, c(x, 0) = 1,

(2.59)
subject to the far–field boundary condition c(x, t) = 1
for x→∞. The flux through the target boundary is

J = D

∫
∂Ω

∇c · dS. (2.60)

Note the sign, which is due to the fact that the flux is
from the exterior to interior of the target.

Let d denote the spatial dimension of the target. For
d > 2, a diffusing particle is transient, which means that
there is a non-zero probability of never reaching the tar-
get. Hence, the loss of reactants by target absorption is
balanced by their resupply from infinity. It follows that
there exists a steady state in which the reaction rate is
finite. On the other hand, for d ≤ 2, reactants are sure to
hit the target (recurrent diffusion) and a depletion zone
continuously develops around the target so that the flux
and reaction rate decay monotonically to zero with re-
spect to time. Although a reaction rate does not strictly
exist, it is still useful to consider the time-dependent flux
as a time–dependent reaction rate. The two–dimensional
case is particularly important when considering interac-
tions of molecules embedded in the plasma membrane
of a cell or the lipid bilayer surrounding an intracellular
compartment.

First consider the case of a spherical target of radius a
(d = 3). Exploiting the radial symmetry of the problem,
it is possible to set u(r, t) = rc(r, t) such that the 3D
diffusion equation for c reduces to a 1D diffusion equation
for u (Redner, 2001):

∂u(r, t)

∂t
= D

∂2u(r, t)

∂r2
(2.61)

with u(r, 0) = r, u(a, t) = 0 and u(r, t) = r as r → ∞.
Laplace transforming this equation gives sũ(r, s) − r =
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Dũ′′(r, s), which has the solution

ũ(r, s) =
1

s

[
r − ae−(r−a)

√
s/D
]
.

Since the inverse Laplace transform of s−1[1− e−r
√
s/D]

is the error function erf(r/
√

4Dt), one finds that

c(r, t) =
(

1− a

r

)
+
a

r
erf

[
r − a√

4Dt

]
. (2.62)

It follows that the time–dependent flux is

J(t) = 4πa2D
∂c

∂r

∣∣∣∣
r=a

(2.63)

= 4πaD

(
1 +

a√
πDt

)
→
t→∞

4πaD.

Hence, we obtain the Smoluchowski reaction rate k =
4πaD. As highlighted by Redner (2001), it is straightfor-
ward to generalize the steady–state result to other three–
dimensional targets by making a connection with electro-
statics. That is, setting φ(x) = 1− c(x) in steady–state,
it follows that φ satisfies Laplace’s equation with φ = 1
on the target boundary and φ = 0 at infinity, so that
φ is equivalent to the electrostatic potential generated
by a perfectly conducting object Ω held at unit poten-
tial. Moreover, the steady–state reaction rate k = 4πDQ
where Q is the total charge on the surface of the conduc-
tor, which for a unit potential is equal to the capacitance,
Q = C. Thus, determining the reaction rate for a gen-
eral 3D target is equivalent to finding the capacitance of
a perfect conductor with the same shape; see also (Chevi-
akov et al., 2010).

Although it is possible to calculate the exact time–
dependent flux for d ≤ 2, a much simpler method is to use
a quasi–static approximation (Redner, 2001). Consider,
for example a target disk of radius r = a. The region ex-
terior to the disk is divided into a near zone that extends
a distance

√
Dt from the surface and a complementary

far zone. In the near zone, it is assumed that diffusing
particles have sufficient time to explore the domain before
being absorbed by the target so that the concentration in
the near zone can be treated as almost steady or quasi–
static. Conversely, it is assumed that the probability of a
particle being absorbed by the target is negligible in the
far zone, since a particle is unlikely to diffuse more than
a distance

√
Dt over a time interval of length t. Thus,

c(r) ≈ 1 for r >
√
Dt + a. The near zone concentration

is taken to be a radially symmetric solution of Laplace’s
equation, which for d = 2 is c(r) = A + B log r. Match-
ing the solution to the boundary conditions c(a) = 0 and
c(
√
Dt) = 1 then gives (for

√
Dt� a)

c(r, t) ≈ log(r/a)

log(
√
Dt/a)

. (2.64)

The corresponding time–dependent flux is

J(t) ≈ 2πD

log(
√
Dt/a)

. (2.65)

Over the years there have been various generalizations
of Smoluchowski’s rate theory. For example, Collins and
Kimball (1949) considered the case where molecules in
proximity to each other do not react immediately. Thus,
the target is assumed to act like an imperfect absorber,
which can be taken into account by modifying the bound-
ary condition at the surface of the (spherical) target:

4πa2D
∂c(r, t)

∂r

∣∣∣∣
r=a

= k0c(a, t), (2.66)

where k0 is the intrinsic reaction rate. Incorporating this
modified boundary condition into Smoluchowki’s theory
leads to a new expression for the diffusion–controlled re-
action rate of the form

k =
4πDak0

4πDa+ k0
. (2.67)

Another important extension was developed by Keizer
(1982), who used the theory of nonequilibrium pair cor-
relation functions to include many body effects that be-
come important at higher concentrations of reactants.

So far it has been assumed that the diffusion of the
background reactants occurs in an unbounded domain
with a uniform concentration at infinity. The analysis
becomes considerably more involved when the boundary
of the domain is taken into account. Recently, however,
Straube et al. (2007) have shown how methods similar to
the analysis of the narrow escape problem, Sec. II.C, can
be used to determine the reaction rate in the asymptotic
limit that the target is much smaller than the domain
size. Here we sketch the basic steps of their analysis.
Consider a target disk Ωε of radius ε� 1 and center x0

that is located in the interior of a rectangular domain
Ω of size O(1). The calculation of the reaction rate can
be formulated in terms of the solution to the following
diffusion equation:

∂c(x, t)

∂t
= D∇2c(x, t), x ∈ Ω\Ωε (2.68)

with ∂nc = 0 on the exterior boundary ∂Ω and c = 0 on
the interior boundary ∂Ωε. The initial condition is taken
to be c(x, 0) = 1. Following Straube et al. (2007), we seek
a solution in the form of an eigenfunction expansion,

c(x, t) =

∞∑
j=0

cjφj(x)e−λjDt (2.69)

where the eigenfunctions φj(x) satisfy the Helmholtz
equation

∇2φj + λjφj = 0, x ∈ Ω\Ωε (2.70)

subject to the same boundary conditions as c(r, t). The
eigenfunctions are orthogonalized as∫

Ω\Ωε
φi(x)φj(x)dx = δi,j . (2.71)
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The initial condition then implies that

cj =

∫
Ω\Ωε

φj(x)dx. (2.72)

Taking the limit ε→ 0 results in an eigenvalue problem
in a rectangular domain without a hole. It is well known
that the eigenvalues are ordered as λ0 = 0 < λ1 ≤ λ2 ≤
. . .. This ordering will persist when 0 < ε � 1 so that
in the long–time limit, the solution will be dominated by
the eigenmode with the smallest eigenvalue:

c(x, t) ∼ c0φ0(x)e−λ0t. (2.73)

It can also be shown that the principal eigenvalue has an
infinite logarithmic expansion (Ward et al., 1993):

λ0 = νΛ1 + ν2Λ2 + . . . , ν ≡ − 1

log ε
. (2.74)

Moreover, the eigenfunction φ0(x) will develop a bound-
ary layer in a neighborhood of the target, where it
changes rapidly from zero on the boundary ∂Ωε to a
value of O(1) away from the target. This suggests di-
viding the domain into inner/outer regions, and using
matched asymptotics along analogous lines to the study
of the narrow escape problem.

Therefore, introduce stretched coordinates y = (x −
x0)/ε and write the inner solution of the principal eigen-
function as ϕ(y) = φ0(εy). Using the logarithmic expan-
sion of λ0 shows that the righthand side of the rescaled
eigenvalue equation is of O(ε2ν2) = o(νk) for all k ≥ 0.
Thus to logarithmic accuracy, it follows that ∇2ϕ(y) = 0
on R2\S1 where S1 is the unit circle centered about the
origin, and ϕ = 0 on |y| = 1. Hence, ϕ(y) = A log |y|
and the inner solution has the far–field behavior

ϕ ∼ A log(|x− x0|/ε). (2.75)

The outer solution satisfies the equation

∇2φ0 + λ0φ0 = 0, x ∈ Ω\{x0},
φ0 ∼ A log(|x− x0|/ε), x→ x0, (2.76)∫

Ω

φ2
0(x)dx = 1.

Following the analysis in Sec. II.C, the outer problem
can be solved in terms of the Neumann Green’s function
for the Helmholtz equation:

∇2G(x,x0;λ0) + λ0G(x,x0;λ0) = −δ(x− x0), x ∈ Ω
(2.77a)

∂nG(x,x0;λ0) = 0, x ∈ ∂Ω (2.77b)

G(x,x0;λ0) ∼ − 1

2π
log |x− x0|+R(x0,x0;λ0), x→ x0.

(2.77c)

That is,

φ0(x) = −2πAG(x,x0;λ0). (2.78)

Matching the near–field behavior of the outer solution
with the far–field behavior of the inner solution then
yields a transcendental equation for the principal eigen-
value:

R(x0,x0;λ0) = − 1

2πν
. (2.79)

Finally, the normalization condition for φ0 determines
the amplitude A according to

4π2A2

∫
Ω

G(x,x0;λ0)2dx = 1. (2.80)

The Helmholtz Green’s function and its regular part
can be calculated along similar lines to Sec. II.C. Here
it is sufficient to note that, since 0 < λ0 � 1 for a small
target, the Green’s function has the expansion

G(x,x0;λ0) = − 1

λ0|Ω0|
+G1(x,x0)+λ0G2(x,x0)+O(λ2

0)

(2.81)
with

∫
Ω
Gj(x,x0)dx = 0. The regular part R(x,x0;λ0)

can be expanded in an identical fashion. Hence, neglect-
ing terms of O(λ0) and higher, substitute R(x,x0;λ0) ≈
−(λ0|Ω0|)−1 + R1(x,x0) into the transcendental Eq.
(2.79). This yields a linear equation for λ0 such that

λ0 ≈
2πν

|Ω0|
1

1 + 2πνR1(x0,x0)
. (2.82)

Substituting the expansion (2.81) into Eq. (2.80) shows
that to leading order in λ0,

A ≈
√
|Ω0|λ0

2π
. (2.83)

Moreover, using Eqs. (2.78), (2.80) and
∫

Ω
Gj(x)dx = 0,

the coefficient c0 is

c0 = −2πA

∫
Ω

G(x,x0;λ0)dx =
2πA

λ0
. (2.84)

We now have all the components necessary to determine
the time–dependent reaction rate k(t). That is, using the
inner solution ϕ(x) = A log(r/ε), r = |x − x0|, we com-
bine Eqs. (2.73), (2.83) and (2.84) to obtain the result
(Straube et al., 2007)

J(t) = Dc0e−λ0t

∫ 2π

0

(
r
∂ϕ

∂r

)∣∣∣∣
r=ε

dθ

= 2πDc0e−λ0tA ≈ c0|Ω0|λ0e−λ0Dt. (2.85)

Note that Straube et al. (2007) applied the above analysis
to the particular problem of protein receptor clustering
on a cylindrical surface membrane. The only modifica-
tion to the rectangular domain Ω is that the left and right
side boundaries are identified by replacing the reflecting
boundary conditions with periodic boundary conditions.
This generates the topology of a cylinder and modifies
the form of the Helmholtz Green’s function accordingly.
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E. Diffusive search for a protein-DNA binding site

A wide range of cellular processes are initiated by a
single protein binding a specific target sequence of base
pairs (target site) on a long DNA molecule. The pre-
cise mechanism whereby a protein finds its DNA binding
site remains unclear. However, it has been observed ex-
perimentally that reactions occur at very high rates, of
around k = 1010M−1s−1 (Richter and Eigen, 1974; Riggs
et al., 1974). This is around 100 times faster than the rate
based on the Smoluchowski theory of diffusion–limited re-
action rates (Sec. II.D), and 1000 times higher than most
known protein-protein association rates. (Note, how-
ever, that some protein-protein association rates are also
much larger than the predictions of Smoluchowski the-
ory (Schreiber et al., 2009)). This apparent discrepancy
in reaction rates, suggests that some form of facilitated
diffusion occurs. The best known theoretical model of
facilitated diffusion for proteins searching for DNA tar-
gets was originally developed by Berg, Winter and von
Hippel (BHW) (Berg and von Hippel, 1985; Berg et al.,
1981; Winter et al., 1981), and subsequently extended by
a number of groups (Coppey et al., 2004; Halford and
Marko, 2004; Hu et al., 2006; Hu and Shklovskii, 2006;
Mirny et al., 2009; Slutsky and Mirny, 2004). The ba-
sic idea of the BHW model is to assume that the pro-
tein randomly switches between two distinct phases of
motion, 3D diffusion in solution and 1D diffusion along
DNA (sliding), see Fig. 2. Such a mechanism is one ex-
ample of a random intermittent search process, see Sec.
IVB. The BHW model assumes that there are no correla-
tions between the two transport phases, so that the main
factor in speeding up the search is an effective reduction
in the dimensionality of the protein motion. However,
as recently reviewed by Kolomeisky (2011), there are a
number of discrepancies between the BHW model and
experimental data, which has led to several alternative
theoretical approaches to facilitated diffusion. We first
review the BHW model and then briefly discuss these
alternative models.

A simple method for estimating the effective reaction
rate of facilitated diffusion in the BHW model is as fol-
lows (Mirny et al., 2009; Slutsky and Mirny, 2004). Con-
sider a single protein searching for a single binding site
on a long DNA strand of N base pairs, each of which has
length b. Suppose that on a given search, there are R
rounds labeled i = 1, . . . , R. In the ith round the pro-
tein spends a time T3,i diffusing in the cytosol followed
by a period T1,i sliding along the DNA. The total search

time is thus T =
∑R
i=1(T3,i + T1,i), and the mean search

time is τ = r(τ3 + τ1). Here r is the mean number of
rounds and τ3, τ1 are the mean durations of each phase
of 3D and 1D diffusion. Let n denote the mean number
of sites scanned during each sliding phase with n � N .
If the binding site of DNA following a 3D diffusion phase
is distributed uniformly along the DNA, then the prob-

protein 

3D diffusion

sliding

target

DNA

x=-M x=Lx=0

(a)

(b)

FIG. 2 (a) Mechanism of facilitated diffusion involving alter-
nating phases of 3D diffusion and 1 D diffusion (sliding along
the DNA). (b) 1D representation of facilitated diffusion.

ability of finding the specific promoter site is p = n/N .
It follows that the probability of finding the site after R
rounds is (1−p)R−1p. Hence, the mean number of rounds
is r = 1/p = N/n. Assuming that 1D sliding occurs via
normal diffusion, then nb = 2

√
D1τ1 where D1 is the 1D

diffusion coefficient, and we have (Mirny et al., 2009)

τ =
N

n
(τ1 + τ3), n = 2

√
D1τ1/b. (2.86)

Since τ3 depends primarily on the cellular environment
and is thus unlikely to vary significantly between pro-
teins, it is reasonable to minimize the mean search
time with respect to τ1 while τ3 is kept fixed. Setting
dτ/dτ1 = 0 implies that the optimal search time occurs
when τ1 = τ3 with τopt = 2Nτ3/n = Nb

√
τ3/D1. Com-

paring with the expected search time for pure 3D diffu-
sion by setting τ1 = 0, n = 1 gives τ3D = Nτ3. Thus
facilitated diffusion is faster by a factor n/2. Further in-
sights to facilitated diffusion may be obtained by using
the Smoluchowski formula for the rate at which a diffus-
ing protein can find any one of N binding sites of size N ,
namely, τ−1

3 = 4πD3Nb. Using this to eliminate N shows
that the effective reaction rate of facilitated diffusion is
(Mirny et al., 2009)

k ≡ τ−1 = 4πD3

(
τ3

τ1 + τ3

)
nb. (2.87)

This equation identifies two competing mechanisms in
facilitated diffusion. First, sliding diffusion effectively in-
creases the reaction cross-section from 1 to n base pairs,
thus accelerating the search process compared to stan-
dard Smoluchowski theory. This is also known as the
antenna effect (Hu et al., 2006). However, the search is
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also slowed down by a factor τ3/(τ1 + τ3), which is the
fraction of the time the protein spends in solution. That
is, a certain amount of time is lost by binding to non-
specific sites that are far from the target.

A more complicated analysis is needed in order to
take into account the effects of boundaries, for example.
Here we review the particular formulation of Coppey et.
al., which generalizes the original analysis of Berg et al.
(1981). Suppose that DNA is treated as a finite track of
length l = L+M with reflecting boundaries at x = −M
and x = +L and a point–like target at x = 0, see Fig. 2.
Rather than modeling 3D diffusion explicitly, each time
the protein disassociates from DNA it simply rebinds at
a random site at a time t later that is generated from an
exponential waiting time density. This is based on the
assumption that 3D excursions are uncorrelated in space.
It might be expected that excursions would be correlated
due to the geometric configuration of DNA. However, in
solution DNA is a random coil so that even short 3D trips
can generate long displacements relative to the linear po-
sition of the protein along the DNA strand, resulting in
decorrelation of excursions. If P3(t) denotes the proba-
bility density that the protein in solution at time t = 0
binds to the DNA at time t at a random position, then

P3(t) = λ3e−λ3t, (2.88)

where τ3 = 1/λ3 is again the mean time spent in so-
lution. Next, let P1(t, x) be the conditional probability
density that the protein disassociates from the DNA at
time t without finding the target, given that it is at linear
position x along the DNA at time t = 0:

P1(x, t) = λ1e−λ1tP(x, t) (2.89)

where τ1 = 1/λ1 is the mean time of each sliding phase,
and P(t, x) is the conditional probability density that the
protein starting at x has not met the target at time t.
Finally, let Q1(x, t) be the conditional probability density
that the protein starting at x finds the target at time t:

Q1(x, t) = e−λ1tf(x, t), (2.90)

where f(x, t) = −dP(x, t)/dt is the FPT density asso-
ciated with diffusion along the DNA strand. That is
f(x, t)dt is the probability that starting at x at t = 0,
the protein finds the target during a single phase of slid-
ing diffusion in the time interval [t, t+dt]. (Protein-DNA
binding is assumed to be diffusion-limited so that as soon
as the protein reaches the target site it reacts).

Suppose that in a given trial, a protein starting at x
at time t = 0 executes n−1 excursions before finding the
target with t1, . . . , tn the residence times on DNA and
τ1, . . . , τn−1 the excursion times. The probability density
for such a sequence of events with t =

∑n
i=1 ti+

∑n−1
i=1 τn

is

Pn(x, {ti, τi}) = Q1(tn)P3(τn−1)P1(tn−1) . . .

× P1(t2)P3(τ1)P1(x, t1), (2.91)

where P1(t) = 〈P1(x, t)〉, Q1(t) = 〈Q1(x, t)〉 and

〈g(x, t)〉 ≡ (L+M)−1
∫ L
−M g(x, t)dx for an arbitrary func-

tion g. In order to determine the FPT density F (x, t) for
finding the target, it is necessary to sum over all pos-
sible numbers of excursions and intervals of time, given
the constraint t =

∑n
i=1 ti +

∑n−1
i=1 τn. Thus, setting

F (t) = 〈F (x, t)〉, one finds that

F (t) =

∞∑
n=1

∫ ∞
0

dt1 . . . dtndτ1 . . . dτn (2.92)

δ

(
n∑
i=1

ti +

n−1∑
i=1

τn − t

)
Q1(tn)

n−1∏
i=1

P3(τi)

n−1∏
i=1

P1(ti).

Finally, Laplace transforming this equation gives
(Coppey et al., 2004)

F̃ (s) = f̃(λ1 +s)

[
1− 1− f̃(λ1 + s)

(1 + s/λ1)(1 + s/λ3)

]−1

, (2.93)

with f̃(s) =
∫∞

0
e−st〈f(x, t)〉dt. Given F̃ (s), the MFPT

to find the target (averaged over the starting position x)
is then

τ =

∫ ∞
0

tF (t)dt = − dF̃ (s)

ds

∣∣∣∣∣
s=0

. (2.94)

which can be evaluated to give

τ =
1− f̃(λ1)

f̃(λ1)
(λ−1

1 + λ−1
3 ). (2.95)

All that remains is to determine f̃(x, s) averaged with
respect to x. If x < 0 (x > 0), then one simply needs to
determine the FPT density for a 1D Brownian particle
on the interval [−M, 0] ([0, L]) with a reflecting bound-
ary at x = −M (x = L) and an absorbing boundary at
x = 0. Recall from Sec. (II.B) that f(x, t) satisfies the
backwards FP equation

∂f(x, t)

∂t
= D1

∂2f(x, t)

∂x2
, (2.96)

with f(x, 0) = 0, f(0, t) = δ(t) and ∂xf(L, t) = 0 or
∂xf(−M, t) = 0. Taking Laplace transforms,

sf̃(x, s) = D1
∂2f̃(x, s)

∂x2
, (2.97)

with f̃(0, s) = 1, ∂xf̃(L, s) = 0 or ∂xf̃(−M, s) = 0. The

general solution is f̃(x, s) = Ae−
√
s/D1x + Be−

√
s/D1x

with the coefficients A,B determined by the boundary
conditions. Solving for A,B separately when x < 0 and
x > 0 and averaging with respect to x finally gives

f̃(s) =
1

L+M

√
D1

λ1

×
[
tanh(L

√
λ1/D1) + tanh(M

√
λ1/D1)

]
.
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Thus, setting τi = 1/λi, i = 1, 3,

τ =

[
(L+M)/

√
τ1D1

tanh(L/
√
τ1D1) + tanh(M/

√
τ1D1)

− 1

]
(τ1 + τ3) ,

which recovers the original result of Berg et al. (1981). It
also recovers Eq. (2.86) when L/

√
τ1D1,M/

√
τ1D1 � 1.

There have been a number of extensions of the BHW
model that incorporate various biophysical effects. For
example, sequence-dependent protein-DNA interactions
generate a rugged energy landscape during sliding mo-
tion of the protein (Hu and Shklovskii, 2006; Mirny et al.,
2009; Slutsky and Mirny, 2004) - see also Sec. III.C. This
observation then leads to an interesting speed-stability
paradox (Mirny et al., 2009; Sheinman et al., 2012). On
the one hand, fast 1D search requires that the variance σ2

of the protein-DNA binding energy be sufficiently small,
that is, σ ∼ kBT , whereas stability of the protein at
the DNA target site requires σ ∼ 5kBT . One suggested
resolution of this paradox is to assume that a protein-
DNA complex has two conformational states: a recog-
nition state with large σ and a search state with small
σ (Mirny et al., 2009; Slutsky and Mirny, 2004). If the
transitions between the states are sufficiently fast then
target stability and fast search can be reconciled. (For
a recent review of the speed-stability paradox and its
implications for search mechanisms see Sheinman et al.
(2012)). Other effects include changes in the conforma-
tional state of DNA and the possibility of correlated as-
sociation/disassociation of the protein (Benichou et al.,
2011a; Hu et al., 2006), and molecular crowding along
DNA (Li et al., 2009) or within the cytoplasm (Isaacson
et al., 2011). Molecular crowding will be considered in
Sec. IIIB.

The BHW model and its extensions provide a plausible
mechanism for facilitated diffusion that has some support
from experimental studies, which demonstrate that pro-
teins do indeed slide along DNA (Gorman and Greene,
2008; Gowers et al., 2005; Li et al., 2009; Tafvizi et al.,
2008; Winter et al., 1981). In particular, recent advances
in single–molecule spectroscopy means that the motion
of flourescently labeled proteins along DNA chains can
be quantified with high precision, although it should be
noted that most of these studies have been performed
in vitro. A quantitative comparison of the BHW model
with experimental data leads to a number of discrepan-
cies, however. For example, it is usually assumed that
D1 ≈ D3 in order to obtain a sufficient level of facilita-
tion. On the other hand, single–molecule measurements
indicate that D1 � D3 (Elf et al., 2007; Yang et al.,
2006). Such experiments have also shown that τ1 � τ3,
which is significantly different from the optimal condition
τ1 = τ3. Hence the intermittent search process could ac-
tually result in a slowing down compared to pure 3D dif-
fusion (Hu et al., 2006). The RHW model also exhibits
unphysical behavior in certain limits. These issues have
motivated a number of alternative models of facilitated
diffusion, as recently highlighted by Kolomeisky (2011).

Electrostatic interactions. One alternative hypothesis is
that the observed fast association rates are due to electro-
static interactions between oppositely charged molecules,
and thus do not violate the 3D diffusion limit (Halford,
2009). This is motivated by the theoretical result that the
maximal association rate in Smoluchowski theory when
there are long-range interactions between the reacting
molecules is

k = 4πDa/β, β =

∫ ∞
a

eU(r)/kBT
dr

r2
, (2.98)

where U(r) is the interaction potential. The standard re-
sult is recovered when U(r) = 0 for r > a, see Eq. (2.63).
It follows that long–range attractive interactions can sig-
nificantly increase diffusion–limited reaction rates. It has
been further argued that in vitro experiments tend to be
performed at low salt concentrations so that the effects
of screening could be small. However, experimentally-
based estimates of the Debye length, which specifies the
size of the region where electrostatic forces are impor-
tant, indicate that it is comparable to the size of the
target sequence. Hence, electrostatic forces are unlikely
to account for facilitated diffusion.

Colocalization Another proposed mechanism is based on
the observation that in bacteria, genes responsible for
producing specific proteins are located close to the bind-
ing sites of these proteins. This colocalization of proteins
and binding sites could significantly speed up the search
process by requiring only a small number of alternating
3D and 1D phases (Mirny et al., 2009). However, such
a mechanism might not be effective in eukaryote cells,
where transcription and translation tend to be spatially
and temporally well separated. Moreover, colocalization
breaks down in cases where proteins have multiple tar-
gets on DNA.

Correlations. Yet another theoretical mechanism in-
volves taking into account correlations between 1D slid-
ing and 3D bulk diffusion. These correlations reflect the
fact that attractive interactions between a protein and
non-specific binding sites means that there is a tendency
for a protein to return back to a neighborhood of the
DNA site from which it recently disassociated (Cherstvy
et al., 2008; Zhou, 2005). Although such interactions
tend to slow down proteins moving along DNA, they also
increase the local concentration of proteins absorbed to
DNA. This suggests that facilitated diffusion can occur
at intermediate levels of protein concentration and inter-
mediate ranges of protein–DNA interactions.
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III. DIFFUSIVE TRANSPORT: EFFECTS OF
MOLECULAR CROWDING, TRAPS AND
CONFINEMENT

A. Anomalous diffusion

In normal (unobstructed) diffusion in d dimensions, the
mean-square displacement (MSD) of a Brownian particle
is proportional to time, 〈R2〉 = 2dDt, which is a con-
sequence of the central limit theorem. A general sig-
nature of anomalous diffusion is the power law behavior
(Bouchaud and Georges, 1990; Metzler and Klafter, 2000)

〈R2〉 = 2dDtα, (3.1)

corresponding to either subdiffusion (α < 1) or superdif-
fusion (α > 1). Due to recent advances in single-particle
tracking methods, subdiffusive behavior has been ob-
served for a variety of biomolecules and tracers within
living cells. Examples include messenger RNA molecules
(Golding and Cox, 2006) and chromosomal loci (Weber
et al., 2010) moving within the cytoplasm of bacteria,
lipid granule motion in yeast cells (Jeon et al., 2011),
viruses (Seisenberger et al., 2001), telemores in cell nu-
clei (Bronstein et al., 2009), and protein channels moving
within the plasma membrane (Weigel et al., 2011).

There are currently three subcellular mechansims
thought to generate subdiffusive motion of particles in
cells, each with its own distinct type of physical model
(Weber et al., 2010). The first mechanism, which is typ-
ically modeled using the continuous time random walk
(CTRW) (Hughes, 1995; Scher and Montroll, 1975), in-
volves transient immobilization or trapping, see Sec.
IIIC. That is, if a diffusing particle encounters a binding
site then it will pause for a while before disassociating
and diffusing away. Multiple binding events with a range
of rate constants can generate long tails in the waiting
time distribution leading to subdiffusive behavior (Sax-
ton, 1996, 2007). In addition to having a heavy-tailed
waiting time distribution, the CTRW is weakly noner-
godic; the temporal average of a long particle trajectory
differs from the ensemble average over many diffusing
particles (He et al., 2008; Jeon and Metzler, 2012; Jeon
et al., 2011; Weigel et al., 2011). The second mechanism
for subdiffusion in cells is obstructed diffusion (OD) due
to molecular crowding or cytoskeletal networks that im-
pose obstacles around which diffusing molecules have to
navigate, see Sec. IIIB. If the concentration of obsta-
cles is sufficiently high, then subdiffusive behavior oc-
curs, in which the domain of free diffusion develops a
fractal-like structure (Saxton, 1994). Diffusion on a frac-
tal is a stationary process and is thus ergodic. The final
mechanism involves the viscoelastic properties of the cy-
toplasm due to the combined effects of macromolecular
crowding and the presence of elastic elements such as nu-
cleic acids and cytoskeletal filaments. As a particle moves
through the cytoplasm, the latter “pushes back”, thus

generating long-time correlations in the particle’s trajec-
tory. This memory effect leads to subdiffusive behavior
that can be modeled in terms of fractional Brownian mo-
tion (FBM) or the fractional Langevin equation (FLE)
(Burov et al., 2011; Mandelbrot and Ness, 1968). In con-
trast to CTRW and diffusion on fractals, the probabil-
ity density for unconfined subdiffusion in FBM/FLE is a
Gaussian (with a time–dependent diffusivity). Moreover,
FBM/FLE are ergodic systems, although under confine-
ment time-averaged quantities behave differently from
their ensemble-averaged counterparts (Jeon and Metzler,
2012).

Determining which type of model best fits experimen-
tal data is a nontrivial task, particularly since CTRW,
OD and FBM/FLE generate similar scaling laws for
ensemble-averaged behavior in the long-time limit. Thus
other measures such as ergodicity are being used to help
identify which model provides the best characterization
for anomalous diffusion in living cells. A number of re-
cent studies provide examples where FBM/FLE appears
to give a better fit to the data than CTRW (Magdziarz
et al., 2009; Szymanski and Weiss, 2009; Weber et al.,
2010). However, other studies suggest that both ergodic
(OD or FBM/FLE) and nonergodic processes (CTRW)
can coexist (Jeon et al., 2011; Weigel et al., 2011).

In this review we are going to focus on biophysical
models of the cellular environment and how it effects dif-
fusive transport via molecular crowding, trapping and
confinement, rather than on generic models of anomalous
transport such as CTRW and FBM/FLE. The reasons
are two-fold: (i) there are already a number of compre-
hensive reviews of such models (Kou, 2008; Mandelbrot
and Ness, 1968; Metzler and Klafter, 2000; Scher and
Montroll, 1975; Tothova et al., 2011), and (ii) it is still un-
clear to what extent intracellular diffusion is anomalous
in the long–time limit rather than just at intermediate
times. This motivates studying diffusion in the presence
of obstacles and transient traps whereby normal diffu-
sion is recovered asymptotically. However, before pro-
ceeding, we briefly sketch the basic structure of CTRW
and FBM/FLE models.

The CTRW considers a particle performing random
jumps whose step length is generated by a probabil-
ity density with finite second moments. However, the
waiting times between jumps are assumed to be dis-
tributed according to a power law (rather than an ex-
ponential waiting time density characteristic of Marko-
vian random walks). The resulting heavy tailed wait-
ing times generate subdiffusive behavior. Consider, for
example, a 1D CTRW generated by a sequence of in-
dependent identically distributed (iid) positive random
waiting times T1, T2, . . . , Tn, each having the same prob-
ability density function φ(t), and a corresponding se-
quence of (iid) random jumps X1, X2, . . . ∈ R, each hav-
ing the same probability density w(x). Setting t0 = 0
and tn = T1 + T2 + . . . + Tm for positive integers n,
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the random walker makes a jump of length Xn at time
tn. Hence, its position is x0 = 0 for 0 ≤ t < T1 and
xn = X1 + X2 + . . . + Xn for tn ≤ t < tn+1. It follows
that the probability density p(x, t) that the particle is at
position x at time t satisfies the integral equation

p(x, t) = δ(x)Ψ(t) (3.2)

+

∫ t

0

φ(t− t′)
[∫ ∞
−∞

w(x− x′)p(x′, t′)dx′
]
dt′,

where Ψ(t) =
∫∞
t
φ(t′)dt′ is the survival probability that

at time t the particle has not yet moved from its initial
position at x = 0. In the special case of an exponential
waiting time density φ(t) = τ−1e−t/τ , we can differenti-
ate both sides of Eq. (3.2) to obtain

τ
∂p(x, t)

∂t
=

[
−p(x, t′) +

∫ ∞
−∞

w(x− x′)p(x′, t′)dx′
]
,

Setting w(x) = 0.5δ(x − δx) + 0.5δ(x + δx) then yields
a spatially discrete version of the diffusion equation. On
the other hand, anomalous subdiffusion occurs if φ(t) ∼
t−α−1 with 0 < α < 1 (Metzler and Klafter, 2000).

In order to motivate the FLE, recall that a molecule
moving through a fluid is subject to a frictional force and
a random fluctuating force originating from random colli-
sions between the Brownian molecule and particles of the
surrounding fluid. In the Langevin Eq. (2.9), the random
fluctuations are represented by a zero-mean Gaussian
noise term with a two-point correlation function taken to
be a Dirac function. Moreover, the amplitude-squared of
the noise (diffusion coefficient) is related to the friction
coefficient via the Einstein relation, which is an exam-
ple of the fluctuation-dissipation theorem. It has been
suggested that the Langevin equation can be generalized
to the case of diffusion in complex heterogeneous media
such as the cytoplasm or plasma membrane by consid-
ering a Brownian particle subject to frictional and fluc-
tuating forces with long–time correlations that exhibit
power-law behavior (Lutz, 2001; Porra et al., 1996; Wang,
1992; Wang and Lung, 1990). For example, consider the
following generalized Langevin equation for a Brownian
particle with unit mass moving in a 1D medium (Wang
and Lung, 1990):

Ẋ(t) = V (t), (3.3a)

Ẍ(t) +

∫ t

0

φ(t− t1)V (t1)dt1 = F (t), (3.3b)

where φ(t) represents a friction memory kernel with
φ(t) = 0 for t < 0. The Gaussian noise term F (t) satisfies

〈F (t)〉 = 0, 〈F (0)F (t)〉 = C(t). (3.4)

Following Wang (1992); Wang and Lung (1990), the cor-
relation function C(t) is governed by a power law,

C(t) = F0(α)t−α, t > 0, (3.5)

with 0 < α < 1 for subdiffusive behavior and C(−t) =
C(t). Using a generalized fluctuation-dissipation theo-
rem, the functions φ(t), C(t) are related according to

C(t) = kBTφ(t), t ≥ 0. (3.6)

We now show how to derive a FP equation for the
generalized Langevin equation following Wang (Wang,
1992). Since the fluctuating force is described by a Gaus-
sian process then so is the random variable X(t). Let
p(x, t) denote the probability density for X(t) = x and
introduce the characteristic function or Fourier transform

Γ(k, t) ≡ 〈eikX(t)〉 =

∫ ∞
−∞

p(x, t)eikxdx. (3.7)

It follows that Γ is given by the Gaussian

Γ(k, t) = eikX(t)−k2σ2(t)/2, (3.8)

where

X(t) = 〈X(t)〉, σ2(t) = 〈[X(t)−X(t)]2〉. (3.9)

The mean and variance can be determined from Laplace
transforming the generalized Langevin equation (3.3):

sX̃(s)−X(0) = Ṽ (s), (3.10a)

s2X̃(s)− V (0)− sX(0) + φ̃(s)V (s) = F̃ (s). (3.10b)

Rearranging (3.10b) gives

X̃(s)− s−1X(0)− H̃(s)V (0) = H̃(s)F̃ (s),

where

H̃(s) =
1

s[s+ φ̃(s)]
. (3.11)

Inverting the equation for X̃(s) thus yields

X(t)−X(0)−V (0)H(t) =

∫ t

0

H(t− t1)F (t1)dt1 (3.12)

It immediately follows from equation (3.12) that

X(t) = X(0) + V (0)H(t). (3.13)

Calculation of the variance is a little more involved.
First, using equations (3.12) and (3.13),

σ2(t) =

∫ t

0

dt1

∫ t

0

dt2H(t1)H(t2)〈F (t− t1)F (t− t2)〉

=

∫ t

0

dt1

∫ t

0

dt2H(t1)H(t2)C(t1 − t2)

= 2

∫ t

0

dt1

∫ t1

0

dt2H(t1)H(t2)C(t1 − t2)

= 2kBT

∫ t

0

dt1

∫ t1

0

dt2H(t1)H(t2)φ(t1 − t2)
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The last two lines follow from the fact that C(t) is an
even function and the generalized fluctuation-dissipation
theorem, respectively. The final step is to note that

A(t1) ≡
∫ t1

0

H(t2)φ(t1 − t2)dt2

L−→ Ã(s) = H̃(s)φ̃(s) =
1

s
− 1

s+ φ̃(s)

L−1

−−−→ A(t1) = 1− dH(t1)

dt1
,

where L denotes the Laplace transform operator. Sub-
stituting back into the expression for σ2 gives (Wang,
1992),

σ2(t) = kBT

[
2

∫ t

0

H(τ)dτ −H(t)2

]
. (3.14)

The final step in the analysis is to substitute equations
(3.13) and (3.14) into equation (3.8) and to differentiate
the resulting expression for Γ(k, t) with respect to time
t. This gives

∂Γ(k, t)

∂t
=
[
ikV (0)h(t)− k2kBTH(t)(1− h(t))

]
Γ(k, t),

(3.15)
where h(t) = dH(t)/dt. Finally, carrying out the inverse
Fourier transform gives the FPE

∂p(x, t)

∂t
= −h(t)V (0)

∂p(x, t)

∂x

+ kBTH(t)(1− h(t))
∂2p(x, t)

∂x2
. (3.16)

For a given choice of correlation function C(t) and the
asymptotic properties of Laplace transforms in the small
s limit, one can determine the large t behavior of the
FP equation. For example, if C(t) = F0(α)t−α, it can be
shown that when t→∞ and 0 < α < 1, the FP equation
has the asymptotic form (Wang, 1992)

∂p(x, t)

∂t
= −a1(α)V (0)tα−2V (0)

∂p(x, t)

∂x

b1(α)kBTt
α−1 ∂

2p(x, t)

∂x2
, (3.17)

for α–dependent coefficients a1, b1. Note in particular
that the diffusion coefficient is time–dependent and there
is a drift term when V (0) 6= 0. Both of these reflect the
non–Markovian nature of the process. Given the initial
condition p(x, 0) = δ(x), the asymptotic FP equation has
the solution

p(x, t) =
1√

4πD0tα
exp

[
−(x+ atα−1)2/(4D0t

α)
]
,

(3.18)
where D0 = b1kBT/α, a = a1V (0)/(α − 1). It can also
be shown that the mean-square displacement 〈[X(t) −
X]2〉 = 2D0t

α, thus signifying anomalous subdiffusion.

Finally, note that one can construct a FBM model that
exhibits the same Gaussian behavior as the FLE in the
long-time limit (Lutz, 2001). The former considers a par-
ticle evolving according to a Langevin equation of the
form

dX

dt
= −kX + ξ(t), (3.19)

which is driven by fractional Gaussian noise of zero mean
and a slowly decaying, power-law autocorrelation func-
tion (t 6= t′)

〈ξ(t)ξ(t′)〉 ∼ α(α− 1)K|t− t′|α−2. (3.20)

In contrast to FLE, this process is driven by external
noise without considering the fluctuation-dissipation the-
orem. Note that the Gaussian solution of FBM breaks
down in the case of confined motion.

B. Molecular crowding

One of the characteristic features of the interior aque-
ous environment of cells (cytoplasm) and intracellular
compartments such as the endoplasmic reticulum and mi-
tochondria is that they are crowded with macromolecules
and skeletal proteins, which occupy 10%−50% of the vol-
ume (Dix and Verkman, 2008; Fulton, 1982; Luby-Phelps,
2000). Cell membranes are also crowded environments
containing lipids (molecules consisting of nonpolar, hy-
drophobic hydrocarbon chains that end in a polar hy-
drophylic head), which are often organized into raft struc-
tures, and various mobile and immobile proteins (Kusumi
et al., 2005). One consequence of molecular crowding,
which we will not consider further here, is that it can
drastically alter biochemical reactions in cells (Schnell
and Turner, 2004; Zhou et al., 2008). That is, volume
or area exclusion effects increase the effective solute con-
centration, thus increasing the chemical potential of the
solute. Another consequence of molecular crowding is
that it hinders diffusion, although there is an ongoing de-
bate regarding to what extent this results in anomalous
diffusion rather than a simple reduction in the normal
diffusion coefficient (Banks and Fradin, 2005; Dix and
Verkman, 2008; Weiss et al., 2004).

One of the difficulties in experimentally establishing
the existence of anomalous diffusion is that the behavior
of 〈R2〉 can depend on the spatial or temporal scale over
which observations are made. Consider, for example, the
effects of obstacles on protein diffusion (Saxton, 1994;
Sung and Yethiraj, 2008). The presence of obstacles re-
duces the space available for diffusion, and consequently
decreases the effective diffusion coefficient. As the vol-
ume or area fraction of obstacles φ is increased, there is
a fragmentation of the available space in the sense that
many paths taken by a diffusing protein terminate in a
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dead end and thus do not contribute to diffusive trans-
port. The region of free diffusion develops a fractal–like
structure resulting in anomalous diffusion at intermedi-
ate times, 〈R2〉 ∼ tα, α < 1. (For sufficiently small times√
Dt � ξ, where ξ is the mean distance between ob-

stacles, so that diffusion is normal). However, assuming
that the volume or area fraction is below the percolation
threshold, diffusion is expected to be normal on suffi-
ciently long time-scales, 〈R2〉 ∼ t. On the other hand,
above the percolation threshold, proteins are confined
and 〈R2〉 saturates as t → ∞. The time it takes to
cross over from anomalous to normal diffusion increases
with the volume or area fraction φ, and diverges at the
percolation threshold φc where 〈R2〉 ∼ tα for all times.

Another difficulty in interpreting experimental data is
that there are certain practical limitations of current
methods (Dix and Verkman, 2008). The most effec-
tive method for describing membrane diffusion is single-
particle tracking (SPT). This involves the selective label-
ing of proteins or lipids with fluorophores such as quan-
tum dots, green fluorescent protein (GFP) or organic
dyes so that continuous high resolution tracking of in-
dividual molecules can be carried out. SPT can yield
nanometer spatial resolution and submillisecond tempo-
ral resolution of individual trajectories. However, it is
not currently suitable for measuring diffusion in three
dimensions due to the relatively rapid speed of 3D dif-
fusion and the problems of imaging in depth. Hence, in
the case of diffusion within the cytosol, it is necessary to
use a method such as fluorescence recovery after photo-
bleaching (FRAP). Here fluorescently labeled molecules
are introduced into the cell and those in some specified
volume are bleached by a brief intense laser pulse. The
diffusion of unbleached molecules into the bleached vol-
ume is then measured. FRAP is limited because it only
provides ensemble averaged information of many fluores-
cent particles, and it also has a restricted measurement
time, making it difficult to capture long-tail phenomena
expected in anomalous subdiffusion.

Recently, homogenization theory has been used to de-
velop a fast numerical scheme to calculate the effects of
excluded volume due to molecular crowding on diffusion
in the cytoplasm (Novak et al., 2009). The basic idea is
to model the heterogeneous environment in terms of ran-
domly positioned overlapping obstacles. (Note, however,
that this is an oversimplification, since single-particle
tracking experiments indicate that the cytoplasm is more
properly treated as a dynamic, viscoelastic environment).
Although obstacles don’t overlap physically, when the fi-
nite size of a diffusing molecule (tracer) is taken into
account, the effective volume excluded by an obstacle
increases so that this can result in at least partially over-
lapping exclusion domains, see Fig. 3(a). In the absence
of any restrictions on the degree of overlap, the fraction
of inaccessible volume is φ = 1 − e−V , where V is the
sum of the individual obstacles per unit volume. A sim-
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FIG. 3 (a) Diffusion of a finite size particle (tracer) be-
tween obstacles of volume ν (left) can be modeled as diffusion
of a point particle between effective obstacles of volume ν′

(right). Effective obstacles can partially overlap. (b) Sketch
of MSD 〈R2〉 against time t, illustrating three different dif-
fusion regimes: unobstructed diffusion (I), anomalous inter-
mediate diffusion (II), and normal effective diffusion (III). (c)
Illustrative plot of the normalized effective diffusion coeffi-
cient Deff(φ)/D0 for random spheres. The scale of the curves
in (b,c) are based on the results of Novak et al. (2009).

ple argument for this (Novak et al., 2009) is to consider
a set of N identical overlapping objects placed in a box
of total volume |Ω|. Let ν denote the volume of each
obstacle. The probability P (x) that a randomly selected
point x ∈ Ω is outside any given obstacle is 1 − ν/|Ω|.
Hence, the probability for that point to be outside all
obstacles is P (x)N = (1− ν/|Ω|)N . The volume fraction
of accessible space at fixed number density n = N/|Ω| is
then

lim
N→∞

(1− ν/|Ω|)N = lim
N→∞

(1− νn/N)N = e−nν = e−V

and the result follows. The mean distance between ob-
stacles can then be determined in terms of φ and the
geometry of each obstacle.

As previously discussed, three regimes of diffusion are
expected below the percolation threshold, φ < φc, as il-
lustrated in Fig. 3(b). For sufficiently short times there
is unobstructed diffusion, for intermediate times there is
anomalous diffusion, and for long times there is normal
effective diffusion. Novak et al. (2009) use homogeniza-
tion theory to estimate the effective diffusion coefficient
Deff in the last regime. The starting point for their anal-
ysis is to consider a periodic arrangement of identical
obstacles in a large rectangular box of volume Ω with
accessible volume Ω1 and φ = 1 − |Ω1|/|Ω|. The spatial
periods of the arrangement in Cartesian coordinates are
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aj , j = 1, 2, 3 such that the ratio

ε =
√
a2

1 + a2
2 + a2

3/
3
√
|Ω| � 1. (3.21)

The heterogeneous diffusion coefficient is

Dε(x) =

{
D0 if x ∈ Ω1

0, otherwise.
(3.22)

Inhomogeneous Dirichlet conditions are imposed on the
boundaries of the box in order to maintain a steady–state
diffusive flux. In the case of a heterogeneous diffusion
coefficient, the flux is determined by the steady–state
diffusion equation for the tracer distribution u(x):

∇ · (Dε(x)∇u(x)) = 0. (3.23)

The basic idea of the homogenization method is to rep-
resent the diffusive behavior of a tracer on two differ-
ent spatial scales (Pavliotis and Stuart, 2008; Torquato,
2002): one involving a macroscopic slow variable x and
the other a microscopic fast variable y ≡ x/ε so that u
is periodic with respect to y. Thus, we write

u = u(x,y), ∇u = ∇xu(x,y) + ε−1∇yu(x,y).

Also Dε(x) ≡ D(x/ε) = D(y) with D and u having the
same periodicity in y.

A solution to Eq. (3.23) is then constructed in terms
of the asymptotic expansion

u = u0(x,y) + εu1(x,y) + ε2u2(x,y) + . . . . (3.24)

Collecting terms of the same order in ε then yields a
hierarchy of equations, which up to O(1) are as follows:

∇y · [D(y)∇yu0(x,y)] = 0 (3.25a)

∇y · [D(y)∇yu1(x,y)] = −∇y · [D(y)∇xu0(x,y)]

−∇x · [D(y)∇yu0(x,y)]
(3.25b)

∇y · [D(y)∇yu2(x,y)] = −∇x · [D(y)∇xu0(x,y)]

−∇y · [D(y)∇xu1(x,y)]

−∇x · [D(y)∇yu1(x,y)] .
(3.25c)

Eq. (3.25a) and periodicity with respect to y establishes
that u0(x,y) ≡ u0(x), that is, u0 corresponds to an ho-
mogenized solution. It follows from Eq. (3.25b) that

∇yD(y) ·∇xu0(x) + ∇y · [D(y)∇yu1(x,y)] = 0,

which has the solution

u1(x,y) =

3∑
i=1

∂u0(x)

∂xi
wi(y), (3.26)

with wi(y) a periodic function satisfying

∂D(y)

∂yi
+

3∑
j=1

∂

∂yj

[
D(y)

∂wi(y)

∂yj

]
= 0. (3.27)

Finally, averaging both sides of Eq. (3.25c) with respect
to y over a unit volume |ω0|/ε3 of the periodic structure,
using the divergence theorem, and expressing u1 in terms
of u0 yields the homogenized diffusion equation

3∑
i,j=1

D̃eff,ij
∂2u0(x)

∂xi∂xj
= 0, (3.28)

with the anisotropic diffusion tensor

D̃eff,ij =
ε3

|ω0|

∫
ω0

(
D(y)δi,j +D(y)

∂wi(y)

∂yj

)
dy.

(3.29)
Finally, rewriting the diffusion tensor in a more symmet-
ric form using Eq. (3.27) and integration by parts gives
(Novak et al., 2009)

D̃eff,ij =
D0

|ω0|

∫
ω1

3∑
k=1

(
δi,k +

∂ŵi(x)

∂xk

)(
δj,k +

∂ŵj(x)

∂xk

)
dx,

where ω1 is the accessible region of the fundamental do-
main ω0. The function w(x) has been rescaled according
to ŵ(x) = εw(x/ε) so that

∂Dε(x)

∂xi
+

3∑
j=1

∂

∂xj

[
Dε(x)

∂ŵi(x)

∂xj

]
= 0 (3.30)

over a unit cell with periodic boundary conditions. Note
that the concentration u0(x) is only defined in free
space so that the macroscopic concentration is actually
u(x) = (1 − φ)u0(x) and the macroscopic diffusion ten-

sor is Deff,ij = D̃eff,ij/(1 − φ). In the case of isotropic
periodic structures Deff,ij = Deffδi,j .

Novak et al. (2009) numerically extended the homog-
enization method to a random arrangement of obstacles
by approximating the disordered medium with a periodic
one, in which the unit cell consists of N randomly placed
obstacles. N is taken to be sufficiently large so that for a
given density of obstacles, one obtains a statistically sta-
tionary Deff . Comparing the homogenized diffusion coef-
ficient with that obtained from Monte Carlo simulations,
Novak et. al. showed that the numerical homogenization
method yielded reasonable agreement for N = O(100).
One of the interesting results of their study was that the
variation of Deff with the excluded volume fraction φ can
be approximated by the power law

Deff(φ) = D0
(1− φ/φc)µ

1− φ
, (3.31)

where the parameters φc, µ depend on the geometry
of the obstacles. For example, for randomly arranged
spheres, φc ≈ 0.96 and µ ≈ 1.5. A typical plot of
Deff(φ) is shown in Fig. 3(c). Previously, the above
power law behavior had been predicted close to the per-
colation threshold (Bouchaud and Georges, 1990), but
these results suggest it also holds for a wider range of
volume fractions.
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C. Diffusion–trapping models

In the Smoluchowski theory of reaction kinetics, it is
assumed that when a diffusing particle reacts with the
target it disappears, that is, we have the trapping reac-
tion A+B → B where A denotes a diffusing particle and
B denotes an immobile trap. However, within the con-
text of intracellular transport, there are many examples
where there is transient trapping of diffusing particles,
resulting in anomalous diffusion on intermediate time-
scales and normal diffusion on long time-scales. This has
been elucidated by Saxton (1996, 2007), who carried out
Monte–Carlo simulations of random walks on a 2D lat-
tice with a finite hierarchy of binding sites, that is bind-
ing sites with a finite set of energy levels. This means
that there are no traps that have an infinite escape time
so that diffusing particles ultimately equilibrate with the
traps and diffusion becomes normal. On the other hand,
in the case of infinite hierarchies, arbitrarily deep traps
exist but are very rare, resulting in a nonequilibrium sys-
tem in which anomalous subdiffusion occurs at all times
(Bouchaud and Georges, 1990). The latter process can
be modeled in terms of a continuous-time random walk,
see Sec. III.A. Here we will consider some examples of
diffusive transport in the presence of transient immo-
bile traps. Note that a related application is calcium
buffering, where freely diffusing calcium molecules bind
to large proteins in the cytosol that can either be mobile
or immobile. In particular, mobile buffering can lead
to a nonlinear advection-diffusion equation that changes
many properties of the basic diffusion model, as detailed
in Keener and Sneyd (2009).

1. Sequence-dependent protein diffusion along DNA

We begin by considering a 1D random walk model
used to study sequence-dependent protein diffusion along
DNA (Barbi et al., 2004a,b). This concerns the impor-
tant problem of how a site–specific DNA binding protein
locates its target binding site on DNA. As discussed in
Sec. II.E, such a search process is thought to involve a
combination of mechanisms, including one–dimensional
sliding along the DNA and uncorrelated 3D diffusion
(Berg et al., 1981; Halford and Marko, 2004). Barbi et al.
(2004a,b) model the sliding phase of protein movement in
terms of a 1D random walk, in which the step probabil-
ity to neighboring sites depends on an energy landscape
that reflects sequence dependent protein-DNA interac-
tions, see Fig. 4. This is motivated by the idea that the
protein needs to “read” the underlying sequence of base
pairs (bps) as it slides along the DNA in order to be able
to detect the target site. Thus each nonspecific site on
DNA acts as a potential trap for the sliding protein.

The sequence of the target site usually consists of a
few (r) consecutive bps, and sequence recognition is of-

DNA

protein base pair

target sequence

FIG. 4 Schematic illustration of Barbi et al. (2004a,b) ran-
dom walk model of sequence-dependent protein diffusion
along DNA. Each lattice site corresponds to a base pair with
four binding sites that can potentially make hydrogen bonds
with the diffusing protein: acceptor sites (black dots), donor
sites (gray dots) and missing sites (white dots). In this exam-
ple, the protein interacts with a base pair sequence of length
r = 2. The energy of protein-DNA interactions determines
the transition rates to nearest neighbor lattice sites.

ten mediated by hydrogen bonds to a set of four specific
binding sites on each base pair. Some binding sites form a
hydrogen bond as an acceptor, some as a donor and some
do not to form a bond. Barbi et. al. assume that at each
site n of DNA, the protein attempts to form hydrogen
bonds with the local sequence of r base pairs. Hence,
each potential binding site n is represented as a sequence
of r-vectors {bn,bn+1, . . . ,bn+r−1}, one for each bp in
the sequence, according to the rule

bn =

{
(1,−1, 1, 0)T for AT (0, 1,−1, 1)T for TA
(1, 1,−1, 0)T for GC (0,−1, 1, 1)T for CG

,

where +1,−1, 0 denote, respectively, an acceptor, a
donor and a missing hydrogen bond on a given bp. The
protein is then represented by a so–called (r×4) recogni-
tion matrix R describing the pattern of hydrogen bonds
formed by the protein and DNA at the target site where
there is optimal matching. The protein-DNA interaction
energy is then defined by counting the matching and un-
matching bonds between the recognition matrix and the
DNA sequence at site n:

E(n) = −εTr[R ·B], (3.32)

where B is the matrix whose r columns are given by
the vectors {bn,bn+1, . . . ,bn+r−1}, and ε denotes each
hydrogen bond energy.

Given the above energy landscape, Barbi et. al. model
the dynamics of protein sliding motion along DNA as a
1D random walk, in which the protein is represented as
a particle hopping to its nearest neighboring lattice sites
with rates

rn→n′ =
1

2τ
e−∆En→n′/kBT , n′ = n± 1, (3.33)

where ∆En→n′ is the effective energy barrier between
neighboring sites, kB is the Boltzmann constant, and T is
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the temperature. Various models can be considered relat-
ing the barrier energy to the site-dependent energy E(n)
(Barbi et al., 2004b). The simplest is to take ∆En→n′ =
max[E(n′)−E(n), 0]. Monte Carlo simulations may then
be used to study the dynamics of the resulting random
walk with transient traps (Barbi et al., 2004a,b). In the
large time limit, a population of non-interacting random
walkers will reach a stationary Boltzmann distribution of
the form ρ(n) ∼ e−E(n)/kBT and the associated dynamics
will exhibit normal diffusion. However, for large enough
values of ε/kBT , some sites along the DNA could trap
a protein for significant times, suggesting that anoma-
lous behavior could be observed at intermediate times.
This is indeed found to be the case. Defining the MSD
according to 〈∆n2〉 = N−1

∑N
i=1(ni(t) − ni(0))2 where

N is the number of proteins in the population, it was
found numerically that 〈∆n2〉 ∼ tα, α < 1 at intermedi-
ate times, with a crossover to normal diffusion (α = 1) at
large times. Moreover, using experimentally based model
parameters, Barbi et. al. showed that the crossover time
was sufficiently large that anomalous diffusion occurred
on time-scales comparable to the typical sliding phase of
target search (Barbi et al., 2004a,b). This suggests that
anomalous diffusion is likely to dominate.

2. Diffusion along spiny dendrites

Another recent example of anomalous diffusion in the
presence of transient traps has been considered by San-
tamaria et al. (2006). These authors used a combination
of experimental and computational modeling to study
how the presence of dendritic spines affects the 3D dif-
fusion of signaling molecules along the dendrites of neu-
rons. Neurons are amongst the largest and most complex
cells in biology. Their intricate geometry presents many
challenges for cell function, in particular with regards to
the efficient delivery of newly synthesized proteins from
the cell body or soma to distant locations on the axon
or dendrites. The axon contains ion channels for action
potential propagation and presynaptic active zones for
neurotransmitter release, whereas each dendrite contains
postsynaptic domains (or densities) where receptors that
bind neurotransmitter tend to cluster, see Fig. 5. At
most excitatory synapses in the brain, the postsynaptic
density (PSD) is located within a dendritic spine, which
is a small, sub-micrometer membranous extrusion that
protrudes from a dendrite (Sorra and Harris, 2000), see
Fig. 6. Typically spines have a bulbous head that is con-
nected to the parent dendrite through a thin spine neck,
and there can exist thousands of spines distributed along
a single dendrite. It is widely thought that spines act to
compartmentalize chemical signals generated by synap-
tic activity, thus impeding their diffusion into dendrites
(Sabatini et al., 2001; Yuste et al., 2000). Conversely, in
the case of signaling molecules diffusing along the den-

drite, the spines act as transient traps as illustrated in
Fig. 7(a). Following along similar arguments to the case
of diffusion in the presence of obstacles, normal diffusion
is expected at short and long times and anomalous sub-
diffusion at intermediate times. Anomalous subdiffusion
was indeed observed by Santamaria et al. (2006), such
that the mean square displacement 〈x2(t)〉 ∼ D0t

2/β at
intermediate times with β > 2 and D0 the free diffusion
coefficient. As might be expected, β increases (slower
diffusion) with increasing spine density. β also increases
when the volume of the spine head is increased relative
to the spine neck, reflecting the fact there is an enhanced
bottleneck. Note that anomalous diffusion can occur at
all times if the reactions within each spine are taken to
have a non-exponential waiting time density (Fedotov
et al., 2010), see also III.A.

A related problem is the diffusive transport of neu-
rotransmitter protein receptors within the plasma mem-
brane of a dendrite, with each spine acting as a transient
trap that localizes the receptors at a synapse. The ma-

dendrite

soma

axon

u(t)

V(t)

j

i

wij

synapse

AP

FIG. 5 Basic structure of a neuron. [Inset shows a synaptic
connection of strength wij from an upstream or presynaptic
neuron labeled j and a downstream or postsynaptic neuron
labeled i]. Neurons in the brain communicate with each other
by transmitting electrical spikes (action potentials). An ac-
tion potential (AP) propagates along the axon of a neuron
until it reaches a terminal that forms the upstream or presy-
naptic component of the synaptic connection to a downstream
or postsynaptic neuron. The arrival of the action potential in-
duces the release of chemical transmitters into the synapse.
These subsequently bind to protein receptors in the postsy-
naptic membrane resulting in the opening of various ion chan-
nels. This generates a synaptic current that flows along the
dendritic tree of the postsynaptic neuron and combines with
currents from other activated synapses. If the total synaptic
current u(t) forces the membrane potential V (t) at a certain
location within the cell body to cross some threshold, then the
postsynaptic neuron fires an action potential and the process
continues. One can thus view the brain as a vast collection
of synaptically–coupled networks of spiking neurons. More-
over, the strength of synaptic connections within and between
networks are modifiable by experience (synaptic plasticity).
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FIG. 6 An example of a piece of spine studded dendritic tissue
(from rat hippocampal region CA1 stratum radiatum). The
dendrite on the right-hand side is ∼ 5µm in length. Taken
with permission from SynapseWeb, Kristen M. Harris, PI,
http://synapses.clm.utexas.edu/

jority of fast excitatory synaptic transmission in the cen-
tral nervous system is mediated by AMPA (α-amino-3-
hydroxy-5-methyl-4-isoxazole-propionic acid) receptors,

normal
diffusion

anomalous
diffusion

dendrite

dendritic spines

(a)

(b)

lateral
diffusion

degradation

AMPA receptor

scaffolding protein

recycling

FIG. 7 (a) Schematic illustration of the anomalous diffusion
model of Santamaria et al. (2006), who carried out detailed
3D simulations of diffusion in a spiny dendrite treated as
a system of connected cylinders with the following baseline
parameter values: spine neck diameter 0.2µm, neck length
0.6µm, head length and diameter 0.6µm , dendrite diame-
ter 1µm and a spine density of 15 spines/µm. The dendritic
spines act as transient traps for a diffusing particle within the
dendrite, which leads to anomalous diffusion on intermediate
time scales. (b) Schematic illustration of various pathways of
AMPA receptor trafficking at a dendritic spine.

which respond to the neurotransmitter glutamate. There
is now a large body of experimental evidence that the fast
trafficking of AMPA receptors into and out of spines is
a major contributor to activity-dependent, long-lasting
changes in synaptic strength (Bredt and Nicoll, 2003;
Collinridge et al., 2004; Henley et al., 2011; Shepherd
and Huganir, 2007). Single–particle tracking experiments
suggest that surface AMPA receptors diffuse freely within
the dendritic membrane until they enter a spine, where
they are temporarily confined by the geometry of the
spine and through interactions with scaffolding proteins
and cytoskeletal elements (Choquet and Triller, 2003;
Ehlers et al., 2007; Gerrow and Triller, 2010; Groc et al.,
2004; Newpher and Ehlers, 2008; Triller and Choquet,
2005). A surface receptor may also be internalized via en-
docytosis and stored within an intracellular pool, where
it is either recycled to the surface via exocytosis or de-
graded (Ehlers, 2000), see Fig. 7(b). Endocytosis is the
physical process whereby vesicles are formed within the
plasma membrane and then internalized, and exocyto-
sis is the complementary process in which intracellular
vesicles fuse with the plasma membrane and release their
contents (Doherty and McMahon, 2009). Molecular mo-
tors transport internalized vesicles to intracellular com-
partments that either recycle vesicles to the cell surface
(early endosomes and recycling endosomes) or sort them
for degradation (late endosomes and lyososomes) (Max-
field and McGraw, 2004; Soldati, 2006). A number of
single spine models have explored the combined effects of
diffusion, trapping, receptor clustering and recycling on
the number of synaptic AMPA receptors (Burlakov et al.,
2012; Czondora et al., 2012; Earnshaw and Bressloff,
2006; Holcman and Triller, 2006; Shouval, 2005). In such
models, the synapse is treated as a self-organizing com-
partment in which the number of AMPA receptors is a
dynamic steady-state that determines the strength of the
synapse; activity-dependent changes in the strength of
the synapse then correspond to shifts in the dynamical
set-point. When receptor-receptor interactions are in-
cluded a synapse can exhibit bistability between a non-
clustered and clustered state (Shouval, 2005), which can
be understood in terms of a liquid-vapor phase transition
(Burlakov et al., 2012).

It is also possible to develop a diffusion–trapping model
of receptor trafficking at multiple spines by considering
a 2D version of the Santamaria et al. (2006) model, in
which receptors diffuse on the surface of a cylindrical
dendrite containing multiple disk-like traps; when a re-
ceptor transiently enters a trap it can undergo various
reactions corresponding to processes within a spine such
as receptor recycling and binding to anchoring proteins.
Using asymptotic methods similar to those of Straube
et al. (2007), see Sec. II.D, one can show that the 2D
model is well approximated by a reduced 1D cable model
in which dendritic spines are treated as point–like sources
or sinks (Bressloff et al., 2008). The advantage of the 1D



24

model is that the associated 1D Green’s function is non–
singular. Therefore, consider a population of N identi-
cal spines distributed along a uniform dendritic cable of
length L and circumference l, with xj , j = 1, . . . , N , the
position (axial coordinate) of the jth spine. Let p(x, t)
denote the probability density (per unit area) that a sur-
face receptor is located within the dendritic membrane
at position x at time t. Similarly, let Rj(t), Sj(t) de-
note the probability that the receptor is trapped at the
surface of the jth spine or within an associated intra-
cellular pool, respectively. A simple version of the 1D
diffusion–trapping model of AMPA receptor trafficking
takes the form (Bressloff and Earnshaw, 2007; Earnshaw
and Bressloff, 2008)

∂p

∂t
= D0

∂2p

∂x2
−

N∑
j=1

Ω[pj −Rj/A]δ(x− xj), (3.34a)

dRj
dt

= Ω[pj −Rj/A]− kRj + σSj , (3.34b)

dSj
dt

= −σSj + kRj , (3.34c)

where D0 is the surface diffusivity and pj(t) = p(xj , t).
The term Ω(pj − Rj/A) with A the surface area of a
spine represents the probability flux into the jth spine
with Ω an effective hopping rate. (This rate depends
on the detailed geometry of the dendritic spine (Ashby
et al., 2006)). It is assumed that surface receptors within
the jth spine can be recycled with respect to the intra-
cellular pool with k, σ the rates of endocytosis and ex-
ocytosis, respectively. Eq. (3.34a) is supplemented by
reflecting boundary conditions at the ends of the cable:
D∂xp(0, t) = 0 and D∂xp(L, t) = 0.

The effective diffusivity of a receptor in the long-time
limit, which takes into account the effects of trapping
at spines, can be determined by calculating the MFPT
τ(X) to travel a distance X from the soma. Introducing
an absorbing boundary condition at x = X, the function

P(X, t) ≡ l
∫ X

0

p(x, t)dx+

NX∑
j=1

[Rj(t) + Sj(t)] (3.35)

is then the probability that t < τ(X); i.e., the probability
that a receptor which was initially at the origin has not
yet reached the point x = X in a time t. Here NX is
the number of spines in the interval [0, X). The MFPT
is then τ(X) =

∫∞
0

P(X, t)dt. It follows that the MFPT
can be expressed in terms of Laplace transforms;

τ(X) =

∫ X

0

p̃(x, 0)dx+

NX∑
j=1

[
R̃j(0) + S̃j(0)

]
(3.36)

where f̃(z) ≡
∫∞

0
e−ztf(t)dt. Laplace transforming Eqs.

(3.34a), (3.34c) and using the initial conditions, gives

−zp̃+D0
∂2p̃

∂x2
=

NX∑
j=1

Ω[p̃j − R̃j/A]δ(x− xj)− l−1δ(x),

(3.37a)

zR̃j = Ω[p̃j − R̃j/A]− kR̃j + σS̃j , (3.37b)

zS̃j = −σS̃j + kR̃j , (3.37c)

where p̃j(z) = p̃(xj , z). In the limit z → 0, Eqs. (3.37b)–

(3.37c) imply that Ap̃j(0) = R̃j(0) = σS̃j(0)/k, and Eq.
(3.37a) becomes

lD0
∂2p̃(x, 0)

∂x2
= −δ(x). (3.38)

Imposing the boundary conditions at x = 0, X gives
lp̃(x, 0) = (X − x)/D0. Combining these results,

τ(X) =
X2

2D0
+

η

D0

NX∑
j=1

(X − xj), (3.39)

where η = A[1+k/σ]/l. The first term on the right–hand
side of this equation is the MFPT in the absence of any
spines, whereas the remaining terms take into account
the effects of being temporarily trapped at a spine.

In order to calculate an effective diffusivity, consider
the simple example of identical spines distributing uni-
formly along the cable with spacing d. That is, xj = jd,
j = 1, . . . , N such that Nd = L and NX = X/d for
X � d. Eq. (3.39) then becomes (for NX � 1)

τ(X) ≡ X2

2D
=

X2

2D0
+

η

D0

NX∑
j=1

(X − jd).

Using the approximation

NX∑
j=1

(X − jd) = NXX −
(NX + 1)NXd

2
≈ X2

2d

finally gives (Bressloff and Earnshaw, 2007)

D = D0

[
1 +

A

ld

(
1 +

k

σ

)]−1

. (3.40)

As expected, the presence of traps reduces the effective
diffusivity of a receptor. In particular, the diffusivity is
reduced by increasing the ratio k/σ of the rates of endo-
cytosis and exocytosis or by increasing the surface area
A of a spine relative to the product of the spine spac-
ing d and circumference of the cable l. Interestingly, D
does not depend on the hopping rate Ω. Taking typi-
cal measured values of the diffusivity (D = 0.1µm2s−1)
(Ashby et al., 2006; Groc et al., 2004), the area of a spine
(A = 1µm2), the spacing between spines (d = 1µm) and
the circumference of a dendrite (l = 1µm) (Sorra and
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Harris, 2000), it follows that Deff = 0.5D when k = σ,
whereas D � D0 when k � σ. There is experimental
evidence that the rates of exo/endocytsosis are activity–
dependent (Ehlers et al., 2007) so that the ratio k/σ, and
hence D, may be modifiable by experience.

There have been various generalizations of the above
model to include the effects of binding/unbinding to cy-
toskeletal proteins (Earnshaw and Bressloff, 2008) and
dendritic branching (Bressloff, 2009). In the latter case,
homogenization theory can be used to replace the discrete
distribution of spines by a continuum density. One ma-
jor simplification of the diffusing–trapping model is that
it neglects the detailed structure of a spine and the as-
sociated PSD. A more comprehensive model would need
to take into the complex organization of the PSD, in-
teractions with scaffolding proteins, and the geometry of
the spine (Freche et al., 2011; Kerr and Blanpied, 2012;
MacGillavry et al., 2011; Sekimoto and Triller, 2009). Fi-
nally, note that the coupling between exocytosis and en-
docytosis during AMPA receptor recycling is one exam-
ple of a more general transport mechanism that occurs
in neurons (and other secretory cells) via the so–called
endocytic pathway (Gundelfinger et al., 2003). Other
examples include the insertion and removal of membrane
proteins during axonal elongation and guidance (Bloom
and Morgan, 2011), see also Sec. V.A, and the stimulus-
induced release of secretory molecules (neurotransmit-
ters) at the presynaptic terminal of a synapse (see Fig.
5). The latter is regulated by the exocytosis of synaptic
vesicles; endocytic processes then have to be coordinated
so that there is an efficient reuptake of vesicles in order
to restore functionality of the synapse. For a detailed
discussion of whole cell kinetic models of receptor recy-
cling and its role in chemical signaling see Lauffenburger
(1996); Wiley et al. (2003).

3. Diffusion in the plasma membrane

At the simplest level, the plasma membrane can be
treated as a 2D lipid sheet into which proteins are em-
bedded. In the fluid mosaic model of Singer and Nicol-
son (1972), the membrane lipids are treated as the sol-
vent (water concentrations are very low within the mem-
brane) into which proteins are dissolved. One of the con-
sequences of the fluid mosiac model is that protein clus-
tering, which alters the effective size of a diffusing par-
ticle, has only a weak effect on diffusion in the plasma
membrane. This follows from the hydrodynamic mem-
brane diffusion model of Saffman and Delbruck (Saffman
and Delbruck, 1975), which implies that the diffusion co-
efficient for a cylinder of radius r in a 2D membrane
varies as log r. Although the diffusion of lipids appears
to be Brownian in pure lipid bilayers, single-particle
tracking experiments indicate that lipids and proteins
undergo anomalous diffusion in the plasma membrane
(Feder et al., 1996; Kusumi et al., 2005; Saxton and Ja-

membrane skeleton anchored proteins

Membrane-skeleton (fence) Anchored-protein (picket)

FIG. 8 Picket-fence model of membrane diffusion. The
plasma membrane is parceled up into compartments whereby
both transmembrane proteins and lipids undergo short-term
confined diffusion within a compartment and long-term hop
diffusion between compartments. This corralling is assumed
to occur by two mechanisms. (a) The membrane-cytoskeleton
(fence) model: transmembrane proteins are confined within
the mesh of the actin-based membrane skeleton. (b) The
anchored-protein (picket) model: transmembrane proteins,
anchored to the actin-based cytoskeleton, effectively act as
rows of pickets along the actin fences.

cobson, 1997). This has led to a modification of the
original fluid mosaic model, whereby lipids and trans-
membrane proteins undergo confined diffusion within,
and hopping between, membrane microdomains or cor-
rals (Kusumi et al., 2005, 2010; Vereb et al., 2003); the
corraling could be due to “fencing” by the actin cytoskele-
ton or confinement by anchored protein “pickets”, see
Fig. 8. These microdomains could also be associated
with lipid rafts (Jacobson et al., 2007; Kusumi et al.,
2010).

Partitioning the membrane into a set of corrals im-
plies that anomalous diffusion of proteins will be ob-
served on intermediate timescales, due to the combined
effects of confinement and binding to the actin cytoskele-
ton. However, on time-scales over which multiple hop-
ping events occur, normal diffusion will be recovered.
A rough estimate of the corresponding diffusion coeffi-
cient is D ∼ L2/τ , where L is the average size of a mi-
crodomain and τ is the mean hopping rate between mi-
crodomains. A typical range of values for various types of
mammalian cell are L ∼ 30− 240 nm and τ ∼ 1− 20 ms.
In the case of confinement by anchored protein pickets,
τ can be estimated by treating each corral as a domain
with a set of small holes (gaps) between anchored pro-
teins, and solving the narrow escape problem (Holcman
and Schuss, 2004; Holcman and Triller, 2006). (Another
approach to estimating τ has been developed by Kalay
et al. (2008); Kenkre et al. (2008), based on a random
walker moving on a 1D lattice with either periodically or
randomly distributed semipermeable barriers). On the
other hand, the membrane cytoskeleton surrounding a
corral is usually modeled as an effective energy barrier
over which a diffusing protein must escape. For exam-
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ple, Saxton (1995) carried out a computational study of
a particle diffusing inside a corral surrounded by a static
energy barrier. It was assumed that when the particle
hit the barrier it had a fixed probability of escape. The
MFPT out of the corral was numerically determined for
a wide range of corral sizes, shapes and escape probabil-
ities. In earlier work, Saxton (1989, 1990) considered a
static fence model in which a protein could only move
from one corral to another if the particular barrier sepa-
rating the two corrals was dissociated. In this particular
model, large-scale diffusion only occurs if there exists a
percolation network. However, estimates of the density
of the actin cytoskeleton in red blood cells (erythrocytes),
for example, suggests that the fraction of disassociated
cytoskeleton is below the percolation threshold. Hence,
it is necessary to modify the percolation model by con-
sidering time-dependent, fluctuating energy barriers.

Consider, for example, the spatially homogeneous
stochastic gating model of Brown et al. (2000); Leitner
et al. (2000). Let Pn(t) denote the probability that there
are n free particles within the corral at time t. Denote
the time-dependent rates of protein influx and loss by
λ(t) and µ(t), respectively. The probability distribution
is then taken to evolve according to the master equation

dPn
dt

= σ(t)Pn−1 + µ(t)(n+ 1)Pn+1(t)− [σ(t) + µ(t)n]Pn

(3.41)

with n ≥ 0 and P−1(t) ≡ 0. The positive terms on the
right-hand side represent the various transitions into the
state (n) whereas the negative terms represent the vari-
ous transitions from the state (n). The initial condition
is Pn(0) = δn,n0 ; i.e., at time t = 0 there are n0 free
particles within the corral. In the model of Brown et al.
(2000); Leitner et al. (2000), the escape of a protein from
the corral is controlled by a stochastic gate that can be
in two states, an open state for which µ(t) = µo > 0 and
a closed state for which µ(t) = µc = 0. The opening
and closing of the stochastic gate is governed by the rate
equations

dPo

dt
= −γ−Po + γ+Pc,

dPc

dt
= γ−Po − γ+Pc, (3.42)

where Po(t) (Pc(t)) is the probability that the gate is
open (closed) at time t, and γ± are the transition rates
between the two states. Thus the time-dependent escape
rate µ(t) describes a dichotomous noise process. From
detailed balance, the rate at which receptors enter the
PSD is then taken to be σ(t) = Cµ(t) with C fixed. (At
equilibrium C can be identiffied with the mean number
of particles in the corral). One possible interpretation
of the stochastic gate is that it represents the random
opening and closing of a small hole within the bound-
ary of the PSD. This suggests that one could consider

a multi–state version of the stochastic gate, which cor-
responds to the random opening and closing of multiple
small holes within the PSD boundary. The master Eq.
(3.41) is solved for a single realization of the stochastic
process described by Eq. (3.42). As a consequence, dif-
ferent realizations of µ(t) will yield different probability
distributions Pn.

In order to analyze the above model, introduce the
generating function

G(u, t) =

∞∑
n=0

unPn(t), (3.43)

It follows from the master Eq. (3.41) that G satisfies the
first-order linear partial differential equation

∂G

∂t
+ µ(t)(u− 1)

∂G

∂u
= σ(t)(u− 1)G (3.44)

with initial condition G(u, v, 0) = un0 . Eq. (3.44) can
be solved using the method of characteristics (Kampen,
1992):

G(u, t) = [1 +N (t)(u− 1)]n0eC(1−N (t))(u−1), (3.45)

where

N (t) = exp

(
−
∫ t

0

µ(t′)dt′
)
. (3.46)

Given G(u, t), the mean and variance of n can be cal-
culated according to the formulae

Eµ(n) =
∂G

∂u

∣∣∣∣
u=v=1

,Eµ(n2 − n) =
∂2G

∂u2

∣∣∣∣
u=v=1

,

where the subscript µ indicates that these means are cal-
culated with respect to a single realization of the ran-
dom variable µ only, and may therefore take on different
values for different realizations of µ. Calculating these
derivatives yields

Eµ(n) = (n0 − C)N (t) + C, Varµ(n) = Eµ(n)− n0N (t)2.

A more useful characterization of the means and vari-
ances can be obtained by averaging N (t) with respect to
all possible stochastic realizations of the gate, which is
denoted by 〈N〉. This can be performed using a method
originally developed by Kubo (1962) in the study of spec-
tral line broadening in a quantum system, and subse-
quently extended to chemical rate processes with dynam-
ical disorder by Zwanzig (1990). One thus finds that the
µ-averaged mean and variance are

E(n) = (n0 − C)〈w〉+ C, E(N) = E(n) + L,

Var(n) = E(n)− n0〈w2〉+ (n0 − C)2
(
〈w2〉 − 〈w〉2

)
,

where〈
w(t)j

〉
=

(
1
1

)T
exp

[
−t
(
jµo + γ− −γ+

−γ− γ+

)](
Πo

Πc

)
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for j = 1, 2. Here Πl, l = o, c, are the stationary proba-
bility distributions for the dichotomous noise process of
Eq. (3.42):

Πo =
γ+

γ+ + γ−
, Πc =

γ−
γ+ + γ−

.

The averages 〈wj〉, j = 1, 2, approach zero as time in-
creases, hence the steady-state means and variances are
E∞(n) = Var∞(n) = C. There have been a number of
extensions of the stochastic gating model. For example,
Bressloff and Earnshaw (2009) have considered the ef-
fects of proteins binding to scaffolding proteins within a
corral, whereas Reingruber and Holcman (2010) have an-
alyzed the narrow escape problem for a particle that can
switch between different conformational states and can
only exit a domain in one of these states.

D. Diffusion in confined geometries

Another common form of diffusion within cells is the
transport of particles through a narrow biological pore or
channel. Examples include membrane transport through
ion channels and pumps (Hille, 2001), and the translo-
cation of structured polynucleotides through nanopores
(Peskin et al., 1993), which is an important technique for
investigating the translocation dynamics of biologically
relevant macromolecules (Gerland et al., 2004; Keyser
et al., 2006). In such examples, changes in the motion of
a particle occur mainly in the axial direction along the
channel, whereas local equilibrium is rapidly reached in
the transverse directions. Thus transport is quasi one–
dimensional and the effects of the boundaries of the chan-
nel can be incorporated by introducing an entropic bar-
rier into the dynamics of a Brownian particle, leading to
the so–called Fick–Jacobs equation (Burada et al., 2009,
2007; Jacobs, 1967; Kalinay and Percus, 2006; Reguera
and Rubi, 2001; Rubi and Reguera, 2010; Zwanzig, 1992).
Typically a 3D narrow channel is represented by a cylin-
der that extends axially in the x–direction and has a pe-
riodically varying cross section that is rotationally sym-
metric about the x-axis, see Fig. 9(a). Denoting the
space–dependent radius by w(x), the cross-section varies
as A(x) = πw(x)2. In the case of a corresponding 2D
channel, w(x) represents the half–width of the channel.
An extreme version of confined diffusion along a channel
is single–file diffusion, in which the channel is so narrow
that particles cannot pass each other. In other words,
the longtitudinal motion of each particle is hindered by
the presence of its neighbors, which act as moving ob-
stacles, see Fig. 9(b). Hence, interparticle interactions
can suppress Brownian motion and lead to subdiffusive
behavior (Barkai and Silbey, 2009; Jepsen, 1965; Levitt,
1973; Percus, 1974; Rodenbeck et al., 1998; Taloni and
Marchesoni, 2006).

1. Fick-Jacobs equation

We begin by deriving the Fick-Jacobs equation for a
Brownian particle diffusing in a 2D channel as shown in
Fig. 9(a). We follow the particular derivation of Zwanzig
(1992), see also (Reguera and Rubi, 2001). It is assumed
that the channel walls at y = ±w(x) confine the mo-
tion of the particle but do not exchange energy with it.
Thus the probability flux normal to the boundary is zero.
This condition can be imposed by introducing a confin-
ing potential U(x, y) such that U(x, y) = 0 for |y| < w(x)
and U(x, y) = ∞ for |y| ≥ w(x). Let p(x, y, t) denote
the probability that the particle is located at position
x = (x, y) at time t with periodic boundary conditions in
the longtitudinal direction, p(x+L, y, t) = p(x, y, t). For
a general potential U(x, y), the 2D FP equation takes the
form

∂p

∂t
= − 1

γ

[
∂[Fxp]

∂x
+
∂[Fyp]

∂y

]
+D0

[
∂2p

∂x2
+
∂2p

∂y2

]
,

where Fx = −∂xU,Fy = −∂yU . Using the Einstein rela-
tions D0γ = kBT = β−1, the FP equation can be rewrit-
ten as

∂p

∂t
= D0

∂

∂x
e−βU(x,y) ∂

∂x
eβU(x,y)p(x, y, t)

+D0
∂

∂y
e−βU(x,y) ∂

∂y
eβU(x,y)p(x, y, t). (3.47)

In order to reduce to a 1D equation, first integrate both
sides of the FP equation with respect to the transverse
coordinate y:

∂P (x, t)

∂t
= D0

∂

∂x

∫ w(x)

−w(x)

e−βU(x,y) ∂

∂x
eβU(x,y)p(x, y, t)dy,

where P (x, t) is the reduced probability density

P (x, t) =

∫ w(x)

−w(x)

p(x, y, t)dy. (3.48)

w(x)

x

(a)

(b)

FIG. 9 Confined diffusion in a narrow cylindrical channel with
a periodically modulated boundary w(x) in the axial direc-
tion. (a) Small diffusing particle. (b) Single-file diffusion.
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The major step in the reduction is to assume that the
probability density reaches equilibrium in the transverse
direction. That is, p(x, y, t) is assumed to factorize as
follows:

p(x, y, t) ≈ P (x, t)ρ(x, y), (3.49)

where ρ(x, y) is a normalized Boltzmann-Gibbs probabil-
ity density:

ρ(x, y) =
e−βU(x,y)

A0e−βF(x)
, e−βF(x) =

1

A0

∫ w(x)

−w(x)

e−βU(x,y)dy,

(3.50)

where A0 = 2
∫ L

0
w(x)dx and F(x) interpreted as an ef-

fective x–dependent free energy. Under this factorization
the averaged FP equation becomes

∂P (x, t)

∂t
≈ D0

∂

∂x
e−βF(x) ∂

∂x
eβF(x)P (x, t). (3.51)

This holds for a general potential energy function U(x, y)
(Reguera and Rubi, 2001).

If U is now taken to be the confining potential of the
channel boundary, then e−βF(x) = 2w(x)/A0 ≡ σ(x) and
we obtain the Fick–Jacobs equation

∂P (x, t)

∂t
=

∂

∂x
D0σ(x)

∂

∂x

P (x, t)

σ(x)
. (3.52)

The same equation is obtained in 3D with σ(x) =
A(x)/A0 with A(x) = πw(x)2 and A0 the mean cross-
sectional area. The Fick–Jacobs equation is valid pro-
vided that |w′(x)| � 1. However, it has been shown that
the introduction of an x–dependent diffusion coefficient
into the Fick-Jacobs equation can considerably increase
the accuracy of the reduced FP equation and thus ex-
tend the domain of validity (Kalinay and Percus, 2006;
Reguera and Rubi, 2001; Zwanzig, 1992):

D(x) =
D0

[1 + w′(x)2]α
, (3.53)

with α = 1/3, 1/2 for 2D and 3D respectively. Note that
in the absence of any external forces, the effective free
energy F(x) = V(x), where V(x) ≡ −kBT log[A(x)/A0]
reflects the existence of an entropic barrier to diffusion
(Reguera and Rubi, 2001). That is, using the standard
thermodynamic definition of free energy F = E − TS,
where E is internal energy and S is the entropy, it
follows that S(x) ∼ logA(x) where A(x) is the cross-
sectional area of the channel at x. This is consistent
with the microcanonical ensemble definition of entropy.
That is, in equilibrium there is a uniform probability
density ρ0 in the channel, so that the equilibrium x–
dependent density Peq(x) = ρ0A(x)/A0 and the number
of microstates available to a diffusing particle at location
x is proportional to the area of the channel. It also fol-
low that when there is a constant external force F0 in

the x direction, then Eq. (3.51) still holds except that
F(x) = −F0x− kBT log σ(x).

Given an external force F0 and the periodic entropic
barrier potential V(x), it remains to determine the mean
and variance of the particle position in the long time
limit, which naturally leads to the following definitions of
the drift mobility and diffusion coefficient of the particle:

µ(F0) ≡ 〈Ẋ〉
F0

, 〈Ẋ〉 = lim
t→∞

〈X(t)〉
t

, (3.54)

and

D(F0) = lim
t→∞

〈X(t)2〉 − 〈X(t)〉2

2t
. (3.55)

Note that the relationship between 〈Ẋ〉 and the long time
limit of 〈X(t)〉/t is a consequence of ergodicity (Reimann,
2002). In order to determine µ and D, it is necessary to
extend the classical problem of Brownian motion in a
periodic potential with tilt (Burada et al., 2007; Hanggi
et al., 1990; Reimann et al., 2002; Stratonovich, 1958),
see also III.D.2. The force–dependence of the mobility
and diffusion coefficient have been studied both analyti-
cally and numerically in the case of a sinusoidal boundary
function (Burada et al., 2007; Reguera et al., 2006)

w(x) = a[sin(2πx/L) + b], a > 0, b > 1. (3.56)

The basic results are sketched in Fig. 10. A number of
interesting observations emerge from this study. First,
the mobility only depends on the temperature via the di-
mensionless parameter F0L/kBT . Hence, increasing the
temperature reduces the mobility. Second, as the force is
increased the effective diffusion coefficient D(F0) exceeds
the free diffusion coefficientD0. Using scaling arguments,
it can also be shown that the analysis based on the Fick-
Jacobs equation begins to break down at a critical force
F0,c where (Burada et al., 2009)

F0,cL

kBT
≈ 1

2(1 + b)2

(
L

a

)2

. (3.57)

The Fick-Jacobs equation represents diffusion through
a narrow channel in terms of a 1D overdamped Brown-
ian particle moving in an effective potential U(x) that
arises from entropic effects. Such a 1D model has also
been the starting point for a series of studies of channel-
facilitated membrane transport, where now U(x) reflects
the constructive role of attractive interactions between
permeating particles and proteins forming the channel
pore (Berezhkovskii and Bezrukov, 2005; Berezhkovskii
et al., 2003, 2002; Bezrukov et al., 2000). In these stud-
ies, mixed boundary conditions are assumed at the ends
x = 0, L of the channel: J(0, t) = −κ0P (0, t) and
J(L, t) = −κLP (L, t). The probability of crossing the
channel and the mean time in the channel can then be cal-
culated using the standard theory of first passage times
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FIG. 10 Illustrative sketches of how mobility and diffusivity
vary with non-dimensionalized applied force F0L/kBT in the
case of a 2D channel with a sinusoidally varying half-width
(3.56). (a) Effective mobility µ in units of γ. In the limit
F0 → ∞, µ → γ−1. (b) Diffusion coefficient D in units of
free diffusivity D0. In the limit F0 → ∞, D → D0. Sketches
are based on numerical results of (Reguera et al., 2006) for
a = L/2π and b = 1.02.

and splitting probabilities, see Sec. II.B. It can be shown
that there is an optimal form of the interaction poten-
tial that maximizes the flux through the channel, and
involves a play off between increasing the translocation
probability through the channel and decreasing the av-
erage time particles spend in the channel (Berezhkovskii
and Bezrukov, 2005). For a complementary approach
to studying channel-facilitated transport that is based
on spatially discrete stochastic site-binding models, see
(Chou, 1998; Kolomeisky, 2007). Finally, note that
stochastic models of confined diffusion through channels
have also been developed for charged particles flowing
through a nanopore connected to two large reservoirs of
electrolyte solutions (Nadler et al., 2004; Schuss et al.,
2001). The motion of the ions is sensitive to the specific
nanoscale geometry and the charge distribution around
the channel so that standard continuum mean-field mod-
els breakdown. Two of the most common mean-field
models are the equilibrium Poisson-Boltzmann equation
and the non-equilibrium Poisson-Nernst-Planck equation
(Roux et al., 2004). These equations assume a constitu-
tive relation between the average ion flux and an effective
mean field potential that satisfies Poisson’s equation for
the average charge concentrations. We will not consider
ion transport further in this review. See for example
Keener and Sneyd (2009) for a detailed discussion of the
role of ion transport in cell physiology.

2. Brownian motion in a periodic potential with tilt

Motivated by the problem of a particle diffusing in
a narrow channel with a periodically varying boundary,
consider the 1D FP equation

∂p

∂t
= D0

[
1

kBT

∂[V ′(x)− F0]p

∂x
+
∂2p

∂x2

]
, (3.58)

where V (x) is an L–periodic potential, V (x+L) = V (x)
for all x, and F0 is a constant external force, see Fig.
11. For the moment, we will take the diffusion coef-
ficient to be constant. Within the context of motion
through a narrow channel V (x) can be identified with
the entropic potential V(x) = −kBT log[A(x)/A0]. How-
ever, there are many other important applications where
a periodic potential arises, including Brownian ratchet
models of molecular motors (Reimann, 2002), see Sec.
IV.A.1. Again we will focus on spatially continuous pro-
cesses. Note, however, that an alternative approach has
been developed in a seminal paper by Derrida (1983),
which is concerned with calculating the effective diffu-
sion and velocity of particles on a discrete lattice, and
is a spatilly discrete version of the processes considered
here. The approach of Derrida has many applications, in-
cluding motor protein modeling (Kolomeisky and Fisher,
2007).

F0 = 0
V(x)

V(x)−F0x

F0 > 0

x

FIG. 11 Brownian particle moving in a periodic potential
V (x). In the absence of tilt (F0 = 0) the mean velocity in the
long time limit is zero. On the other hand, in the presence of
a tilt (F0 6= 0) the net motion of the particle is in the direction
of the force.

We begin by considering the standard Stratonovich-
based calculation of the mean velocity (Hanggi et al.,
1990; Stratonovich, 1958). Introduce the effective poten-
tial or free energy F(x) = V (x) − F0x and note that
F ′(x) is periodic even though F is not. Next consider
the reduced probability density and currents

p̂(x, t) =

∞∑
n=−∞

p(x+nL, t), Ĵ(x, t) =

∞∑
n=−∞

J(x+nL, t)

(3.59)
with

J(x, t) = −D0

[
1

kBT
F ′(x)p+

∂p

∂x

]
.

It immediately follows that

p̂(x+ L, t) = p̂(x, t),

∫ L

0

p̂(x, t)dx = 1. (3.60)
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Moreover, multiplying both sides of the FP equation by
x and integrating with respect to x gives

d〈X(t)〉
dt

=

∫ ∞
−∞

J(x, t)dx =

∫ L

0

Ĵ(x, t)dx. (3.61)

(Using the identity J(x, t) = 〈Ẋ(t)δ(x − X(t))〉 and in-
tegrating both sides with respect to x, it follows that
〈Ẋ(t)〉 = d〈X(t)〉/dt (Reimann, 2002)). The periodicity
of F ′(x) implies that if p(x, t) is a solution of the FP
equation, then so is p(x+ nL, t). The principle of super-
position for a linear PDE then shows that p̂ satisfies the
FP equation

∂p̂(x, t)

∂t
+
∂Ĵ(x, t)

∂x
= 0, (3.62)

with

Ĵ(x, t) = −D0

[
1

kBT
F ′(x)p̂+

∂p̂

∂x

]
(3.63)

and periodic boundary conditions at x = 0, L. There
exists a stationary solution p̂0 of the reduced FP equation
with constant flux Ĵ0 such that

d

dx

(
eF(x)/kBT p̂0(x)

)
= − Ĵ0

D0
eF(x)/kBT . (3.64)

Integrating this equation from x to x + L and using pe-
riodicity yields the stationary solution

p̂0(x) =
Ĵ0N (x)[

1− e−F0L/kBT
] , (3.65)

where

N (x) =
1

D0
e−F(x)/kBT

∫ x+L

x

eF(y)/kBT dy. (3.66)

Finally, Ĵ0 is determined by imposing the normalization
condition on p̂0. Since 〈Ẋ(t)〉 = LĴ0 for constant current,

〈Ẋ(t)〉 = L
1− e−F0L/kBT∫ L

0
N (x)dx

. (3.67)

It can be seen that there is no net motion in a purely
periodic potential, since the numerator vanishes when
F0 = 0. Moreover the net direction of motion for F0 6= 0
is in the direction of the applied force. Note that in the
case of a space–dependent diffusion coefficient D(x), the
above analysis is easily extended with N (x) now given
by (Burada et al., 2007)

N (x) = e−F(x)/kBT

∫ x+L

x

1

D(y)
eF(y)/kBT dy. (3.68)

The calculation of the diffusion coefficient is consid-
erably more involved. However, an elegant method for

determing D (as well as the mobility µ) is to exploit a
well-known recursion relation for the moments of the first
passage time (Burada et al., 2007; Reguera et al., 2006;
Reimann et al., 2002). Let T (x0 → b) denote the first
passage time for the diffusing particle to reach the point b
given that it started at x0 with x0 < b. The nth moment
of the first passage time is τn(x0 → b) = 〈Tn(x0 → b)〉.
It can then be shown that for the stochastic process de-
scribed by the FP Eq. (3.58), the moments satisfy the
recursion relation (Hanggi et al., 1990)

τn(x0 → b) =
n

D0

∫ b

x0

dx eF(x)/kBT

∫ x

−∞
dy eF(y)/kBT

× τn−1(y → b), n = 1, 2 . . . , (3.69)

with τ0(y → b) = 1. Note for n = 1, x0 = y, b = L
we recover Eq. (2.30) (after taking the left hand bound-
ary to −∞). The basic derivation proceeds as follows.
First, it can be shown that T (x0 → x0 + lL), integer l
is statistically equivalent to a sum of (iid) random vari-
ables T (x0 → x0 + L), T (x0 + L→ x0 + 2L), . . . , T (x0 +
(l − 1)L → x0 + lL). Hence, for large l, the central
limit theorem (Gardiner, 2009) implies that the FPT
T (x0 → x0+lL) approaches a Gaussian distribution with
mean lτ1(x0 → x0 + L) and variance l∆τ2(x0 → x0 + L)
where ∆τ2 = τ2 − τ2

1 . Second, since µ and D are de-
fined in the large t limit, the evaluation of 〈x(t)〉 and
〈x2(t)〉 can be partitioned into a set of large but finite
steps over which the statistics of the corresponding FPT
is well approximated by a Gaussian distribution. This
has the important implication that if any two stochas-
tic processes described by an FP equation of the form
(3.58) have the same mean τ1(x0 → x0 +L) and variance
∆τ2(x0 → x0 +L), then they have the same 〈Ẋ〉 and D.
It finally follows that (Reimann et al., 2002)

〈Ẋ〉 =
L

τ1(x0 → x0 + L)
, D =

L2

2

∆τ2(x0 → x0 + L)

[τ1(x0 → x0 + L)]3
.

The proof of the last step simply consists of verifying that
these formulae hold when V (x) = 0 (no periodic poten-
tial), for which 〈Ẋ〉 = F/γ and D = kBT/γ. Having ob-
tained D in terms of the first and second order moments
of the FPT, Eq. (3.69) can now be used to calculate D.
After some algebra (see appendix A of (Reimann et al.,
2002)), one finds that

D = D0

∫ x0+L

x0

N (x)2N (x)dx/L[∫ x0+L

x0

N (x)dx/L

]3 , (3.70)

with N (x) given by Eq. (3.66) and

N (x) =
1

D0
eF(x)/kBT

∫ x

x−L
e−F(y)/kBT dy. (3.71)
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3. Single-file diffusion

When a pore or channel becomes sufficiently narrow,
particles are no longer able to pass each other, which im-
poses strong constraints on the diffusive motion. An ide-
alized model of single–file diffusion considers a 1D collec-
tion of diffusing particles with hard-core repulsion. The
many–body problem of single–file diffusion was originally
tackled by relating the dynamics of the interacting sys-
tem with the effective motion of a free particle (Harris,
1965; Jepsen, 1965; Lebowitz and Percus, 1967; Levitt,
1973; Percus, 1974). In particular, in the case of an infi-
nite system and a uniform initial particle density, it was
shown that a tagged particle exhibits anomalous subdif-
fusion on long time scales, 〈X2(t)〉 ∼ t1/2. (On the other
hand, the center of mass of the system of particles ex-
hibits normal diffusion). More recently, a variety of com-
plementary approaches to analyzing single-file diffusion
have been developed (Barkai and Silbey, 2009; Centres
and Bustingorry, 2010; Lizana and Ambjornsson, 2008;
Rodenbeck et al., 1998; Taloni and Lomholt, 2008). Here
we review the particular formulation of Barkai and Silbey
(Barkai and Silbey, 2009), which develops the analysis
of a tagged particle in terms of classical reflection and
transmission coefficients.

1

2

1

2

2

1

2
t

x

(a)

(b)
1

FIG. 12 (a) Single-file diffusion of a tagged particle (red)
surrounded by other impenetrable particles. (b) Equivalent
noninteracting picture, in which each trajectory is treated as
a non-interacting Brownian particle by keeping track of the
exchange of particle label.

Suppose that the tagged particle is initially at the ori-
gin with N particles to its left and N particles to its right,
see Fig. 12(a). The motion of each particle in the ab-
sence of hard core interactions is taken to be overdamped
Brownian motion as described by the Langevin Eq. (2.9)
or the corresponding FP Eq. (2.15). As a further simplifi-
cation, the potential energy function V (x) =

∫ x
F (x′)dx′

is taken to be symmetric, V (x) = V (−x), as is the initial
distribution of particles. That is, if the initial position
x0 of a particle is drawn from fR(x0) for x0 > 0 and
from fL(x0) for x0 < 0, then fR(x0) = fL(−x0). This

reflection symmetry ensures that 〈X(t)〉 = 0, where X(t)
is the stochastic position of the tagged particle at time
t. The main underlying idea is to map the many-body
problem to a non-interacting one by allowing particles to
pass through each other and keeping track of the particle
label, see Fig. 12(b). That is, assuming that collisions
are elastic and neglecting n-body interactions for n > 2,
it follows that when two particles collide they exchange
momenta and this is represented as an exchange of parti-
cle labels. The probability density for the tagged particle
to be at X(t) = XT at time t then reduces to the problem
of finding the probability that the number of free parti-
cle trajectories that started at x0 < 0 and are now to the
right of XT is balanced by the number of free particle
trajectories that started at x0 > 0 and are now to the
left of XT .

Thus, let PLL(x−j0 ) (PLR(x−j0 )) denote the probability

that the jth free particle trajectory starting from x−j0 < 0
at t = 0 is to the left (right) of XT at time t. Similarly, let
PRR(xj0) (PRL(xj0)) denote the probability that the jth

free particle trajectory starting from xj0 > 0 at t = 0 is to
the right (left) of XT at time t. Let α be the net number
of free particle trajectories that are on the opposite side of
XT at time t compared to their starting point (with left
to right taken as positive). The associated probability
distribution for α given 2N untagged particles is (Barkai
and Silbey, 2009)

PN (α) =
1

2π

∫ π

−π

N∏
j=1

Γ(φ, x−j0 , xj0)eiαφdφ, (3.72)

where

Γ(φ, x−j0 , xj0) = eiφPLR(x−j0 )PRR(xj0) + PLL(x−j0 )PRR(xj0)

+ PLR(x−j0 )PRL(xj0) + e−iφPLL(x−j0 )PRL(xj0).
(3.73)

The integration with respect to φ ensures that the net
number of crossings is α, that is,

∫ π
−π eiφn = δn,0. Since

the trajectories are independent and the initial conditions
are (iid) random variables, PN (α) can be averaged with
respect to the initial conditions to give

〈PN (α)〉 =
1

2π

∫ π

−π
〈Γ(φ)〉Neiαφdφ, (3.74)

where

〈Γ(φ)〉 =
(
〈PRR〉+ e−iφ〈PRL

) (
〈PLL〉+ eiφ〈PLR〉

)
.

(3.75)
The averages 〈PLR〉 etc. can be calculated using the
Green’s function G(x, x0, t) of the corresponding FP Eq.
(2.15) with G(x, x0, 0) = δ(x− x0). For example,

〈PLR〉 =

∫ 0

−l
fL(x0)

∫ l

XT

G(x, x0, t)dx dx0, (3.76)
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where 2l is the length of the 1D domain, which can be
taken to be infinity.

Eq. (3.74) takes the form of the generating function for
a discrete random walk of N steps and a net displacement
of α. Hence, for large N , application of the central limit
theorem leads to the Gaussian approximation

PN (0) ∼ 1√
2πNσ2

exp(−Nµ2
1/2σ

2), (3.77)

where σ2 = µ2−µ2
1 and µ1, µ2 are the first two moments

of the structure function:

〈Γ(φ)〉 = 1 + iµ1φ−
1

2
µ2φ

2 +O(φ3). (3.78)

Hence,

µ1 = 〈PLR〉 − 〈PRL〉, σ2 = 〈PRR〉〈PRL〉+ 〈PLL〉〈PLR〉.
(3.79)

Since 〈X(t)〉 = 0 and N is assumed to be large, µ1 and
σ2 can be Taylor expanded with respect to XT about
XT = 0. Reflection symmetry then implies that

〈PLL〉|XT=0 = 〈PRR〉|XT=0 ≡ R,

〈PLR〉|XT=0 = 〈PRL〉|XT=0 ≡ T = 1−R,

∂XT 〈PLR〉|XT=0 = − ∂XT 〈PRL〉|XT=0 ≡ J .

The time–dependent functions R and T may be inter-
preted as reflection and transmission coefficients deter-
mining whether or not a free particle trajectory crosses
XT = 0. The resulting mean and variance are

µ1 = −2JXT +O(X2
T ), σ2 = 2R(1−R) +O(XT ).

(3.80)
Thus, 〈PN (α)〉 for α = 0 reduces to a Gaussian distribu-
tion for the position X(t) = XT :

P (XT , t) =
1√

2π〈X(t)2〉
exp

[
− X2

T

2〈X(t)2〉

]
, (3.81)

with

〈X(t)2〉 =
R(1−R)

2NJ 2
. (3.82)

Finally, using Eq. (3.76),

R =

∫ l

0

f(x0)

∫ l

0

G(x, x0, t)dxdx0 (3.83)

J =

∫ l

0

f(x0)G(0, x0, t)dx0. (3.84)

In the special case of zero external forces, the free par-
ticle Green’s function is

G(x, x0, t) =
1√

4πDt
e−(x−x0)2/4Dt. (3.85)

Taking a uniform initial distribution f(x0) = 1/l with
l → ∞ and fixed particle density ρ = N/l, one finds
anomalous subdiffusion for large times t (Harris, 1965):

〈X(t)2〉 ∼ 2√
π

√
Dt

ρ
. (3.86)

On the other hand, for particles initially centered at the
origin, f(x0) = δ(x0), diffusion is normal

〈X(t)2〉 ∼ πDt

2N
. (3.87)

In the case of a bounded domain or a Gaussian initial con-
dition, anomalous diffusion occurs at intermediate times
only (Barkai and Silbey, 2009).

E. Nuclear transport

The nucleus of eukaryotes is surrounded by a protective
nuclear envelope (NE) within which are embedded nu-
clear pore complexes (NPCs). The NPCs are the sole me-
diators of exchange between the nucleus and cytoplasm.
In general small molecules of diameter ∼ 5nm can diffuse
through the NPCs unhindered, whereas larger molecules
up to around 40nm in diameter are excluded unless they
are bound to a family of soluble protein receptors known
as karyopherins (kaps), see the reviews (Fahrenkrog et al.,
2004; Macara, 2001; Rout et al., 2003; Tran and Wente,
2006). Within the cytoplasm kap receptors bind cargo to
be imported via a nuclear localization signal (NLS) that
results in the formation of a kap-cargo complex. This
complex can then pass through an NPC to enter the nu-
cleus. A small enzyme RanGTP then binds to the kap,
causing a conformational change that releases the cargo.
The sequence of events underlying the import of cargo is
shown in Fig. 13(a). In the case of cargo export from
the nucleus, kaps bind to cargo with a nuclear export sig-
nal (NES) in the presence of RanGTP, and the resulting
complex passes through the NPC. Once in the cytoplasm,
RanGTP undergoes hydrolysis to form RanGDP, result-
ing in the release of the cargo. The export process is illus-
trated in Fig. 13(b). Finally, RanGDP is recycled to the
nucleus by another molecule NFT2 and is reloaded with
GTP to begin another import/export cycle. This cycle
allows a single NPC to support a very high rate of trans-
port on the order of 1000 translocations/sec (Ribbeck
and Gorlich, 2001). Since the transportation cycle is di-
rectional and accumulates cargo against a concentration
gradient, an energy source combined with a directional
cue is required. Both of these are provided by the hydrol-
ysis of RanGTP and the maintenance of a concentration
gradient of RanGTP across the NPC. The RanGTP gra-
dient is continuously regenerated by GTP hydrolysis in
the cytoplasm, translocation of RanGTD into the nucleus
by NFT2, and replacement of GDP by GTP in the nu-
cleus. It is important to note that the energy generated
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from RanGTP hydrolysis is ultimately used to create a
concentration gradient of kap-cargo complexes between
the nucleus and cytoplasm, so that the actual transloca-
tion across the NPC occurs purely via diffusion.

importing

karyopherin

NLS-cargo

nuclear envelope

RanGTP

kap-Cargo

complex

NPC

NPC

exporting

karyopherin

kap-Cargo

complex
NES-cargo

RanGTD

hydrolysis

CYTOPLASM NUCLEUS

(a)

(b)

FIG. 13 Schematic illustration of the (a) import and (b) ex-
port process underlying the karyopherin-mediated transporta-
tion of cargo between the nucleus and cytoplasm via a nuclear
pore complex (NPC). See text for details.

Although the above basic picture is now reasonably
well accepted, the detailed mechanism underlying facil-
itated diffusion of kap-cargo complexes within the NPC
is still not understood. The NPC is composed of about
30 distinct proteins known collectively as nucleoporins
(nups). It has emerged in recent years that individual
nups are directly related to a number of human diseases
including influenza and cancers such as leukemia (Cron-
shaw and Matunis, 2004), as well as playing an impor-
tant role in viral infections by providing docking sites for
viral capsids (Whittaker et al., 2000). Associated with
many of the nups are natively unfolded phenylalanine-
glycine (FG) repeats, known collectively as FG-repeats.
The FG-repeats set up a barrier to diffusion for large
molecules so that the key ingredient in facilitated dif-
fusion through the NPC is the interaction between kap
receptors with the FG-repeats. In essence, the major
difference between the various theoretical models of NPC
transport concerns the built in assumptions regarding the
properties and spatial arrangements of FG-repeats within
the NPC, and the nature of interactions with kaps dur-
ing translocation through the NPC (Becskei and Mat-
taj, 2005). Current models include the Entropic Gate
model (Rout et al., 2003; Zilman et al., 2007), Selective
Phase models (Bickel and Bruinsma, 2002; Kustanovich
and Rabin, 2004; Ribbeck and Gorlich, 2001, 2002), Di-
mensionality Reduction model (Peters, 2005), and the
Polymeric Brush model (Lim et al., 2007, 2006). A num-
ber of computational models and molecular-based simu-
lations are also being developed (Grunwald and Singer,

2011; Moussavi-Baygi et al., 2011). Here we will review
the first two types of model in a little more detail.

Entropic gate model. Recall from Sec. III.D that a
macromolecule diffusing in a confined geometry (such as
a nuclear pore) experiences an entropic barrier due to
excluded volume effects. Within the NPC this would be
enhanced by the densely packed FG-repeats. One way
to counteract the effects of the entropic barrier is for the
kaps to have an affinity for and bind to the FG-repeat
regions (Rout et al., 2003; Zilman et al., 2007), thus low-
ering the effective Gibbs free energy of the cargo-complex
within the NPC. The degree of affinity has to be suffi-
ciently high to overcome the entropic barrier but not too
high otherwise the complex can be trapped within the
NPC and the rate of translocation would be too small.
One possible solution, is to have a large number of low–
affinity binding sites within the nuclear pore. Recently,
a mathematical model for the effects of binding on dif-
fusion within the NPC has been developed by Zilman
et al. (2007), based on diffusion through an effective en-
ergy landscape. This is based on the assumption that
the binding/unbinding rates are relatively fast compared
to the diffusion rate. The simplest version of the model
is illustrated in Fig. 14 for the case of nuclear import.
The effective potential energy U(X) is taken to be a flat
potential well of depth E along an NPC, and zero outside
the NPC. Absorbing boundary conditions are placed at
the points x = 0, L a distance R from either side of the
NPC, which has length L− 2R. The left-hand boundary
takes into account the fact that not all complexes enter-
ing the NPC will reach the nucleus, that is, some will
eventually return to the cytoplasm. Diffusion within the
NPC is described by a standard Smoluchowski equation
for the density of cargo-complexes ρ(x), x = [0, L], see
Sec. II.A.2:

∂ρ

∂t
= −∂J

∂x
, J = −D∂ρ

∂x
−Dρ∂U

∂x
, (3.88)

with U measured in units of kBT . This equation is sup-
plemented by the boundary conditions ρ(0) = ρ(L) = 0.
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FIG. 14 Model of Zilman et al. (2007). Transport of cargo-
complex through the NPC is modeled as diffusion in an energy
landscape. See text for details.
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The steady-state solution is obtained by assuming that
there are constant fluxes J0 in [0, R], JL in [L−R,L] and
J in [R,L−R] with J0 < 0. These fluxes are related ac-
cording to JS = J − |J0| and J = JL + Je, where JS is
the total flux of complexes injected into the NPC from
the cytoplasm, which is proportional to density of com-
plexes in the cytoplasm, and Je denotes the flux due to
active removal of complexes from the nucleus end of the
NPC by RanGTP. The latter depends on the number
of complexes at the nuclear exit, the rate Jran at which
RanGTP molecules hit the exit: Je = Jranρ(L − R)R.
The steady-state rate of transport J can now be deter-
mined by solving for ρ(x) in terms of J0, JL, J in each of
the three domains and imposing continuity of the density
at x = R and x = R− L. The result is that the fraction
of complexes reaching the nucleus is given by (Zilman
et al., 2007)

P =
J

JS
=

[
2− K

1 +K
+

1

R

∫ L−R

R

eU(x)dx

]−1

, (3.89)

with K = JranR
2/D. It follows that for a sufficiently

deep well (large E), where the integral term is negligible,
and for sufficiently large K (large Jran), the probability of
translocation is P ≈ 1. On the other hand, if K is small
so that RanGTP does not facilitate entry of complexes
into the nucleus then Pmax = 0.5. As previously indi-
cated, it is not possible to arbitrarily increase the affinity
of binding sites and thus the well depth E, since this will
lead to trapping of the complexes so that they accumu-
late within the NPC, resulting in molecular crowding and
an unrealistically long time for an individual molecule to
pass through the NPC. Thus there is some optimal well
depth that balances an increase of transport probability
P with increased time spent in the NPC (Zilman et al.,
2007). Finally, note that the model is robust with re-
gards the particular shape of the potential well. For ex-
ample, one could represent transport through the NPC
as diffusion in an array of overlapping potential wells that
represent flexible FG-repeat regions. The shape of each
well will depend on the number and affinity of binding
sites on each FG-repeat, and the degree of flexibility of
the polymers which will determine the entropic costs of
bending and stretching the FG-repeats. It can be shown
that for relatively fast binding/unbinding, the multi-well
potential can be replaced by a single well along the lines
of Fig. 14.

Selective phase models. The basic assumption of these
models is that the NPC can be treated as a channel filled
with a hydrophobic medium consisting of a concentrated
polymer solution; the latter is composed of the natively
unfolded, flexible protein domains of FG-repeats (Bickel
and Bruinsma, 2002; Kustanovich and Rabin, 2004; Re-
ichenbach et al., 2006; Ribbeck and Gorlich, 2001, 2002).
The FG-repeats form weak bonds with each other sug-

gesting that they act approximately like a weak reversible
gel. Particles smaller than the mesh size of the network
can diffuse freely through the NPC, whereas non-selective
macromolecules larger than the mesh size cannot. On the
other hand, kap-cargo complexes can ’dissolve’ in the gel
due to the presence of hydrophobic domains on the sur-
face of the kap receptors, and then diffuse through the
pore by breaking the weak bonds of the reversible gel
(Ribbeck and Gorlich, 2001, 2002). However, as pointed
out by Bickel and Bruinsma (2002), the observed high
permeability of the NPC with respect to the transport of
kap-cargo complexes is inconsistent with the basic theory
of reversible gels. The argument proceeds as follows (see
appendix of Bickel and Bruinsma (2002)). For a homoge-
neous pore filled with reversible gel, the flux of particles
through the pore is given by J = D∆φ/L, where L is the
length of the pore, D is the diffusivity of dissolved com-
plexes, and ∆φ = φL−φR is the difference in concentra-
tions of dissolved complexes at the ends of the pore. The
permeability Π, however, is defined in terms of the dif-
ference in concentrations of exterior particle reservoirs on
either side of the pore, ∆c = cL− cR. That is, J = Π∆c.
In order to relate ∆c and ∆φ, it is necessary to consider
the fluxes entering and exiting the pore. Equating the
fluxes at the left and right ends gives

J = kincL − koutφL = koutφR − kincR (3.90)

This allows one to express ∆φ in terms of ∆c such that

Π =
kin

2 + koutL/D
. (3.91)

From detailed balance the ratio of the rates is kin/kout =
eβ∆F where ∆F is the free energy gain (assuming ∆F >
0) of entering the gel. Ignoring other contributions to
the free energy, ∆F = nε, where n is the number of
interactions of strength ε between a kap receptor and the
gel. It can also be shown that the diffusivity of a spherical
kap-cargo complex moving through a reversible gel is

D = D0(1 + e−nε)−1 ≈ D0e−βnε. (3.92)

Suppose that in the high affinity regime kout is given
by the Arrhenius law kout ∼ (D/δ)e−β∆F , where ∆ is
taken to be the size of the boundary layer at either end
of the pore. Combining all of these results then shows
that (Bickel and Bruinsma, 2002)

Π =
D0

L+ 2δeβnε
. (3.93)

Thus the permeability decreases with the number of sites
n, implying that increasing the affinity of the complex
moving in a reversible gel should decrease the perme-
ability; this contradicts the high permeabilities seen ex-
perimentally (Ribbeck and Gorlich, 2002). One sugges-
tion for modifying the original selective phase model is
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NucleusCytoplasm

NPC

FIG. 15 Selective phase model (Bickel and Bruinsma, 2002;
Ribbeck and Gorlich, 2001, 2002), in which the FG repeats
within a NPC are treated as a reversible polymer gel. See
text for details.

to assume that the polymer gel is under tension due to
pinning of the polymers to the container walls (Bickel
and Bruinsma, 2002). Thermal fluctuations would then
lead to local rearrangements of the stretched polymer
network, resulting in rearrangements of the associated
tension field. This, in turn, could generate force fluc-
tuations on a dissolved macromolecule that could en-
hance its effective diffusivity. Such a mechanism has
not yet been confirmed experimentally. However, single
particle tracking of individual complexes moving through
the NPC shows that cargo bound to more kap receptors
diffuse more freely (Lowe et al., 2010). This is consis-
tent with the tensile gel model but inconsistent with the
entropic gate model, for which greater affinity implies
slower transport of individual complexes.

Chaperone–assisted translocation of polymers through

nanopores. Finally, note that here and in Sec. IIID we
have considered diffusion of particles that are smaller
than or comparable in size to the diameter of the chan-
nel. However, there are many examples where it is nec-
essary to consider translocation of an unfolded (or par-
tially folded) polymer through a nanopore, including the
translocation of RNA through the nuclear pore mem-
brane, as well as newly synthesized proteins into the en-
doplasmic reticulum (see also Sec. VB). Polymer translo-
cation through a nanopore involves a large entropic bar-
rier due to the loss of many conformational states, so that
some form of driving force is required. One suggested
driving mechanism involves the binding of chaperone pro-
teins to the translocating polymer on the far side of the
nanopore, which prohibits the polymer diffusing back-
ward through the pore, thus speeding up translocation
(Matlack et al., 1999). This rectified stochastic motion
was orginally analyzed in terms of a Brownian ratchet
by Peskin et al. (1993), and has subsequently been devel-
oped in a number of studies (Ambjornsson and Metzler,
2004; D’Orsogna et al., 2007; Elston, 2000b; Krapivsky
and Mallick, 2010).

IV. ACTIVE INTRACELLULAR TRANSPORT

A. Modeling molecular motors at different scales

Diffusion inside the cytosol or along the plasma mem-
brane of a cell is a means by which dissolved macro-
molecules can be passively transported without any in-
put of energy. However, there are two main limitations of
passive diffusion as a mechanism for intracellular trans-
port. First, it can take far too long to travel the long
distances necessary to reach targets within a cell, which
is particularly acute in the case of the axons and den-
drites of neurons. Second, diffusive transport tends to
be unbiased, making it difficult to sort resources to spe-
cific areas within a cell. Active intracellular transport
can overcome these difficulties so that movement is both
faster and direct specific, but does so at a price. Ac-
tive transport cannot occur under thermodynamic equi-
librium, which means that energy must be consumed
by this process, typically via the hydrolysis of adeno-
sine triphosphate (ATP). The main type of active intra-
cellular transport involves the molecular motors kinesin
and dynein carrying resources along microtubular fila-
ment tracks. Microtubules are polarized polymeric fila-
ments with biophysically distinct (+) and (−) ends, and
this polarity determines the preferred direction in which
an individual molecular motor moves. In particular, ki-
nesin moves towards the (+) end whereas dynein moves
towards the (−) end (Howard, 2001). Each motor protein
undergoes a sequence of conformational changes after re-
acting with one or more ATP molecules, causing it to
step forward along the microtubule in its preferred direc-
tion. Thus, ATP provides the energy necessary for the
molecular motor to do work in the form of pulling its
cargo along the microtubule in a biased direction.

The movement of molecular motors and motor/cargo
complexes occur over several length and time scales
(Julicher et al., 1997; Keller and Bustamante, 2000;
Kolomeisky and Fisher, 2007; Lipowsky and Klumpp,
2005). In the case of a single motor there are at least
three regimes: (i) the mechanicochemical energy trans-
duction process that generates a single step of the mo-
tor; (ii) the effective biased random walk along a fila-
ment during a single run; (iii) the alternating periods
of directed motion along the filament and diffusive or
stationary motion when the motor is unbound from the
filament. A popular model for the stochastic dynamics
of a single motor step in regime (i) is the so–called Brow-
nian ratchet (Reimann, 2002), which extends the theory
of overdamped Brownian motion in periodic potentials
that was reviewed in Sec. III.D.2. In the case of dimeric
or double–headed kinesin, a single step is of length 8µm
and the total conformational cycle takes around 10ms.
In the second regime (ii), multiple steps are taken before
a motor disassociates from the filament. For example,
kinesin takes around 100 steps in a single run, covering
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a distance of around 1µm. Walking distances can be
substantially increased if several molecular motors pull
the cargo. In the third motility regime (iii), molecular
motors repeatedly unbind and rebind to filaments. In
the unbound state a motor diffuses in the surrounding
aqueous solution with a diffusion coefficient of the order
1µm2s−1. However, molecular crowding tends to con-
fine the motor so that it stays close to its detachment
point. At these longer length and time scales, the mo-
tion of the motor can be represented in terms of a system
of PDEs. This combines a discrete Markov process for
the transitions between bound and unbound states with
an FP equation for the advective or diffusive motion in
the different states (Newby and Bressloff, 2010b; Reed
et al., 1990; Smith and Simmons, 2001). In bidirectional
transport, there may be more than one type of bound
state.

1. Brownian ratchets

In performing a single step along a filament track, a
molecular motor cycles through a sequence of conforma-
tional states before returning to its initial state (modulo
the change in spatial location). Suppose that there is
a total of M conformational states in a single cycle la-
beled i = 1, . . . ,M . Given a particular state i, the motor
is modeled as an overdamped, driven Brownian particle
moving in a periodic potential Vi(x). The Langevin equa-
tion for the location of the particle X(t) assuming that
it remains in the given state is

dX

dt
= −V

′
i (X)

γ
dt+ ξ(t), (4.1)

with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dtδ(t − t′). The cor-
responding FP equation is

∂pi(x, t)

∂t
= −∂Ji(x, t)

∂x
, (4.2)

where pi(x, t) is the probability density that the motor
particle is in internal state i and at location x at time t,
and Ji(x, t) is the probability flux

Ji(x, t) =
1

γ

[
−V ′i (x)− kBT

∂

∂x

]
pi(x, t). (4.3)

If the state transitions between the conformational states
are now introduced according to a discrete Markov pro-
cess, then it is necessary to add source terms to the FP
equation:

∂pi(x, t)

∂t
= −∂Ji(x, t)

∂x
(4.4)

+
∑
j 6=i

[ωij(x)pj(x, t)− ωji(x)pi(x, t)] ,

V1(x)

x

V2(x)

ω1 ω2

FIG. 16 Brownian ratchet model of a molecular motor that
can exist in two internal states with associated l–periodic po-
tentials V1(x) and V2(x). State transition rates are denoted
by ω1 and ω2.

where ωij(x) is the rate at which the motor switches from
state j to state i.

In order to develop the basic theory, consider the sim-
ple case of two internal states N = 2 following along the
lines of Julicher et al. (1997); Parmeggiani et al. (1999);
Prost et al. (1994). Then

∂p1(x, t)

∂t
+
∂J1(x, t)

∂x
= −ω1(x)p1(x, t) + ω2(x)p2(x, t)

(4.5a)

∂p2(x, t)

∂t
+
∂J2(x, t)

∂x
= ω1(x)p1(x, t)− ω2(x)p2(x, t).

(4.5b)

Note that adding the pair of equations together and set-
ting p = p1 + p2, J = J1 + J2 leads to the conserva-
tion equations ∂tp + ∂xJ = 0. An example of l–periodic
ratchet (asymmetric) potentials V1(x), V2(x) is shown in
Fig. 16, with l the basic step length of a cycle along
the filament track. The analysis of the two–state model
proceeds along similar lines to the one state model con-
sidered in Sec. III.D.2. That is, set

p̂j(x, t) =

∞∑
n=−∞

pj(x+nl, t), Ĵj(x, t) =

∞∑
n=−∞

Jj(x+nl, t).

(4.6)
The total probability flux can then be written as

Ĵ(x, t) (4.7)

= − 1

γ

[
V ′1(x)p̂1(x, t) + V ′2(x)p̂2(x, t) + kBT

∂p̂(x, t)

∂x

]
.

Consider the steady-state solution for which there is a
constant total flux Ĵ0 so that

V ′1(x)p̂1(x) + V ′2(x)p̂2(x) + kBT
∂p̂(x)

∂x
= −Ĵ0γ.

Defining λ(x) = p̂1(x)/p̂(x), this equation can be rewrit-
ten as

V ′eff(x)p̂(x) + kBT
∂p̂(x)

∂x
= −Ĵ0γ, (4.8)
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where

Veff(x) =

∫ x

0

[λ(y)V ′1(y) + (1− λ(y))V ′2(y)] dy. (4.9)

Suppose that the system is in thermodynamic equilib-
rium so that detailed balance holds. That is, the state
transition rates and steady-state probabilities satisfy

ω1(x)

ω2(x)
= e[V1(x)−V2(x)]/kBT =

p2(x)

p1(x)
. (4.10)

Therefore,

λ(x) =
1

1 + e−[V1(x)−V2(x)]/kBT
, (4.11)

and, in particular, λ(x) reduces to an l–periodic function.
It follows that Veff(x) in Eq. (4.8) is also an l-periodic
potential and hence there is no net motion in a particular
direction (in the absence of an external force or tilt), see
Sec. III.D.2. In conclusion, in order for a molecular mo-
tor to sustain directed motion that can pull against an
applied load, we require a net positive supply of chemi-
cal energy that maintains the state transition rates away
from detailed balance - this is the role played by ATP.

Therefore, consider the situation in which transitions
between the two states occur as a result of chemical re-
actions involving ATP hydrolysis. Denoting the two con-
formational states of the motor by M1,M2, the scheme
is taken to be (Parmeggiani et al., 1999)

ATP +M1

α2

�
α1

M2 + ADP + P

ADP + P +M1

γ2
�
γ1
M2 + ATP

M1

β2

�
β1

M2

with αj , γj , βj x–dependent. The first reaction pathway
involves ATP hydrolysis with chemical free energy gain
∆µ and a corresponding transition from state 1 to state 2,
the second involves hydrolysis in the opposite direction,
while the third involves thermal state transitions without
any change in chemical potential. Basic chemical kinetics
implies that

α1

α2
= e(V1−V2+∆µ)/kBT ,

γ1

γ2
= e(V1−V2−∆µ)/kBT ,

β1

β2
= e(V1−V2)/kBT . (4.12)

It follows that the net transition rates between the two
conformational states are

ω1 = α2e(V1−V2+∆µ)/kBT + γ2e(V1−V2−∆µ)/kBT

+ β2e(V1−V2)/kBT (4.13)

ω2 = α2 + γ2 + β2. (4.14)

Clearly detailed balance no longer holds. In general, it is
now necessary to determine the steady–state solution of
the pair of Eqs. (4.5) numerically. Given such a solution,
the efficiency of the motor doing work against a load F
may be determined as follows. First the flux (4.3) has an
additional term of the form Fpi(x, t)/γ. The mechanical
work done per unit time against the external force is then
Ẇ = Fv where v = lĴ0 is the velocity of the motor. On
the other hand, the chemical energy consumed per unit
time is Q̇ = r∆µ, where r is the steady–state rate of ATP
consumption:

r =

∫ l

0

[(α1(x)− γ1(x))p̂1(x)− (α2(x)− γ2(x))p̂2(x)]dx.

The efficiency of the motor is then defined to be (Julicher
et al., 1997) η = Fv

r∆µ .

3 3 3

2 2 2

1 1 1
k-1 k k+1

∆x

FIG. 17 State transition diagram for a discrete Brownian
ratchet that cycles through M = 3 internal states and makes
a single step of length ∆x

It is often convenient to simplify the generalized
ratchet model further by taking the transition rate func-
tions to be localized at the discrete set of positions
x = xk, k = 1, . . . ,K, and to replace the continuum dif-
fusion and drift terms by hopping rates between nearest
lattice sites (Liepelt and Lipowsky, 2007; Lipowsky and
Klumpp, 2005). The resulting discrete Brownian ratchet
model can be mapped on to a stochastic network of KM
states as shown in Fig. 17; (see (Kolomeisky and Fisher,
2007) for an alternative approach to stochastic network
models of molecular motors). The stochastic dynamics
is now described by a master equation, an example of
which is

dPkm(t)

dt
=
∑
n 6=m

[Pkn(t)Wkm;kn − Pkm(t)Wkn;km] (4.15)

+ Pk+1,1(t)WkM ;k+1,1 + Pk−1,M (t)Wk1;k−1,M

− Pk,1(t)Wk−1,M ;k,1 − Pk,M (t)Wk+1,1;k,M ,

where Pkm(t) = pm(xk, t) and for “vertical” transitions
Wkm;kn = ωmn(xk). In this example steps along the fil-
ament (power strokes) only occur between states m = 1
and m = M . Observing a molecular motor’s motion
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along a filament on longer time-scales (several cycles)
suggests that its macroscopic dynamics can be approxi-
mated by diffusion with constant drift (Peskin and Oster,
1995; Wang et al., 1998). That is, in the long-time limit,

the probability density ρ(x = k∆x, t) =
∑M
m=1 Pkm(t)

satisfies the FP equation

∂ρ

∂t
= −V ∂ρ

∂x
+D

∂2ρ

∂x2
. (4.16)

Such an equation can be derived analytically (Elston,
2000a) by considering the vector F (z, t) with compo-
nents Fm(z, t) =

∑∞
k=−∞ Pkm(t)zk. This is related to the

probability generating function F (z, t) =
∑M
m=1 Fm(z, t)

for the moments of the discrete location K(t). The
vector F (z, t) satisfies a matrix equation of the form
∂tF (z, t) = A(z)F (z, t) such that the long time behavior
of F (z, t) is dominated by the leading eigenvalue λ0(z)
of the matrix A(z). From this it can be shown that to
leading order the drift V = λ′0(1)∆x and the diffusion
coefficient D = ∆x2(λ′′0(1) + λ′0(1))/2 (Elston, 2000a).

2. PDE models of active transport

Over much longer time-scales a molecular motor alter-
nates between phases where it is bound to a filament and
undergoing several cycles of mechanicochemical trans-
duction, and phases where it is unbound and diffusing
in the cytosol. As a further level of complexity, sev-
eral molecular motors may be attached to a vesicular
cargo at the same time, which means that the active
transport of the motor/cargo complex will exhibit dif-
ferent velocity states depending on which combination of
motors are currently bound to the filament (Mallik and
Gross, 2004; Welte, 2004). Indeed, experimental observa-
tions of the dynamic behavior of motor/cargo complexes
transported along microtubules reveal intermittent be-
havior with constant velocity movement in both direc-
tions along the microtubule (bidirectional transport), in-
terrupted by brief pauses or fast oscillatory movements
that may precede localization at specific targets (Bannai
et al., 2004; Dynes and Steward, 2007; Gennerich and
Schild, 2006; Knowles et al., 1996; Rook et al., 2000).
In the axon and distal end of dendrites one finds that
microtubule filaments all have the same polarity, with
the (+) end oriented away from the cell body (Goldstein
and Yang, 2000). This suggests a model of bidirectional
transport in which kinesin and dynein motors transport
a cargo in opposite directions along a single track. On
the other hand, dendritic microtubules located close to
the cell body tend to have mixed polarities (Baas et al.,
1988), suggesting a model in which motors of the same
directional preference are distributed among two parallel
microtubules of opposite polarity. In both of the above
scenarios, there has to be some mechanism for coordinat-
ing the action of the various motors as part of a larger

motor complex. One possibility is that the motors inter-
act through a tug–of–war competition, where individual
motors influence each other through the force they ex-
ert on the cargo (Hendricks et al., 2010; Kural et al.,
2005; Muller et al., 2008a,b; Soppina et al., 2009; Welte,
2004), see Sec. IV.B. When a force is exerted on a mo-
tor opposite to its preferred direction, it is more likely
to detach from its microtubule. Ultimately the motion
of the cargo is determined by the random attachments
and force–dependent detachments from the microtubule
of each motor in the motor complex. (An alternative
coordination mechanism could involve a fast molecular
switch that alternatively turns off kinesin and dynein).

When considering the active transport of intracellular
cargo over relatively long distances, it is often convenient
to ignore the microscopic details of how a motor performs
a single step (as described by Brownian ratchet models),
and to focus instead on the transitions between different
types of motion (eg. anterograde vs. retrograde active
transport, diffusion vs. active transport). This has moti-
vated a class of mesoscopic models that take the form of
a system of PDEs (Bressloff and Newby, 2009; Friedman
and Craciun, 2006; Jung and Brown, 2009; Kuznetsov
and Avramenko, 2008; Loverdo et al., 2008; Newby and
Bressloff, 2010b; Reed et al., 1990; Smith and Simmons,
2001). For the sake of illustration, consider a simple 3-
state model of a particle moving on a 1D track of length
L. Such a track could represent a single microtubular fil-
ament. Within the interior of the track, 0 < x < L, the
particle is taken to be in one of three states labeled by
n = 0,±: unbound from the track and diffusing (n = 0),
bound to the track and moving to the right (anterograde)
with speed v+ (n = +), or bound to the track and mov-
ing to the left (retrograde) with speed −v− (n = −).
For simplicity, take v± = v > 0.Transitions between the
three states are governed by a discrete Markov process.
Let Z(t) and N(t) denote the random position and state
of the particle at time t and define P(x, n, t | y,m, 0)dx
as the joint probability that x ≤ Z(t) < x + dx and
N(t) = n given that initially the particle was at position
Z(0) = y and was in state N(0) = m. Setting

pn(x, t) ≡
∑
m

P(x, t, n|0, 0,m)σm (4.17)

with initial condition pn(x, 0) = δ(x)σn,
∑n
m=1 σm =

1, the evolution of the probability is described by the
following system of PDEs for t > 0:

∂p+

∂t
= −v∂xp+ − β+p+ + αp0 (4.18a)

∂p−
∂t

= v∂xp− − β−p− + αp0 (4.18b)

∂p0

∂t
= β+p+ + β−p− − 2αp0 +D0

∂2p0

∂x2
. (4.18c)

Here α, β± are the transition rates between the station-
ary and mobile states. Eq. (4.18) is supplemented by
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appropriate boundary condition at x = 0, L. For exam-
ple, a reflecting boundary at x = 0 and an absorbing
boundary at x = L means that

p−(0, t) = p+(0, t), p−(L, t) = 0. (4.19)

In the general case that the velocities v± in the two di-
rections are different, the transport will be biased in the
anterograde (retrograde) direction if v+/β+ > v−/β−
(v+/β+ < v−/β−).

It is straightforward to generalize the 3–state model to
the case of n distinct velocity states as found for example
in the tug–of-war model, see IV.B. Introducing the n–
component probability density vector p(x, t) ∈ Rn the
corresponding system of PDEs takes the form

∂p

∂t
= Ap + L(p), (4.20)

where A ∈ Rn×n specifies the transition rates between
each of the n internal motor states and the differential
operator L has the structure

L =


L1 0 · · · 0
0 L2 0 · · · 0
...

. . .
...

Ln−1 0
0 · · · 0 Ln

 , (4.21)

where the scalar operators are given by

Lj = [−vj∂x +D0,j∂
2
x]. (4.22)

Here vj is the velocity of internal state j and D0,j is the
corresponding diffusivity.

B. Tug-of-war model of bidirectional transport

Suppose that a certain vesicular cargo is transported
along a one–dimensional track via N+ right–moving (an-
terograde) motors and N− left–moving (retrograde mo-
tors). At a given time t, the internal state of the cargo–
motor complex is fully characterized by the numbers n+

and n− of anterograde and retrograde motors that are
bound to a microtubule and thus actively pulling on
the cargo. Assume that over the time–scales of inter-
est all motors are permanently bound to the cargo so
that 0 ≤ n± ≤ N±. The tug–of–war model of Muller
et. al. (Muller et al., 2008a,b) assumes that the motors
act independently other than exerting a load on motors
with the opposite directional preference. (However, some
experimental work suggests that this is an oversimplifica-
tion, that is, there is some direct coupling between mo-
tors (Driver et al., 2010)). Thus the properties of the
motor complex can be determined from the correspond-
ing properties of the individual motors together with a
specification of the effective load on each motor. There

are two distinct mechanisms whereby such bidirectional
transport could be implemented (Muller et al., 2008a).
First, the track could consist of a single polarized micro-
tubule filament (or a chain of such filaments) on which
up to N+ kinesin motors and N− dynein motors can at-
tach, see Fig. 18. Since individual kinesin and dynein mo-
tors have different biophysical properties, with the former
tending to exert more force on a load, it follows that even
when N+ = N− the motion will be biased in the antero-
grade direction. Hence, this version is referred to as an
asymmetric tug–of–war model. Alternatively, the track
could consist of two parallel microtubule filaments of op-
posite polarity such that N+ kinesin motors can attach
to one filament and N− to the other. In the latter case,
if N+ = N− then the resulting bidirectional transport is
unbiased resulting in a symmetric tug–of–war model.

+

+

-

-

FIG. 18 Schematic diagram of an asymmetric tug–of–war
model. Two kinesin and two dynein motors transport a cargo
in opposite directions along a single polarized microtubule
track. Transitions between two possible motor states are
shown.

When bound to a microtubule, the velocity of a single
molecular motor decreases approximately linearly with
force applied against the movement of the motor (Viss-
cher et al., 1999). Thus, each motor is assumed to satisfy
the linear force-velocity relation

v(F ) =

{
vf (1− F/Fs) for F ≤ Fs
vb(1− F/Fs) for F ≥ Fs

(4.23)

where F is the applied force, Fs is the stall force satis-
fying v(Fs) = 0, vf is the forward motor velocity in the
absence of an applied force in the preferred direction of
the particular motor, and vb is the backward motor ve-
locity when the applied force exceeds the stall force. The
original tug–of–war model assumes the binding rate is
independent of the applied force, whereas the unbinding
rate is taken to be an exponential function of the applied
force:

π(F ) = π0, γ(F ) = γ0e
F
Fd , (4.24)

where Fd is the experimentally measured force scale on
which unbinding occurs. The force dependence of the
unbinding rate is based on measurements of the walking
distance of a single motor as a function of load (Schnitzer
et al., 2000), in agreement with Kramers rate theory
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(Hanggi et al., 1990). Let Fc denote the net load on the
set of anterograde motors, which is taken to be positive
when pointing in the retrograde direction. Suppose that
the molecular motors are not directly coupled to each
other so that they act independently and share the load;
however, see (Driver et al., 2010). It follows that a sin-
gle anterograde motor feels the force Fc/n−, whereas a
single retrograde motor feels the opposing force −Fc/n+.
Eq. (4.24) implies that the binding and unbinding rates
for both types of motor take the form

γ̂(n, Fc) = nγ(Fc/n), π̂(n) = (N − n)π0. (4.25)

The parameters associated with kinesin and dynein mo-
tors will be different, so that it is necessary to add the
subscript ± to these parameters. The cargo force Fc is
determined by the condition that all the motors move
with the same cargo velocity vc. Suppose that N+ ≥ N−
so that the net motion is in the anterograde direction,
which is taken to be positive. In this case, the forward
motors are stronger than the backward motors so that
n+Fs+ > n−Fs−. Eq. (4.23) implies that

vc = vf+(1− Fc/(n+Fs+)) = −vb−(1− Fc/(n−Fs−)).
(4.26)

This generates a unique solution for the load Fc and cargo
velocity vc:

Fc(n+, n−) = (Fn+Fs+ + (1−F)n−Fs−), (4.27)

where

F =
n−Fs−vf−

n−Fs−vf− + n+Fs+vb−
, (4.28)

and

vc(n+, n−) =
n+Fs+ − n−Fs−

n+Fs+/vf+ + n−Fs−/vb−
. (4.29)

The corresponding expressions when the backward mo-
tors are stronger, n+Fs+ < n−Fs−, are found by inter-
changing vf and vb.

The original study of Muller et al. (2008a,b) consid-
ered the stochastic dynamics associated with transitions
between different internal states (n+, n−) of the motor
complex, without specifying the spatial position of the
complex along a 1D track. This defines a Markov process
with a corresponding master equation for the time evo-
lution of the probability distribution P (n+, n−, t). They
determined the steady-state probability distribution of
internal states and found that the motor complex exhib-
ited at least three different modes of behavior: (i) the
motor complex spends most of its time in states with
approximately zero velocity; (ii) the motor complex ex-
hibits fast backward and forward movement interrupted
by stationary pauses, which is consistent with experi-
mental studies of bidirectional transport; (iii) the mo-
tor complex alternates between fast backward and for-
ward movements. The transitions between these modes

of behavior depend on motor strength, which primar-
ily depends upon the stall force. More recently, Newby
and Bressloff (2010a,b) have constructed a system of
PDEs describing the evolution of the probability density
p(n+, n−, x, t) that the motor complex is in the inter-
nal state (n+, n−) and has position x at time t. This
version of the tug–of–war model simultaneously keeps
track of the internal state of the motor complex and
its location along a 1D track. In order to write the
model in the general form (4.20), it is convenient to in-
troduce the label i(n+, n−) = (N+ + 1)n− + (n+ + 1)
and set p(n+, n−, x, t) = pi(n+,n−)(x, t). This then gives
an n–component probability density vector p ∈ Rn with
n = (N+ + 1)(N− + 1), which satisfies Eq. (4.20).
The internal velocity of internal state j = j(n+, n−) is
vj = vc(n+, n−), and the diffusivities Dj are taken to be
zero unless all motors are detached from the microtubule:
Di = D0δi,1. The components ai,j , i, j = 1, . . . , n, of the
state transition matrix A are given by the corresponding
binding/unbinding rates of Eqs. (4.25). That is, setting
i = i(n+, n−), the non–zero off–diagonal terms are

ai,j = π+(n+ − 1) for j = i(n+ − 1, n−), (4.30a)

ai,j = π−(n− − 1), for j = i(n+, n− − 1), (4.30b)

ai,j = γ+(n+ + 1, Fc), for j = i(n+ + 1, n−), (4.30c)

ai,j = γ−(n− + 1, Fc), for j = i(n+, n− + 1). (4.30d)

The diagonal terms are then given by ai,i = −
∑
j 6=i aj,i.

One of the useful features of the tug-of-war model is
that it allows various biophysical processes to be incor-
porated into the model (Newby and Bressloff, 2010a,b;
Posta et al., 2009), see also Sec. IV.H.2. For example, a
convenient experimental method for changing the stalling
force (and hence the mode of motor behavior) is to vary
the level of ATP available to the motor complex. At
low [ATP] the motor has little fuel and is weaker, result-
ing in mode (i) behavior; then, as [ATP] increases and
more fuel is available, mode (ii) behavior is seen until
the stall force saturates at high values of [ATP] where
mode (iii) behavior takes over. Thus, [ATP] provides a
single control parameter that tunes the level of intermit-
tent behavior exhibited by a motor complex. There are a
number of models of the [ATP] and force-dependent mo-
tor parameters that closely match experiments for both
kinesin (Fisher and Kolomeisky, 2001; Mogilner et al.,
2001; Schnitzer et al., 2000; Visscher et al., 1999) and
dynein (Gao, 2006; King and Schroer, 2000). It is found
that [ATP] primarily affects the stall force, forward mo-
tor velocity, and unbinding rate. For example, based on
experimental data, the forward velocity may be modeled
using Michaelis-Menten kinetics

vf ([ATP]) =
vmaxf [ATP]

[ATP] +Kv
, (4.31)

where vmaxf = 1µm/s, Kv = 79.23µM for kinesin
and vmaxf = 0.7µm/s, Kv = 38µM for dynein. (The
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backward velocity of both kinesin and dynein is small,
vb ≈ ±0.006µm/s, so that the [ATP] dependence can
be neglected). The binding rate is determined by the
time necessary for an unbound motor to diffuse within
range of the microtubule and bind to it, which is as-
sumed to be independent of [ATP]. The unbinding rate
of a single motor under zero load can be determined us-
ing the [ATP] dependent average run length Lk([ATP]) =
Lmaxk /([ATP] +Ku). The mean time to detach from the
microtubule is vf ([ATP])/Lk([ATP]) so that

γ0([ATP]) =
vmaxf ([ATP] +Ku)

Lmaxk ([ATP] +Kv)
, (4.32)

where Lmaxk = 0.86µm, Ku = 3.13µM for kinesin and
Lmaxk = 1.5µm, Ku = 1.5µM for dynein. Finally, a
model for the [ATP]-dependent stall force of kinesin is

Fs([ATP]) = F 0
s +

(Fmaxs − F 0
s )[ATP]

Ks + [ATP]
, (4.33)

where F 0
s = 5.5pN , Fmaxs = 8pN , Ks = 100µM for ki-

nesin and F 0
s = 0.22pN , Fmaxs = 1.24pN , Ks = 480µM

for dynein.

C. Quasi–steady–state (QSS) reduction of PDE models of
active transport

Two important quantities characterizing the effective-
ness of motor-driven active transport are the hitting
probability and MFPT to deliver cargo to a specific
target within a cell, see Sec. IVH. In the case of the
3-state model (4.18), in which the number of internal
states of the motor-cargo complex is sufficiently small, it
is possible to derive exact analytical expressions for the
MFPT and hitting probability using Laplace transforms
or solving a corresponding system of backwards equa-
tions (Benichou et al., 2005; Bressloff and Newby, 2009).
However, if the number of internal velocity states be-
comes large, as in the tug-of-war model, then some form
of approximation is needed. This also holds for active
transport in higher spatial dimensions where the direc-
tion of motion is random, see Sec. IVE. In this section,
we review a quasi–steady–state (QSS) method for reduc-
ing equations of the general form (4.20) to a scalar FP
equation under the assumption that the state transition
rates are faster than the velocity of motile states on an
appropriate length scale (Newby and Bressloff, 2010a,b).
A number of authors have analyzed such equations in
this regime. For example, Reed et al. (1990) used singu-
lar perturbation theory to show that the transport of a
chemical along an axon can be analyzed in terms of an
approximate traveling-wave solution of a scalar advec-
tion diffusion equation for the chemical concentration.
Subsequent work rigorously established the validity of
this scalar reduction for a wide range of PDE models of

active transport (Brooks, 1999; Friedman and Craciun,
2006; Friedman and Hu, 2007). More recently, Newby
and Bressloff (2010a,b) have carried out a QSS reduction
of the tug-of-war model and used this to study the effi-
ciency of intracellular active transport within the context
of random intermittent search processes, see also IV.H.
For a more general discussion of the QSS and projec-
tion methods for reducing the dimensionality of stochas-
tic models, also referred to as adiabatic reduction, see
Gardiner (2009).

The first step in the QSS reduction is to fix the units of
space and time by setting l = 1 and l/v = 1, where v =
maxni=1 vi. This corresponds to non–dimensionalizing Eq.
(4.18) by performing the rescalings x → x/l and t →
tv/l. Furthermore, suppose that for the given choice of
units, aij = O(1/ε) whereas Lij = O(1) for some small

parameter ε� 1, and set A = ε−1Â. Eq. (4.18) can then
be rewritten in the dimensionless form (after dropping

hat on Â)

∂p

∂t
=

1

ε
Ap + L(p), (4.34)

The transition matrix A is assumed to be irreducible and
conservative so that ψ = (1, 1, · · · , 1)T is in the nullspace
N (AT ). Moreover, A has one zero eigenvalue and the
remaining eigenvalues have negative real part. Let pss ∈
N (A) and choose pss so that ψTpss = 1. The next step
is to introduce the decomposition p = upss + w where
u ≡ ψTp and ψTw = 0. Thus u is the component of p
in the left nullspace of A, whereas w is in the orthogonal
complement. Multiplying both sides of (4.34) by ψT

yields the equation

∂tu = ψTL(upss + w). (4.35)

Substituting p = upss + w into (4.34) gives

∂tw + (∂tu)pss =
1

ε
A(w + upss) + L(w + upss).

Using equation (4.35) and the fact that pss is in the right
null space of A, shows that

∂tw =
1

ε
Aw + (In − pssψT )L(w + upss), (4.36)

where In is the n× n identity matrix.
Now introduce an asymptotic expansion for w:

w ∼ w0 + εw1 + ε2w2 + . . . . (4.37)

Substituting this expansion into (4.36) and collecting
O(ε−1) terms gives Aw0 = 0. Since w is in the orthogo-
nal complement of the left nullspace of A, it follows that
w0 = 0. Now collecting terms of O(1) yields the equation

Aw1 = −(In − pssψT )L(upss), (4.38)

where In is the n × n identity matrix. The orthogonal
projection In − pssψT ensures that the right–hand side
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of the above equation is in the range of A, and a unique
solution for w1 is obtained by requiring that ψTw1 = 0.
It is convenient to define the mean of an n-vector z with
respect to the stationary distribution pss according to
〈z〉 ≡ zTpss Substituting w ∼ εw1 into Eq. (4.35) then
yields

∂tu = −〈v〉∂xu+ 〈D0〉∂2
xu+ ε

n∑
j=1

Ljw1,j . (4.39)

From Eq. (4.38) it can be seen that the components of
w1 are linear combinations of ∂xu and ∂2

xu so that

w1,j = −θj∂xu+ qj∂
2
xu (4.40)

where θj and qj , j = 1, . . . , n, are u–independent. Col-
lecting ∂xu terms in Eq. (4.38) yields an equation for
θ = (θ1, ..., θn)T ,

Aθ = −((〈v〉 − v1)pss
1 , · · · , (〈v〉 − vn)pss

n )T . (4.41)

The condition ψTw1 = 0 implies that ψTθ = 0 and
hence there exists a unique solution for θ. Likewise the
equation for q is given by

Aq = −((〈D0〉 −D0,1)pss
1 , · · · , (〈D0〉 −D0,n)pss

n )T .

Finally, assuming that the diffusivity D0,j = O(ε) and
keeping only lowest order terms, leads to the scalar FP
equation (Newby and Bressloff, 2010a,b)

∂u

∂t
= −V ∂u

∂x
+D

∂2u

∂x2
(4.42)

with

V = 〈v〉+O(ε2), D = 〈D0〉+ εvTθ +O(ε2).(4.43)

In order to compute the O(ε) contribution to D, the rank
deficient Eqs. (4.41) can be solved numerically using the
full singular value decomposition of the matrix A, see
below. The probability density function u is the total
probability of being in any motor state at position x and
time t. Suppose that the particle was initially injected on
to the track at x = 0 and σm = pss

m in equation (4.17) so
that the initial state lies in the slow manifold. The initial
condition for u is then u(x, 0) = δ(x). Similarly, typical
boundary conditions for u on a finite track of length L
will be V u − D∂xu |x=0= 0 (reflecting) and u(L, t) = 0
(absorbing). These boundary conditions follow from sub-
stituting p = upss+εw1 into the corresponding boundary
conditions of Eq. (4.34).

QSS reduction of 3–state model. In the case of the 3–state
model given by Eq. (4.18), the steady–state probability
distribution is

pss =
1

γ

 1
β+
1
β−
1
α

 , γ =
1

β+
+

1

β−
+

1

α
. (4.44)

The resulting 2-rank system of equations for the 3-vector
w1, Eq. (4.38), can be solved up to the arbitrary element
[w1]0 using Gaussian elimination:

[w1]± = ∓1∓ 〈v〉
β2
±γ

∂xu+
αΩ

β±
, [w1]0 = Ω (4.45)

where

〈v〉 =
v

γ

(
1

β+
− 1

β−

)
.

Ω is determined by imposing the condition ψTw = 0:

αΩ =
1

γ2

(
1− 〈v〉
β2

+

− 1 + 〈v〉
β2
−

)
∂xu (4.46)

Substituting equations (4.45) and (4.46) into (4.35) yields
the FP Eq. (4.42) with (to O(ε2))

D =
αD0

γ
+ ε

(
(v − 〈v〉)2

γβ2
+

+
(v + 〈v〉)2

γβ2
−

)
(4.47)

QSS reduction of tug-of-war model. The reduction of the
tug–of–war model presented in Sec. IV.B is more in-
volved (Newby and Bressloff, 2010a,b). In particular, it
is necessary to compute the vector θ by solving equation
(4.41), which has the general form Aθ = b. The stan-
dard numerical method for solving a rank deficient linear
system using singular valued decomposition (SVD) must
be modified slightly. The Fredholm-Alternative theorem
implies that a solution to equation (4.41) exists but is
not unique. In the case of a standard least squares so-
lution, uniqueness is obtained by requiring the solution
to be orthogonal to the nullspace of A. However, in this
case a unique solution must be obtained by requiring the
solution be orthogonal to the nullspace of AT . The fol-
lowing procedure may be used. Let UΣHT = A be a
full singular value decomposition of A. Let z = UT b and
y = HTθ so that Σy = z. It follows that yi = zi/σi,
i = 1, ..., n− 1, where σi are the non-zero singular values
of A. The last component yn is arbitrary since σn = 0.
The standard least squares solution is obtained by set-
ting yn = 0. To determine yn here, one requires that∑n
i=1 θi = 0. Since θ = Hy,

θi =

n−1∑
j=1

hijyj + hinyn. (4.48)

where hij are the components of the matrix H. Since∑n
i=1 θi = 0, it follows that

yn = −
∑n
i=1

∑n−1
j=1 hijyj∑n

i=1 hin
. (4.49)

The QSS reduction determines the generic parameters
V,D of the scalar FP equation (4.42) as functions of the
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various biophysical parameters of the tug–of–war model.
These include the stall force Fs, the detachment force Fd,
the maximum forward and backward velocities vf , vb, and
the single motor binding/unbinding rates γ0, π0. These,
in turn will depend on environmental factors such as the
concentration of [ATP] and various signaling molecules,
see also Sec. IV.H.2.

D. Fast and slow axonal transport

Axons of neurons can extend up to 1m in large or-
ganisms but synthesis of many of its components oc-
cur in the cell body. Axonal transport is typically di-
vided into three main categories based upon the observed
speed (Brown, 2003; Sheetz et al., 1998): fast transport
(1 − 9µm/s) of organelles and vesicles and slow trans-
port (0.004− 0.6µm/s) of soluble proteins and cytoskele-
tal elements. Slow transport is further divided into two
groups; actin and actin-bound proteins are transported
in slow component A while cytoskeletal polymers such as
microtubules and neurofilaments are transported in slow
component B. It had originally been assumed that the
differences between fast and slow components were due
to differences in transport mechanisms, but direct exper-
imental observations now indicate that they all involve
fast motors but differ in how the motors are regulated.
Membranous organelles, which function primarily to de-
liver membrane and protein components to sites along
the axon and at the axon tip, move rapidly in a unidi-
rectional manner, pausing only briefly. In other words,
they have a high duty ratio – the proportion of time a
cargo complex is actually moving. On the other hand,
cytoskeletal polymers and mitochondria move in an in-
termittent and bidirectional manner, pausing more often
and for longer time intervals, as well as sometimes revers-
ing direction. Such transport has a low duty ratio.

Neurofilaments are space-filling cytoskeletal polymers
that increase the cross-sectional area of axons, which
then increases the propagation speed of action poten-
tials. Radioisotopic pulse labeling experiments provide
information about the transport of neurofilaments at the
population level, which takes the form of a slowly mov-
ing Gaussian-like wave that spreads out as it propagates
distally. A number of authors have modeled this slow
transport in terms of a unidirectional mode similar to
the 3–state model of Eqs. (4.18) (Blum and Reed, 1989;
Craciun et al., 2005; Reed et al., 1990). For example,
Blum and Reed (1989) considered the following system
on the semi-infinite domain 0 ≤ x <∞:

ε

[
∂p1

∂t
− v ∂p1

∂x

]
=

n∑
j=1

A1jpj (4.50a)

ε
∂pi
∂t

=

n∑
j=1

Aijpj , 1 < i ≤ N, (4.50b)

where p1 represents the concentration of moving neurofil-
ament proteins, and pi, i > 1 represent the concentrations
in n− 1 distinct stationary states. Conservation of mass
implies that Ajj = −

∑
i 6=j Aij . The initial condition is

pi(x, 0) = 0 for all 1 ≤ i ≤ n, 0 < x < ∞. Moreover
p1(0, t) = 1 for t > 0. Reed et al. (1990) carried out an
asymptotic analysis of Eqs. (4.50) that is related to the
QSS reduction method of Sec. IV.C. Suppose that p1 is
written in the form

p1(x, t) = Qε

(
x− ut√

ε
, t

)
,

where u is the effective speed, u = vpss
1 /
∑n
j=1 p

ss
j , and pss

is the steady-state solution for which Apss = 0. They
then showed that Qε(s, t)→ Q0(s, t) as ε→ 0, where Q0

is a solution to the diffusion equation

∂Q0

∂t
= D

∂2Q0

∂x2
, Q0(s, 0) = H(−s)

with H the Heaviside function. The diffusivity D can
be calculated in terms of v and the transition matrix A.
Hence the propagating and spreading waves observed in
experiments could be interpreted as solutions to an effec-
tive advection-diffusion equation. More recently, Fried-
man and Craciun (2005, 2006) have developed a more
rigorous analysis of spreading waves.
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FIG. 19 Transition diagram of ‘stop-and-go’ moldel for the
slow axonal transport of neurofilaments. See text for defini-
tion of different states.

In contrast to the above population models, direct ob-
servations of neurofilaments in axons of cultured neurons
using fluorescence microscopy has demonstrated that in-
dividual neurofilaments are actually transported by fast
motors but in an intermittent fashion (Wang and Brown,
2001; Wang et al., 2000). Hence, it has been proposed
that the slow rate of movement of a population is an
average of rapid bidirectional movements interrupted by
prolonged pauses, the so-called stop-and-go hypothesis
(Brown, 2000; Jung and Brown, 2009; Li et al., 2012).
Computational simulations of an associated system of
PDEs shows how fast intermittent transport can account
for the slowly spreading wave seen at the population level.
One version of the model assumes that the neurofilaments
can be in one of six states (Brown, 2000; Li et al., 2012):
anterograde moving on track (state a), anterograde paus-
ing on track (a0 state), anterograde pausing off track
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(state ap), retrograde pausing on track (state r0), retro-
grade pausing off track (state rp), and retrograde moving
on track (state r). The state transition diagram is shown
in Fig. 19.

E. Active transport on microtubular networks

In the case of axonal or dendritic transport in neu-
rons, the microtubles tend to be aligned in parallel (Gold-
stein and Yang, 2000) so that one can treat the trans-
port process as effectively 1D. On the other hand, intra-
cellular transport within the soma of neurons and most
non–polarized animal cells occurs along a microtubular
network that projects radially from an organizing center
(centrosome) with outward polarity (Alberts et al., 2008).
This allows the delivery of cargo to and from the nucleus.
Moreover, various animal viruses including HIV take ad-
vantage of microtubule-based transport in order to reach
the nucleus from the cell surface and release their genome
through nuclear pores (Damm and Pelkmans, 2006; La-
gache et al., 2009a). In contrast, the delivery of cargo
from the cell membrane or nucleus to other localized cel-
lular compartments requires a non–radial path involving
several tracks. It has also been found that microtubules
bend due to large internal stresses, resulting in a locally
disordered network. This suggests that in vivo transport
on relatively short length scales may be similar to trans-
port observed in vitro, where microtubular networks are
not grown from centrosomes, and thus exhibit orienta-
tional and polarity disorder (Kahana et al., 2008; Salman
et al., 2005). Another example where a disordered mi-
crotubular network exists is within the Drosophila oocyte
(Becalska and Gavis, 2009). Kinesin and dynein motor-
driven transport along this network is thought to be one
of the mechanisms for establishing the asymmetric local-
ization of four maternal mRNAs - gurken, oskar, bicoid
and nanos- which are essential for the development of the
embryonic body axes.

A detailed microscopic model of intracellular transport
within the cell would need to specify the spatial distribu-
tion of microtubular orientations and polarity, in order
to specify which velocity states are available to a motor-
cargo complex at a particular spatial location. However,
a simplified model can be obtained under the “homog-
enization” assumption that the network is sufficiently
dense so that the set of velocity states (and associated
state transitions) available to a motor complex is inde-
pendent of position. In that case, one can effectively
represent the active transport and delivery of cargo to
an unknown target within the cell in terms of a two– or
three-dimensional model of active transport (Benichou
et al., 2007, 2011b; Loverdo et al., 2008). This also pro-
vides motivation for extending the QSS analysis of Sec.
IV.C to higher–dimensions (Bressloff and Newby, 2011).

For simplicity, consider a disordered 2D microtubular

(a) (b)

FIG. 20 Active transport on a disordered microtubular net-
work. (a) Random orientational arrangement of microtubles.
(b) Effective 2D random intermittent search in which a par-
ticle switches between diffusion and ballistic motion in a ran-
dom direction.

network as illustrated in Fig. 20. (The extension to
3D networks is relatively straightforward). Suppose that
after homogenization, a molecular motor at any point
r = (x, y) in the plane can bind to a microtubule with any
orientation θ, resulting in ballistic motion with velocity
v(θ) = v(cos θ, sin θ) and θ ∈ [0, 2π). If the motor is un-
bound then it acts as a Brownian particle with diffusion
coefficient D0. Transitions between the diffusing state
and a ballistic state are governed by a discrete Markov
process. The transition rate β from a ballistic state with
velocity v(θ) to the diffusive state is taken to be inde-
pendent of θ, whereas the reverse transition rate is taken

to be of the form αQ(θ) with
∫ 2π

0
Q(θ)dθ = 1. Suppose

that at time t the motor is undergoing ballistic motion.
Let (X(t), Y (t)) be the current position of the searcher
and let Θ(t) denote the corresponding velocity direction.
Introduce the conditional probability density p(x, y, θ, t)
such that p(x, y, θ, t)dxdydθ is the joint probability that
(x, y, θ) < (X(t), Y (t),Θ(t)) < (x + dx, y + dy, θ + dθ)
given that the particle is in the ballistic phase. Similarly,
take p0(x, y, t) to be the corresponding conditional prob-
ability density if the particle is in the diffusive phase.
(For the moment the initial conditions are left unspeci-
fied). The evolution of the probability densities for t > 0
can then be described in terms of the following 2D system
of PDEs (Bressloff and Newby, 2011):

∂p

∂t
= −∇ · (v(θ)p)− β

ε
p(r, θ, t) +

αQ(θ)

ε
p0(r, t)

(4.51a)

∂p0

∂t
= εD0∇2p0 +

β

ε

∫ 2π

0

p(r, θ′, t)dθ′ − α

ε
p0(r, t).

(4.51b)

In the case of a uniform density, Q(θ) = 1/(2π), Eqs.
(4.51a) and (4.51b) reduce to the 2D model considered by
Benichou et. al. (Benichou et al., 2007, 2011b; Loverdo
et al., 2008). In order to carry out a quasi steady–state
(QSS) reduction of Eqs. (4.51a) and (4.51b), see Sec.
IV.C, we have fixed the units of space and time according
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to l = 1 and l/v = 1, where l is again a typical run
length. Furthermore, for the given choice of units, we
have assumed that there exists a small parameter ε� 1
such that all transition rates are O(ε−1), the diffusivity
is O(ε) and all velocities are O(1).

In the limit ε → 0, the system rapidly converges to
the space-clamped (i.e. ∇p = ∇p0 = 0) steady–state
distributions (pss(θ), pss

0 ) where

pss
0 =

β

α+ β
≡ b, pss(θ) =

αQ(θ)

α+ β
≡ aQ(θ). (4.52)

The QSS approximation is based on the assumption that
for 0 < ε� 1, solutions remain close to the steady–state
solution. Hence,

p(r, θ, t) = u(r, t)pss(θ) + εw(r, θ, t) (4.53)

p0(r, t) = u(r, t)pss
0 + εw0(r, t), (4.54)

where

u(r, t) ≡
∫ 2π

0

p(r, θ, t)dθ + p0(r, t), (4.55)

and ∫ 2π

0

w(r, θ, t)dθ + w0(r, t) = 0. (4.56)

Furthermore, the initial conditions are taken to be

u(r, 0) = δ(r− r0), w(r, 0) = w0(r, 0) = 0, (4.57)

which are equivalent to the following initial conditions
for the full probability densities:

p(r, θ, 0) = δ(r−r0)pss(θ), p0(r, 0) = δ(r−r0)pss
0 . (4.58)

Thus, the initial internal state of the motor (diffusive or
ballistic with velocity v(θ)) is generated according to the
steady–state distributions pss(θ) and pss0 . In other words,
the motor starts on the slow manifold of the underlying
dynamics. If this were not the case, then one would need
to carry out a multiscale analysis in order to take into
account the initial transient dynamics transverse to the
slow manifold (Gardiner, 2009).

Perturbation and projection methods can now be used
to derive a closed equation for the scalar component
u(r, t) (Bressloff and Newby, 2011). First, integrating
equation (4.51a) with respect to θ and adding equation
(4.51b) yields

∂u

∂t
= εD0∇2p0 − 〈〈v ·∇p〉〉 (4.59)

= εbD0∇2u− a 〈v〉 ·∇u− ε 〈〈v ·∇w〉〉+O(ε2),

where 〈f〉 =
∫ 2π

0
Q(θ)f(θ)dθ and 〈〈f〉〉 =

∫ 2π

0
f(θ)dθ for

any function or vector component f(θ). Next, substi-
tuting equations (4.53) and (4.54) into equations (4.51a)

and (4.51b) yields

aQ(θ)
∂u

∂t
+ ε

∂w

∂t
= −v(θ) ·∇ [aQ(θ)u+ εw]− βw

+ αQ(θ)w0. (4.60)

and

b
∂u

∂t
+ ε

∂w0

∂t
= εD0∇2 (bu+ εw0) (4.61)

+β 〈w〉 − αw0.

Now substitute (4.59) into (4.60) and (4.61). Collecting
terms to leading order in ε and using Eq. (4.56) then
gives

w0(r, t) ∼ ab

α+ β
[〈v〉 ·∇u] , (4.62)

and

w(r, θ, t) ∼ Q(θ)

β

(
a2(1 + b) 〈v〉 − av(θ)

)
·∇u. (4.63)

Finally, substituting equations (4.63) and (4.62) into
(4.59) yields to O(ε) the FP equation

∂u

∂t
= −∇ · (Vu) + εbD0∇2u+ ε∇ · (D∇u). (4.64)

The diffusion tensor D has components Dkl, k = x, y, l =
x, y

Dkl ∼
a

β

(
〈vkvl〉 − 〈vk〉 〈vl〉+ b2 〈vk〉 〈vl〉

)
, (4.65)

to lowest order in ε, whilst the effective drift velocity is
given by V ∼ a 〈v〉.

In the case of a uniform direction distribution Q(θ) =
1/(2π), the diffusion tensor reduces to a scalar. This
follows from the fact that vx = v cos θ, vy = v sin θ so
〈vx〉 = 〈vy〉 = 〈vxvy〉 = 0 and to leading order

Dxx =
av2

2β
= Dyy, Dxy = 0. (4.66)

More generally, assuming that Q(θ) is sufficiently
smooth, we can expand it as a Fourier series,

Q(θ) =
1

2π
+

1

π

∞∑
n=1

(ωn cos(nθ) + ω̂n sin(nθ)). (4.67)

Assume further that ω1 = ω̂1 = 0 so there is no velocity
bias i.e. 〈vx〉 = 〈vy〉 = 0. Then

Dxx =
av2

β

∫ 2π

0

cos2(θ)Q(θ)dθ =
av2

2β
(1 + ω2)

Dyy =
av2

β

∫ 2π

0

sin2(θ)Q(θ)dθ =
av2

2β
(1− ω2) , (4.68)

Dxy =
av2

β

∫ 2π

0

sin(θ) cos(θ)Q(θ)dθ =
av2

2β
ω̂2.
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FIG. 21 Random velocity model of a microtubular network
with quenched polarity disorder. Particles move ballistically
along parallel tracks in a direction determined by the polarity
of the given track. They also hop between tracks according
to an unbiased random walk.

It follows that only the second terms in the Fourier series
expansion contribute to the diffusion tensor.

An alternative formulation of transport on disordered
microtubular networks has been developed by Kahana
et al. (2008) in terms of random velocity fields (Ajdari,
1995; Redner, 1997; Zumofen et al., 1990). In order to
describe the basic idea, consider the simplified model an-
alyzed by Zumofen et al. (1990). The latter model con-
sists of a set of equally spaced parallel tracks along the
x-axis, say, see Fig. 21. The tracks are assigned random
polarities ±1 with equal probabilities corresponding to
quenched polarity disorder. A particle undergoes a ran-
dom walk in the y–direction, whereas when a particle
attaches to a certain track it moves ballistically with ve-
locity ±1 according to the track’s polarity. It is assumed
that when a particle hops to a neighboring track it binds
immediately. Let X(t) denote the displacement of a ran-
dom walker in the longtitudinal direction at time t:

X(t) =

∫ t

0

v[y(t′)]dt′. (4.69)

Taking the continuum limit in the y direction means that

p(y, t) =
1√

4πDt
e−y

2/4Dt,

where D is the diffusion coefficient, and the velocity
field is δ–correlated 〈v(y)v(y′)〉c = v2ξδ(y − y′). Here
averaging is taken with respect to the quenched polar-
ity disorder and ξ is the infinitesimal spacing between
tracks. Now consider the second moment 〈〈X2(t)〉〉 of the
stochastic process averaged with respect to the quenched
disorder and realizations of the random walk:

〈〈X2(t)〉〉 = 2

∫ t

0

dt1

∫ t1

0

dt2〈〈v[y(t1)]v[y(t2)]〉〉, (4.70)

where

〈〈v[y(t1)]v[y(t2)]〉〉 =

∫ ∞
−∞

dy1

∫ ∞
−∞

dy2〈v(y1)v(y2)〉c

× p(y2, t2)p(y1 − y2, t1 − t2).
(4.71)

Using Laplace transforms and the velocity correlation
function,

〈〈X̃2(s)〉〉 =
2v2ξ

s
p̃(0, s)

∫ ∞
−∞

p̃(y, s)dy, (4.72)

with

p̃(y, s) =
1√
4Ds

e−|y|
√
s/D.

Performing the integration with respect to y thus shows

that 〈〈X̃2(s)〉〉 = v2ξD−1/2s−5/2, which on inverting the
Laplace transform gives

〈〈X2(t)〉〉 =
4v2ξ

3
√
πD

t3/2. (4.73)

An equivalent formulation of the problem is to treat
〈〈X2(t)〉〉 as the solution to the differential equation (Ka-
hana et al., 2008)

d2

dt2
〈〈X2(t)〉〉 = 2v2ξyp(0, t), (4.74)

where ξp(0, t) is the probability of turn to the origin at
time t within a single lattice spacing ξ, and p(0, t) =
1/
√

4πDt. In conclusion, the random velocity model sup-
ports anomalous superdiffusion in the x direction.

Kahana et al. (2008) extended the above construc-
tion to 2D (and 3D) disordered networks where there
are parallel tracks in the x and y directions. The distri-
bution of polarities are unbiased in both directions. A
self-consistent description of the dynamics is obtained by
taking

d2

dt2
〈〈X2(t)〉〉 = 2v2ξpy(0, t),

d2

dt2
〈〈Y 2(t)〉〉 = 2v2ξpx(0, t),

(4.75)
where px and py are the probability densities of the x
and y coordinates. From the symmetry of the network,
px(0, t) = py(0, t). Hence, assuming that px(0, t) =
C〈〈X2(t)〉〉−1/2 for some constant C, and setting φ(t) =
〈〈X2(t)〉〉 gives

φ1/2 d
2

dt2
φ = 2Cv2ξ. (4.76)

It follows that φ(t) ∼ t4/3 so that the diffusion is less
enhanced than in the case of parallel tracks in one di-
rection. Finally, note that active transport on the ran-
domly oriented network of Fig. 20 exhibits normal rather
than anomalous diffusion. A major difference from the
random velocity model is that the latter has quenched
polarity disorder, whereas the former has dynamical po-
larity disorder.



47

F. Virus trafficking

An interesting example of active transport in 2D or 3D
is given by virus trafficking. An animal virus typically
invades a mammalian cell by first undergoing membrane
endocytosis from the exterior to the interior of the cell.
It then has to navigate the crowded cytoplasm without
being degraded in order to reach a nuclear pore and de-
liver its DNA to the cell nucleus (Damm and Pelkmans,
2006). Single particle tracking has established that virus
trajectories within the cytoplasm consist of a succession
of free or confined diffusion and ballistic periods involv-
ing active transport along microtubules or actin networks
(Brandenburg and Zhuang, 2007). A macroscopic com-
putational model of the trafficking of a population of
viruses has been developed based on the law of mass
action, which takes into account cell geometry but ne-
glects stochastic effects (Dinh et al., 2007, 2005). More
recently, in a series of papers, Holcman and collabora-
tors (Holcman, 2007; Lagache et al., 2009a,b; Lagache
and Holcman, 2008) have developed a stochastic model
of a single virus trafficking inside a cell, which involves
reducing an intermittent search model (see Sec. IV.H)
to an effective Langevin equation, and using the latter
to calculate the mean time to reach a nuclear pore based
on a narrow escape problem (see Sec. II.C). The basic
structure of a 2D version of the latter model is shown in
Fig. 22.

Following (Lagache and Holcman, 2008), the cell is
treated as a radially symmetric disc consisting of an an-
nular region of cytoplasm of outer radius R and inner
radius δ, surrounding a central nuclear disc. N micro-
tubules radiate outwards from the nucleus to the cell
membrane, and are assumed to be distributed uniformly
so that the angle between two neighboring microtubules
is Θ = 2π/N . (A two-dimensional description of a cell
would be reasonable in the case of cultured cells that are
flattened due to adhesion to the substrate). The motion
of a virus particle alternates between diffusive motion
within a wedge region Ω̂ subtending an angle Θ at the
origin, and binding to one of the two microtubules at
the boundary of the wedge. Suppose that a virus par-
ticle starts at some radius r0 < R and arbitrary angle
within such a wedge. Let τ(r0) denote the MFPT for the
particle to bind to a microtubule, and let ρ(r0) be the
mean radial position on the microtubule. Suppose that
the particle moves with a fixed speed v for a time T to-
wards the nucleus before being released to a new position
with radius r1 and arbitrary angle within another wedge.
It follows that r1 = ρ(r0) − vT . Treating the domain Ω̂
as an open wedge by ignoring the reflecting boundary at
r = R, it can be shown that if Θ � 1 then (Lagache
et al., 2009a)

τ(r0) ≈ r2
0Θ2/12D, ρ(r0) ≈ r0(1 + Θ2/12).

The reduction method of (Lagache et al., 2009a; La-

microtubule

nuclear

pore

nucleus

Brownian

motion

cell membrane

motor
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FIG. 22 Model of Lagache and Holcman (2008). Diagram of
a 2D radially symmetric cell with radially equidistant micro-
tubles. A virus trajectory is shown that alternates between
ballistic motion along a microtubule and diffusion the cyto-
plasm. Trajectory starts at the cell membrane and ends at a
nuclear pore.

gache and Holcman, 2008) is to assume that on a coarse-
grained time-scale the random intermittent motion of the
virus can be approximated by a Langevin equation with
a radial drift vector:

dr

dt
= b(r)

r

|r|
+
√

2Ddξdt. (4.77)

In order to estimate the drift function b(r), the MFPT
τ̂(r0) for the effective Langevin particle to start at r0

and end at r1 is calculated using the standard theory of
first passage times (see Sec. II.B and (Redner, 2001)),
and then compared to τ(r0). First, τ̂(r0) satisfies the
equation

D∇2τ̂ − b(r)∇τ̂ = −1,

with boundary conditions

dτ̂

dr
(r) = 0, τ̂(r1) = 0.

As a further simplification, it is assumed that b(r) varies
slowly with r so that b(r) ≈ b(r0), leading to the solution

τ̂(r0) =

∫ r0

r1

∫ R

v

ue−b(r0)[u−v]/D

Dv
dudv.

Assuming that D � 1 the Laplace method can be used
to evaluate the integral with respect to u, giving τ̂(r0) ≈
(r0 − r1)/b(r0). Finally, setting τ̂(r0) = τ(r0) + T yields

b(r0) =
r0 − r1

τ(r0) + T
=

d− r0Θ2/12

T + r2
0Θ2/12D

. (4.78)

A more detailed calculation of the effective drift function
b(r) under less restrictive assumptions can be found in
(Lagache et al., 2009a).
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Having reduced the effective motion of the virus to a
Langevin equation, the probability that the virus arrives
at a nuclear pore before being degraded at a rate k0 can
now be calculated by solving a narrow escape problem.
The assocated FP equation takes the form

∂p

∂t
= D∇2p(r, t)−∇ · b(r)p(r, t)− k0p(r, t) (4.79)

on the annular region Ω of Fig. 22, together with the
boundary conditions

p(r, t) = 0, r ∈ ∂Na, J(r, t) · n = 0, r ∈ ∂Ω− ∂Na.

The boundary ∂Ω of the annulus is taken to be reflect-
ing everywhere except for the surface ∂Na of the nucleus
occupied by nuclear pores, which are taken to be perfect
absorbers. Asymptotic analysis then shows that the hit-
ting probability P and conditional MFPT T are (Lagache
et al., 2009a; Lagache and Holcman, 2008)

P =
b(δ)

b(δ) + 2δk0ν
, T =

2δν

2δk0ν + b(δ)
, (4.80)

where ν = log(1/ε) with ε the fraction of the nucleus
covered by nuclear pores.

G. Exclusion processes

So far we have considered a single molecular motor
or motor/cargo complex moving along a filament track.
However, in practice there could be many active particles
moving along the same track, which could interact with
each other and exhibit some form of collective behavior.
This has motivated a number of studies that model the
movement of multiple motor particles as an asymmetric
exclusion process (ASEP) (Evans et al., 2003; Klumpp
and Lipowsky, 2003; Kolomeisky, 1998; Lipowsky et al.,
2001; Nowak et al., 2007a; Parmeggiani et al., 2003, 2004;
Popkov et al., 2003; Pronina and Kolomeisky, 2007). In
the simplest version of such models, each particle hops
unidirectionally at a uniform rate along a 1D lattice;
the only interaction between particles is a hard-core re-
pulsion that prevents more than one particle occupying
the same lattice site at the same time. This so–called
totally asymmetric exclusion process (TASEP) is com-
bined with absorption/desorption (Langmuir) kinetics,
in which individual particles can bind to or unbind from
the track, see Fig. 23. The TASEP has become the
paradigmatic model of non-equilibrium stochastic pro-
cesses, and a variety of analytical methods have been
developed to generate exact solutions for the stationary
state, see (Blythe and Evans, 2007; Chou et al., 2011;
Schadschneider et al., 2010) and references therein. How-
ever, when Langmuir kinetics or other biologically moti-
vated extensions of TASEP are included, it is no longer
possible to obtain exact solutions so that some form of
mean-field approximation is required.

1. Asymmetric exclusion process and the hydrodynamic limit

Let us consider in more detail the system shown in
Fig. 23, which consists of a finite 1D lattice of N sites
labeled i = 1, . . . , N . The microscopic state of the sys-
tem is given by the configuration C that specifies the
distribution of identical particles on the lattice. That is,
C = {n1, . . . , nN} where each occupation number ni = 1
if the i-th site is occupied by a single particle and ni = 0
if the site is vacant. Exclusion effects preclude more than
one particle at any site. Thus, the state space consists
of 2N configurations. Let P(C, t) demote the probability
of finding a particular configuration C at time t. The
evolution of this probability distribution is described by
a master equation:

dP(C, t)
dt

=
∑
C′ 6=C

[WC′→CP(C′, t)−WC→C′P(C, t)] .

(4.81)
The transition rate WC→C′ from configuration C to C′ is
determined from the following set of rules (Parmeggiani
et al., 2003):

(a) at sites i = 1, . . . , N−1, a particle can jump to site
i+ 1 at a unit rate if the latter is unoccupied;

(b) at site i = 1 (i = N) a particle can enter (exit) the
lattice at a rate α (β) provided that the site is unoccupied
(occupied);

(c) in the bulk of the lattice, a particle can detach from
a site at a rate ωD and attach to an unoccupied site at a
rate ωA.

Rules (a) and (b) constitute a TASEP with open
boundary conditions, whereas rule (c) describes Lang-
muir kinetics. It follows that the evolution of the particle
densities 〈ni〉 away from the boundaries is given by the
exact equation

d〈ni〉
dt

= 〈ni−1(1−ni)〉−〈ni(1−ni+1)〉+ωA〈1−ni〉−ωD〈ni〉.
(4.82)

Here 〈ni(t)〉 =
∑
C niP(C, t) etc. Similarly, at the bound-

aries

d〈n1〉
dt

= −〈n1(1− n2)〉+ α〈1− n1〉 − ωD〈n1〉, (4.83a)

d〈nN 〉
dt

= 〈nN−1(1− nN )〉+ ωA〈1− nN 〉 − β〈nN 〉.
(4.83b)

α

β
ω

ω

D

A

FIG. 23 Schematic diagram of TASEP with Langmuir kinet-
ics, in which particles can spontaneously detach and attach
at rates ωD and ωA, respectively.
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Note that in the absence of any exclusion constraints, Eq.
(4.82) reduces to a spatially discrete version of the uni-
directional PDE Eq. (4.18a), with p+(ni∆x, t) = 〈ni〉,
β+ = ωD, and p0α = ωA and v+/∆x = 1. The goal is
to find a non- equilibrium stationary state for which the
current flux J along the lattice is a constant. It then
follows that J has the exact form

J = α〈1− n1〉 = 〈ni(1− ni+1)〉 = β〈nN 〉, i = 1, N − 1.

Eqs. (4.82) and (4.83) constitute a non-trivial many-
body problem, since in order to calculate the time evolu-
tion of 〈ni〉 it is necessary to know the two-point corre-
lations 〈ni−1(1− ni)〉. The latter obey dynamical equa-
tions involving three–point and four-point correlations.
Thus, there is an infinite hierarchy of equations of mo-
tion. However, progress can be made by using a mean-
field approximation and a continuum limit in order to
derive a PDE for the density of particles (Evans et al.,
2003; Parmeggiani et al., 2004). The mean–field approx-
imation consists of replacing two-point correlations by
products of single–site averages:

〈ninj〉 = 〈ni〉〈nj〉.

Next introduce the infinitesimal lattice spacing ε and set
x = kε, ρ(x, t) = ρk(t) ≡ 〈nk(t)〉. The continuum limit
is then defined according to N → ∞ and ε → 0 such
that the length of the track L = Nε is fixed. (Fix length
scales by setting L = 1). Expanding ρk±1(t) = ρ(x± ε, t)
in powers of ε gives

ρ(x± ε, t) = ρ(x)± ε∂xρ(x, t) +
1

2
ε2∂xxρ(x, t) +O(ε3).

Finally, rescaling the absorption/desorption rates accord-
ing to ωA = ΩAε, ωD = ΩDε, and rescaling time τ = εt,
Eq. (4.82) becomes to O(ε)

∂ρ

∂τ
=
ε

2

∂2ρ

∂x2
− (1− 2ρ)

∂ρ

∂x
+ ΩA(1− ρ)− ΩDρ. (4.84)

Similarly, Eq. (4.83) reduces to the boundary conditions
ρ(0) = α, ρ(1) = 1 − β. In the continuum limit the flux
takes the form

J(x, t) = − ε
2

∂ρ

∂x
+ ρ(1− ρ). (4.85)

Note that it is also possible to extend the mean-field ap-
proximation to ASEP with slowly spatially varying hop-
ping rates, although now the effective diffusivity in the
hydrodynamic limit now depends on the density (Lakatos
et al., 2006).

The next step is to find a stationary non equilibrium
state for which the current J is constant, and to deter-
mine the corresponding stationary density profile. This
then generates a phase diagram with respect to the pa-
rameters α, β and fixed ΩA,ΩD. In the case of a pure

TASEP, the phase diagram can be calculated explicitly
(Blythe and Evans, 2007; Krug, 1991). Set ΩA = ΩD = 0
in Eq. (4.84), and consider constant current solutions
J(x, t) = J . Rewrite Eq. (4.85) in the form

∂ρ

∂x
= −2

ε
(ρ− r+)(ρ− r−), (4.86)

with

r± =
1

2

[
1±

√
1− 4J0

]
, (4.87)

Eq. (4.86) is easily integrated from the left-hand bound-
ary, say, to give

(ρ(x)− r+)(ρ(0)− r−)

(ρ(x)− r−)(ρ(0)− r+)
= e−2(r+−r−)x/ε. (4.88)

with ρ(0) = α. The unknown current J is obtained
by setting x = 1 and using the boundary condition
ρ(1) = 1 − β. The stationary density profile can then
be constructed explicitly by carrying out an asymptotic
expansion with respect to the small parameter ε. First,
suppose that J < 1/4 so r± are real. Denote the O(1)
approximation of the current by J0. If r+ ≈ 1 − β so
that J0 = β(1 − β) and r− ≈ β, then the bulk of the
domain is in a high density (HD) phase. Since r+ > r−
it follows that β < 1/2. Eq. (4.86) implies that the den-
sity profile is flat except for a boundary layer close to
x = 0. Similarly, there exists a low density (LD) phase
when r− ≈ α, for which J0 = α(1−α), ρ+ ≈ (1−α) and
α < 1/2; there is now a boundary layer at x = 1. Fi-
nally, in the case J > 1/4 (so r± are complex) one finds
that the density profile consists of a flat region at the
centre of the domain where ρ ≈ 1/2 and J0 = 1/4 with
boundary layers now at both ends. Moreover, writing
J = 1/4 + ∆J it can be seen that r+ − r− = i

√
∆J . In

order to avoid fast spatial oscillations in the profile (4.88),
one requires ∆J = O(ε2). Carrying out a perturbation
expansion of Eq. (4.85) in powers of ε then establishes
that ρ(x) − 1/2 varies as 1/x as one moves away from
the left-hand boundary. A schematic illustration of the
phase diagram for pure TASEP is shown in Fig. 24.

2. Method of characteristics and shocks

Eq. (4.84) is mathematically similar in form to the
viscous Burger’s equation with additional source terms
(Ockendon et al., 2003). Thus, one expects singularities
such as shocks in the density ρ to develop in the inviscid
or non-dissipative limit ε→ 0+. This can be investigated
more directly by setting ε = 0 in Eq. (4.84), which then
takes the form of a standard quasilinear PDE

∂ρ

∂τ
+ (1− 2ρ)

∂ρ

∂x
= ΩA(1− ρ)− ΩDρ. (4.89)
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FIG. 24 Mean-field phase diagram for the TASEP showing
the regions of α, β parameter space where the low-density
(LD), high-density (HD) and maximal-current (MC) phases
exist. Schematic illustrations of the density profiles in the
various regions are shown in red.

A well known method for studying such equations is to
construct characteristic curves x = x(τ) along which
ρ(τ) ≡ ρ(x(τ), τ) satisfies

dρ

dτ
=
∂ρ

∂τ
+
dx

dτ

∂ρ

∂τ
.

Comparison with Eq.n (4.89) leads to the characteristic
equations (Evans et al., 2003; Kolomeisky et al., 1998)

dx

dτ
= 1− 2ρ,

dρ

dτ
= ΩA(1− ρ)− ΩDρ. (4.90)

These equations can be interpreted as kinematic waves
that propagate changes in density that move at a variable
speed 1− 2ρ.

x

t shock

ρ = 1

ρ = 0

0

1

density profile ρ(t)

density profile ρ(0)

0.5

10 0.5

FIG. 25 Formation of a shock for Eq. (4.91). The charac-
teristics are straight lines of speed 1 − 2ρ with ρ constant
along a characteristic. The initial density profile evolves into
a stationary shock solution.

In order to illustrate the basic method of analysis, let
us return to a pure TASEP where ΩA = ΩD = 0. Eq.
(4.89) then simplifies to the kinematic wave equation

∂ρ

∂τ
+
∂J0(ρ)

∂x
= 0, J0(ρ) = ρ(1− ρ) (4.91)

and the characteristic become straight lines along which
ρ is constant. Ignoring boundary effects for the moment,
the density profile at time t is determine by the propaga-
tion of the initial density ρ(x, 0) along characteristics as
illustrated in Fig. 25. Since higher densities propagate
more slowly than lower densities, an initial linear density
profile steepens until a shock is formed at the points of in-
tersection where pairs of characteristics meet. In general,
a shock propagates with a speed vS determined by the
so called Rankine-Hugonoit condition (Ockendon et al.,
2003):

vS =
J0(ρ2)− J0(ρ1)

ρ2 − ρ1
= 1− ρ1 − ρ2 (4.92)

where ρ1, ρ2 are the densities on either side of the shock.
For the particular initial density profile shown in Fig.
25, ρ1 = 0 and ρ2 = 1 so that the shock is stationary
(vS = 0). The possibility of stationary shocks reflects the
fact that the current J0(ρ) = ρ(1 − ρ) has a maximum,
which means that two different densities can have the
same current on either side of the shock.

The method of characteristics and kinematic wave the-
ory yields insights into the dynamics underlying the for-
mation of the various stationary phases shown in Fig. 24
(Blythe and Evans, 2007; Kolomeisky et al., 1998; Krug,
1991). The basic idea is to consider kinematic waves
propagating from the left-hand and right-hand bound-
aries, respectively, which act as particle reservoirs with
corresponding densities ρ(0) = α and ρ(1) = 1 − β.
A kinematic wave propagates from the left-hand (right-
hand) boundary with speed 1 − 2α (2β − 1). Hence, if
α < 1/2, β < 1/2, both waves propagate into the inte-
rior of the domain and meet somewhere in the middle to
form a shock that propagates with speed vS = β − α. If
β > α then the shock moves to the right-hand bound-
ary and the bulk of the domain is in a low-density (LD)
state with ρ ≈ α < 1/2. On the other hand, If β < α
then the shock moves to the left-hand boundary and the
bulk of the domain is in a high-density (HD) state with
ρ ≈ 1 − β > 1/2. Note that the line separating the HD
and LD phases, α = β < 1/2, is a coexistence line. The
system consists of a low density region separated from
a high density region by a shock. Once higher order
dissipative effects are included, this shock diffuses freely
between the ends of the domain, so that the average den-
sity profile is linear. In the case α > 1/2 or β > 1/2,
the kinematic wave associated with that boundary does
not propagate into the interior so that the density as-
sociated with the other boundary dominates. Finally, if
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both α > 1/2 and β > 1/2 then the steady-state bulk
solution has the maximal current density ρm = 1/2. In
order to show this, and to determine how bulk solutions
match the boundary conditions, it is necessary to include
dissipation effects as in the previous section.

The above analytical arguments can be extended to
the full molecular motor model that combines TASEP
with Langmuir kinetics (Evans et al., 2003; Parmeggiani
et al., 2003, 2004). When ΩA,ΩD 6= 0 the characteristics
are curves in the x− t plane. For example, consider the
propagation of density fluctuations along a characteris-
tic starting at the left boundary with ρ = α < 1/2 and
α < K/(K + 1), where K = ΩA/ΩD. It follows from
Eq. (4.90) that initially the fluctuation propagates along
the characteristic with decreasing speed and increasing
density. If K/(1 + K) < 1/2 then ρ will approach the
constant value ρ = K/(K + 1) and the speed approaches
a constant value. However, if K/(1 + K) > 1/2 then
after a finite time the density reaches ρ = 1/2 and prop-
agation ceases. A similar analysis holds for characteris-
tics propagating from the right boundary. Furthermore,
characteristics propagating from opposite boundaries can
again intersect, implying multivalued densities and thus
a breakdown of the quasilinear equation. The resulting
shock has the same wave speed as pure TASEP. Of par-
ticular interest are stationary solutions for which the cur-
rent J = ρ(1− ρ) is constant so that any shock solution
is stationary (vS = 0). To a first approximation, these
can be obtained by finding steady–state solutions of the
mean-field Eq. (4.89):

(1− 2ρ)
∂ρ

∂x
− ΩD[K − (1 +K)ρ] = 0. (4.93)

The occurrence of stationary shocks is consistent with the
observation that this is a first–order ODE but there are
two boundary conditions. One thus proceeds by integrat-
ing from the left boundary where ρ(0) = α to obtain a
density profile ρL(x) and then integrating from the right
boundary where ρ(1) = 1− β to obtain a second density
profile ρR(x). The full solution is constructed by match-
ing the two profiles at a shock whose position also has to
be determined. If the shock lies outside the unit inter-
val, then it is necessary to include at least one boundary
layer. A detailed analysis of the steady-state solutions
with coexisting low and high density phases, and the
corresponding phase-diagram with respect to the param-
eters (α, β,ΩD,ΩA) can be found in (Evans et al., 2003;
Parmeggiani et al., 2004). If the effects of dissipation
are also taken into account then the sharp interfaces and
boundary layers become smooth fronts of size O(1/ε).

3. mRNA translation by ribosomes

One of the first examples of a TASEP model in biology
was proposed by Gibbs and collaborators in their study of

FIG. 26 Diagram showing how the translation of the mRNA
and the synthesis of proteins is made by ribosomes. [By La-
dyofHats (Public domain), via Wikimedia Commons]

the translation of messenger RNA (mRNA) by ribosomes
during protein synthesis (MacDonald and Gibbs., 1969;
MacDonald et al., 1968). Proteins are macromolecules
formed from chains of amino acids, and the blueprint for
how these proteins are synthesized is contained in the
DNA of the cell nucleus. Protein synthesis involves two
stages: transcription of genetic information from DNA
to messenger RNA (mRNA) by RNA polymerase, and
translation from mRNA to proteins through ribosome
translocation. The mRNA carries genetic information,
encoded as triplets of nucleotides known as codons. Since
there are four nucleotides (A, U,C, G), there are 64 dis-
tinct codons, e.g., AUG, CGG, most of which code for a
single amino acid. The process of translation consists of
ribosomes moving along the mRNA without backtrack-
ing (from one end to the other, technically known as the
5’ end to the 3’ end) and is conceptually divided into
three major stages: initiation, elongation and termina-
tion. Each elongation step invokes translating or ‘read-
ing’ of a codon and the binding of a freely diffusing trans-
fer RNA (tRNA) molecule that carries the specific amino
acid corresponding to that codon. The basic translation
machinery is illustrated in Fig. 26.

The simplest model of translation is a pure TASEP.
However, as originally highlighted by MacDonald and
Gibbs. (1969); MacDonald et al. (1968) and recently re-
viewed by Chou et al. (2011); Zia et al. (2011), this con-
siderably oversimplifies the biology. For example, ribo-
somes are large molecules so that they extend over several
codons or lattice sites (around l = 12). In order to extend
TASEP to multi-site particles, it is first necessary to spec-

α
β

FIG. 27 A TASEP with extended particles of size l = 3.
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ify the rules for entry and exit of a ribosome. One possi-
bility is ’complete entry, incremental exit’, which assumes
that a ribosome enters completely provided the first l lat-
tice sites are vacant, whereas it exits one step at a time
(Chou and Lakatos, 2003). Inclusion of extended ob-
jects considerably complicates the analysis even though
the basic structure of the phase diagram is preserved
(Chou and Lakatos, 2003; Shaw et al., 2003). In con-
trast to pure TASEP, there does not currently exist an
exact solution, although mean field approximations do
provide useful insights. A second biologically motivated
modification of TASEP is to include site–dependent hop-
ping rates (Chou and Lakatos, 2004; Dong et al., 2007;
Foulaadvand et al., 2008; Kolomeisky, 1998). This is mo-
tivated by the fact that the local hopping rate depends
on the relative abundance of specific amino-acid carrying
tRNA. Using a combination of Monte Carlo simulations
and mean field theory it can be shown, for example, that
two defects (regions of slow hopping rates) decrease the
steady-state current more when they are close to each
other. Finally, note that a number of researchers have de-
veloped models that take into account intermediate steps
in the translocation of a ribosome along the mRNA, in-
cluding the binding of tRNA to the ribosome and hydrol-
ysis (Basu and Chowdhury, 2007; Ciandrini et al., 2010;
Garai et al., 2009; Reichenbach et al., 2006).

H. Motor transport and random intermittent search
processes

So far we have considered models of motor-driven in-
tracellular transport without any reference to the process
whereby the cargo or load carried by one or more motors
is delivered to the correct location within a cell. It is
unlikely that a target is selected according to where a
mictrotubular track terminates, since a cargo could be
released from its associated motors at any point along
the track. Moreover, targeted delivery probably uses
the same microtubular “highway” as more general, non–
targeted intracellular trafficking. It would also be dif-
ficult to establish global chemical concentration gradi-
ents aimed at guiding a motor–driven cargo to a spe-
cific target, as such signals would be drowned out by the
many other signals originating from additional intracel-
lular targets. Therefore, instead of thinking of motor-
driven cargo transport as a direct path to a given target,
the random intermittent motion of motor–driven cargo
observed in experiments suggests that the cell maintains
a distribution of mobile cargo throughout its interior, and
that delivery of a cargo to a specific target is a stochas-
tic process (Bressloff and Newby, 2009; Loverdo et al.,
2008; Newby and Bressloff, 2010b). Some of the molec-
ular mechanisms that cause a cargo to attach or detach
from a molecular motor have been identified (Goldstein
et al., 2008). In most cases, a protein dissolved in the cy-

tosol reacts with an adaptor protein that binds a cargo
to the motor, causing the cargo to be released. How-
ever, when a cargo is pulled at a relatively high velocity
it doesn’t have much time to explore local space and is
therefore much less likely to participate in such a reac-
tion. Therefore, one possible interpretation of the fre-
quent pauses observed during motor transport is that it
provides a mechanism to improve the reaction kinetics
required to localize the cargo to its target by giving it
more time to explore local space. This then leads to a
simple model of cargo delivery in which there are transi-
tions of the internal state of the motor complex between
directed movement states and stationary or slowly dif-
fusing searching states. If the transitions between these
states are governed by chemical reactions under the in-
fluence of thermodynamic fluctuations, then the model
becomes a random intermittent search processs.

Random search has recently been used to model a wide
range of problems (Benichou et al., 2011b), including the
behavior of foraging animals (Bell, 1991; Benichou et al.,
2005; Viswanathan et al., 1999; Viswanathan et al., 2011)
and the active transport of reactive chemicals in cells
(Bressloff and Newby, 2009; Loverdo et al., 2008). The
facilitated diffusion of protein-DNA interactions can also
be thought of as a random intermittent search process,
see Sec. II.E. Random intermittent search falls within a
class of random processes characterized by a particle with
both an ‘internal’ and ‘external’ state. The external state
typically represents the spatial location or position of the
particle, and one or more boundary conditions may ap-
ply to the process that represent the physical domain in
which it moves. The motion of the particle depends on its
internal state, which can be continuous but is usually dis-
crete. For example, the tug-of-war model from Sec. IV.B
is a process where the position, or external state, changes
deterministically at a constant velocity, while the velocity
depends upon the discrete internal state, the randomly
changing number of motors bound to the microtubule.
In general, the external state need not change determin-
istically, but could also fluctuate. For example, one could
include diffusion of the cargo and add a continuous noise
term whose amplitude depends on the internal state.

In order to formulate motor-cargo transport as a ran-
dom intermittent search process, consider a single parti-
cle moving on a 1D track of length L as shown in Fig.
28. In contrast to the models considered in Sec. IV.A-
IV.G, we now assume that there exists a hidden target
of width 2l centered at X within the interior of the do-
main. We also assume that if the particle is within range
of the target and is in a slowly moving search state then
it can ‘find’ the target at a rate k. Within the context
of motor-driven cargo transport, it is assumed that when
the target is found the particle is immediately removed
from the system, that is, the cargo (with or without its
associated set of molecular motors) is delivered to the tar-
get. Hence, the target is treated as a partially absorbing
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trap. One possible application of a 1D model would be to
vesicular transport along the axons and dendrites of neu-
rons, where microtubules are aligned in parallel with the
(+) end oriented away from the cell body. (In the case
of dendritic domains close to the cell body, the polari-
ties may be randomly distributed). The hidden target
could then be a synapse, an intracellular compartment
such as an endosome, or the growth cone of an elongat-
ing axon, see Sec. IV.D. In general, the transport process
is expected to be biased, with newly synthesized macro-
molecules transported away from the cell body (antero-
grade transport) whilst products requiring degradation
are transported back to the cell body (retrograde trans-
port).

It is straightforward to incorporate a hidden target into
the general n-state PDE model (4.20) of a motor complex
moving in a 1D domain by taking

∂p

∂t
= Ap + L(p), (4.94)

where A ∈ Rn×n again specifies the transition rates be-
tween each of the n internal motor complex states, and
the diagonal operator L now has the modified form

Lj = [−vj∂x +D0,j∂
2
x + kjχ(x−X)]. (4.95)

As before, vj is the velocity of internal state j and D0,j is
the corresponding diffusivity. The additional term takes
into account the probability flux into the target with kj
the rate for internal state j and χ is the indicator function

χ(x) =

{
1, if |x| < l
0, otherwise.

(4.96)

In general kj will only be non-zero for a subset of states.
For example, in the 3-state model of Eqs. (4.18), kj =
kδj,0, that is, the unbound stationary or diffusing state
is identified as the search state.

In the case of the more biophysically realistic tug-of-
war model, see Sec. IV.B, the identification of the search

target

motor-cargo
complex

microtubule
+<

l

x=0

kv

F

FIG. 28 Diagram depicting a motor-cargo complex perform-
ing a random intermittent search for a hidden target on a
one–dimensional track of length L. The motor-cargo com-
plex is transported along a microtubule by two populations
of molecular motors with opposing directional preferences.
When equal numbers of each type of motor are bound to
the microtubule, the motor-cargo complex is in a slowly mov-
ing search state and can find the target provided that it lies
within the target domain of width 2l centered at x = X.
Target detection rate is k.

states is more complicated. The simplest scenario is that
the cargo locates its target after it becomes fully de-
tached from the microtubule and diffuses within distance
of its target, where it binds to scaffolding proteins and is
separated from its molecular motors. However, if many
molecular motors are bound to the cargo, the waiting
time between diffusive searching events can be too large
to reliably deliver the cargo. Moreover, if the cargo is
large so that its diffusivity is low or the cargo is moving
through a crowded and confined domain, diffusive motion
may be restricted, preventing the cargo from reaching the
target. Another possibility is that subcellular machinery
is present to detach the cargo from its motors or inhibit
the activity of the motors so that scaffolding proteins can
bind to and sequester the cargo. Delivery then changes
from a diffusion limited reaction to a waiting time that
depends on a reaction occurring between the motor-cargo
complex and biomolecules (either freely diffusing or an-
chored) local to the target while its moving along the
microtubule. If details of the localization mechanism are
unknown then the simplest model is to assume that this
waiting time is approximately exponential and to asso-
ciate a target detection rate kj with each motor state.
The model can be simplified further by assuming that
detection is unlikely while only one species of motors is
engaged and pulling the cargo at its maximum (forward
or backward) velocity. This suggests assigning a single
target detection rate k to those states that have suffi-
ciently low speeds (Newby and Bressloff, 2010c). Thus,
k(n+,n−) = kΘ(vh−v(n+, n−)), where v(n+, n−) denotes
the velocity when n+ kinesin and n− dynein motors are
attached to the track and vh is a velocity threshold.

The efficiency of a given search process can be char-
acterized in terms of two important quantities. The first
is the hitting probability Π that a particle starting at x0

at time t = 0 finds the target, that is, the particle is ab-
sorbed somewhere within the domain X− l ≤ x ≤ X+ l.
The second is the conditional MFPT T for the particle
to find the target given that it is eventually absorbed by
the target. Let J(t) denote the probability flux due to
absorption by the target at X,

J(t) =

n∑
j=1

kj

∫ X+l

X−l
pj(x, t)dx, (4.97)

where we have suppressed the initial conditions. It fol-
lows that

Π =

∫ ∞
0

J(t)dt, T =

∫∞
0
tJ(t)dt∫∞

0
J(t)dt

. (4.98)

In the case of the 3-state model, it is possible to calcu-
late these quantities directly from the system of PDEs
(4.94)(Benichou et al., 2005, 2007, 2011b; Bressloff and
Newby, 2009). For more complicated models, the QSS
reduction technique presented in Sec. IV.C can be used
to reduce the system of PDEs to a scalar FP equation.
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The target detection terms then lead to an inhomoge-
neous term in the reduced FP equation:

∂u

∂t
= − ∂

∂x
(V p) +

∂

∂x

(
D
∂u

∂x

)
− λχ(x−X)u, (4.99)

with λ =
∑n
j=1 kjp

ss
j , and the vector pss

j is the space-
clamped steady-state distribution (see Sec. IV.C). For
the three-state model,

λ = kpss
0 = k

(
1/α

1/β+ + 1/β− + 1/α

)
. (4.100)

There are then three effective parameters that describe
the random search process: the drift V , the diffusivity D,
and the target detection rate λ. Each of these parameters
are themselves functions of the various cargo velocities,
transition rates, and target detection rates contained in
the full model. The hitting probability and MFPT are
still given by Eqs. (4.98) except that now the flux is

J(t) = λ

∫ X+l

X−l
u(x, t)dx. (4.101)

1. Mean-field model

Further simplification can be obtained by considering
a population of searchers and taking a mean-field limit
(Bressloff and Newby, 2012). That is, consider N in-
dependent, identical searchers that all start at the ori-
gin at time t = 0. Each searcher evolves according to
the system of PDEs (4.94) or the corresponding FP Eq.
(4.99). Denote the FPT to find the target of the jth
searcher by Tj , j = 1, . . . , N , with each Tj an inde-
pendent, identically distributed random variable drawn
from the single searcher first passage time distribution
F (1)(t) =

∫ t
0
J(s)ds. The random time T to fill the trap

is then given by T = min(T1, T2, ..., TN ), and the distri-
bution for T is

F (N)(t) = Prob(T < t) = 1− Prob(T > t)

= 1− Prob(T1 > t, T2 > t, ..., TN > t)

= 1− (1− F (1)(t))N .

Furthermore, suppose that the rate of detection for a
single searcher in internal state j scales as kj = κj/N
with κj independent of j. Set J(t) = J0(t)/N with J(t)
given by Eq. (4.94). It follows that

F (N)(t) = 1−
(

1− κ

N

∫ t

0

J0(s)ds

)N
. (4.102)

In the limit N → ∞, the detection rates kj → 0 so that
the probability density functions pj(x, t) decouple from
the target. Moreover, taking the large N limit shows

that the FPT distribution for a population of identical
searchers is

F∞(t) ≡ lim
N→∞

F (N)(t) = 1− e−µ(t), (4.103)

with

µ(t) =

∫ t

0

J0(s)ds =

n∑
j=1

κj

∫ t

0

∫ X+l

X−l
pj(x, s)dxds.

(4.104)
The corresponding hitting probability that at least one
particle finds the target in the mean-field limit is

Π = lim
t→∞

F∞(t) = 1− e−µ(∞). (4.105)

Thus, Π < 1 if µ(∞) < ∞. The corresponding condi-
tional MFPT is

T =

∫∞
0
tµ′(t)e−µ(t)

1− e−µ(∞)
. (4.106)

Combining the mean-field approximation with the QSS
reduction leads to the FPT distribution (4.103) with

µ(t) = λ̂

∫ t

0

∫ X+l

X−l
u(x, s)dxds (4.107)

and λ̂ =
∑n
j=1 κjp

ss
j . Here u(x, t) is the solution to the

FP Eq. (4.99) with λ = 0. On a semi-infinite domain
with a reflecting boundary at the origin, the method of
images can then be used to obtain the explicit solution

u(x, t) =
1√
πDt

e−(x−V t)2/(4Dt)

− V

2D
exV/Derfc(

x+ V t

2
√
Dt

). (4.108)

Unfortunately, it is not possible to derive an explicit ana-
lytical solution for µ(t), although the integral expressions
can be evaluated numerically. Nevertheless, it is possible
to determine the hitting probability Π and the large-time
behavior of the waiting time density f∞(t) = dF∞(t)/dt
under the approximation l� X for which

µ(t) = c

∫ t

0

u(X, s)ds, c = 2lλ̂. (4.109)

First, taking the Laplace transform of u(x, t) gives
(Bressloff and Newby, 2012)

ũ(x, s) =
e−[Γ(s)−V/2D]x

√
V 2 + 4sD

[
2− V

D

1

Γ(s) + V/2D

]
with

Γ(s) =
1

2

√
(V/D)2 + 4s/D. (4.110)

Assuming that l� X, it follows that

µ(∞) ≈ 2lλ̂ lim
s→0

ũ(X, s) =
c

V
. (4.111)
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Thus the corresponding hitting probability Π < 1 for
V > 0 and Π = 1 for V = 0 (pure diffusion). Second,
the large-time behavior of the waiting time density can
be obtained by using the following asymptotic expansion
of the complementary error function:

erfc(z) =
e−z

2

√
πz

[
1− 1

2z2
. . .

]
.

Applying this to Eq. (4.108) with z = (x+V t)/(2
√
Dt) ≈

V
√
t/(2
√
D) for large t and V > 0, leads to the approxi-

mation

u(X, t) ∼ 2c
√
D

V 2
√
πt3

e−V
2t/(4D), (4.112)

which is independent of target location X. Substituting
this expression into Eq. (4.109) gives

µ(t) ∼ µ(∞)− 2c

V
√
π

[
4D

tV 2

]3/2

e−V
2t/(4D),(4.113)

On the other hand, for V = 0,

µ(t) = c

∫ t

0

1√
πDt

e−X
2/(4Dt) ∼ 2c

√
t/πD, (4.114)

assuming that e−X
2/(4Dt) ∼ 1 for large t. The large-

time asymptotic approximation for µ(t) determines how
the waiting time density, f∞(t), scales with time. For
V = 0,

f∞(t) ∝ t−1/2e−ĉ
√
t, (4.115)

with ĉ = 2c/
√
πD, and for V > 0

f∞(t) ∝ t−1/2e−V
2t/(4D). (4.116)

For the sake of illustration, consider the 3-state model
of Eqs. (4.18), for which V,D, λ are given by Eqs. (4.47)
and (4.100). In the case of a single random intermit-
tent searcher on a finite track of length L with reflect-
ing boundary conditions at both ends x = 0, L (so that
Π = 1) and unbiased transport (β+ = β− = β), it can
be shown that there exists an optimal search strategy in
the sense that there exists a unique set of transition rates
α, β for which the MFPT is minimized (Benichou et al.,
2005, 2007, 2011b). On the other hand, for directed in-
termittent search (β+ > β−) on a semi–infinite domain
or a finite domain with an absorbing boundary at x = L
(so that Π < 1), a unique optimal strategy no longer
exists (Bressloff and Newby, 2009; Newby and Bressloff,
2010b). One finds that a similar situation holds if there is
a population of N independent searchers (Bressloff and
Newby, 2012). First, consider an unbiased random in-
termittent search process in the mean–field population
model, for which N →∞ and β+ = β− = β (V = 0). In
Fig. 29(a) the MFPT is plotted as a function of (i) the
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FIG. 29 (a) Unbiased (β+ = β− = β) random intermittent
search in the mean–field population model. The MFPT vs (i)
the average search time 1/α with β = 1/ε and (ii) the average
duration 1/β of the moving (forward and backward) state
with α = 2/ε. Each curve has a minimum MFPT for a given
value of α and β. Parameter values used are ε = 0.1, k = 5/N ,
X = 50, and l = 0.25. (b) First passage time density for an
unbiased search with same parameters as (a). The solid curve
shows the analytical density function in the mean field limit
and the remaining curves are histograms obtained from 104

Monte-Carlo simulations for different numbers of searchers
N . ( c) Corresponding first passage time density for a biased
search with α = 1/ε, β+ = 1/ε, β− = 2/ε, ε = 0.1, k = 5/N ,
X = 50, and l = 0.25. (d) The MFPT vs hitting probability
for population model. Each curve is parameterized by 0 ≤
β+ ≤ β−. Analytical results are shown as lines, with the
single searcher in grey and the mean field limit (N = ∞)
in black. Averaged Monte Carlo simulations (104 simulation
each) are shown as symbols, sets ranging from grey to black,
with a different value of N used in each set. From grey to
black there are six sets of simulations with N = 1, 2, 3, 4, 5, 25,
respectively. Parameter values are the same as c).

average duration of the search phase, 1/α, and (ii) the
average duration of the ballistic phase, 1/β. In both cases
there exists a minimum MFPT for a particular choice of
α, β, consistent with the single-searcher regime.

Next, consider how the search process changes as more
searchers are added. In particular, the first passage time
density is approximated by Monte-Carlo simulations for
different values of N , and the results are compared to
the analytical mean field results. This illustrates how the
single-searcher process (N = 1) is related to the mean-
field population search process (N → ∞). In Fig. 29(b)
the unbiased case is shown. The most significant dif-
ference is found in the large time behavior, with power-
law scaling t−3/2 for the single search and the so-called
stretched exponential scaling e−ĉ

√
t (see Eqn. (4.115)) for

the mean field N →∞ limit. A similar plot showing the
first passage time density for a biased search (β+ < β−
so that V > 0) is shown in Fig. 29c). In this case, adding
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more searchers has little qualitative effect on the first
passage time density, each case having the same exponen-
tial large time scaling (see Eqn. (4.115)). In both cases,
the results, show that adding more searchers decreases
the mean search time and the variance. The analysis of
the mean-field model showed that the hitting probabil-
ity is less than unity when the velocity bias is positive
(i.e. when β+ < β− so that V > 0). In Fig. 29(d),
the MFPT is plotted against the hitting probability for
different values of N . Each curve is parameterized by
β+, the rate of leaving the forward-moving state, with
0 < β+ < β−. By changing the value of β+, any hitting
probability can be achieved. As β+ → β− the searcher’s
motion becomes unbiased, and the hitting probability in-
creases to unity. However, as the searchers become more
unbiased the MFPT also increases, in other words, an op-
timal search strategy no longer exists. Analytical results
for the single searcher case (N = 1) and the mean-field
limit (N =∞) are shown as solid curves (black and grey,
respectively) and to connect the two, averaged Monte-
Carlo simulations are shown (as dots) for different values
of N = 1, 2, 3, 4, 25 (each dot is colored in greyscale from
N = 1 in black to N = 25 in light grey). Ten different
sets of Monte-Carlo simulations are run corresponding
to ten different values of β+, and in each set the hitting
probability decreases and the MFPT increases as more
searchers are added.

2. Local target signaling

In the case of directed intermittent search there is a
playoff between minimizing the MFPT and maximizing
the hitting probability. One way to enhance the effi-
ciency of the search process would be for the target to
generate a local chemical signal that increases the prob-
ability of finding the target without a significant increase
in the MFPT. This issue has recently been explored using
the QSS reduction of the tug-of-war model (Newby and
Bressloff, 2010b,c). Two potential signaling mechanisms
were considered by the authors, the second of which we
will review in more detail here. The first was based on
the observation that the stall force and other single mo-
tor parameters are strongly dependent on the level of
[ATP], see Sec. IV.B. Since ATP concentration ([ATP])
is heavily buffered, a small region of intense ATP phos-
phorylation around a target could create a sharp, local-
ized [ATP] gradient, which would significantly slow down
a nearby motor complex, thus increasing the chances of
target detection. The second signaling mechanism in-
volved microtubule associated proteins (MAPs). These
molecules bind to microtubules and effectively modify the
free energy landscape of motor-microtubule interactions
(Telley et al., 2009; Tokuraku et al., 2007). For exam-
ple, tau is a MAP found in the axon of neurons and is
known to be a key player in Alzheimer’s disease (Kosik
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FIG. 30 Effects of tau concentration on the tug-of-war model
with N+ kinesin motors and N− dynein motors. The stall
force FS , forward velocity vf and unbinding rate γ0 are given
by Eqs. (4.31)-(4.33) with [ATP] = 103µM . The other single
motor parameters are (Muller et al., 2008b): Fd = 3 pN ,
γ0 = 1 sec−1, π0 = 5 sec−1, and vb = 0.006 µm/sec. The
corresponding parameters of the FP Eq. are obtained using
a QSS reduction and plotted as a function of τ . (a) Effective
capture rate λ. (b) Drift velocity V . (c) Diffusivity D.

et al., 1986). Another important MAP, called MAP2, is
similar in structure and function to tau, but is present
in dendrites (Shaft-Zagardo and Kalcheva, 1998); MAP2
has been shown to affect dendritic cargo transport (Maas
et al., 2009). Experiments have shown that the presence
of tau or MAP2 on the microtubule can significantly al-
ter the dynamics of kinesin; specifically, by reducing the
rate at which kinesin binds to the microtubule (Vershinin
et al., 2007). Moreover, the tau- and MAP2-dependent
kinesin binding rate have the same form (Seitz et al.,
2002). It has also been shown that, at the low tau concen-
trations affecting kinesin, dynein is relatively unaffected
by tau (Dixit et al., 2008).

Newby and Bressloff (2010c) modeled the effects of tau
by introducing into the tug-of-war model, Sec. IV.B, the
tau concentration-dependent kinesin binding rate

π0(τ) =
πmax0

1 + e−γ(τ0−τ)
, (4.117)

where τ is the dimensionless ratio of tau per microtubule
dimer and πmax0 = 5s−1. The remaining parameters are
found by fitting the above function to experimental data
(Vershinin et al., 2007), so that τ0 = 0.19 and γ = 100.
Carrying out the QSS reduction of the tug-war-model
then leads to the FP Eq. (4.99) with τ -dependent drift V ,
diffusivity D and capture rate λ as illustrated in Fig. 30.
The most significant alteration in the behavior of the
motor-complex is the change in the drift velocity V as
a function of τ . The drift velocity switches sign when τ
is increased past a critical point. That is, by reducing
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the binding rate of kinesin, the dynein motors become
dominant, causing the motor-complex to move in the op-
posite direction. The effects of local changes in τ con-
centration on the efficiency of random search can now be
determined by assuming that within range of the target,
|x − X| < l, τ = τ1 > τ0, whereas τ = τ0 outside the
target, |x − X| > l. Carrying out the QSS reduction of
the tug-war-model then leads to the FP Eq. (4.99) with
x-dependent drift and diffusivity:

V (x) = V0 + ∆V χ(x), D(x) = D0 + ∆Dχ(x), (4.118)

where χ(x) is the indicator function defined in (4.96),
V0 = V (τ0), D0 = D(τ0), ∆V = V (τ1) − V0, and
∆D = D(τ1) − D0. Solving the piecewise-continuous
FP equation then determines the hitting probability Π
and MFPT T as functions of τ1 for fixed τ0. In Fig. 31,
the hitting probability Π and the MFPT T are plotted
as a function of τ1. As τ1 is increased above the critical
level τ0 = 0.19, there is a sharp increase in Π but a rela-
tively small increase in the MFPT, confirming that τ can
improve the efficacy of the search process.

Another interesting effect of a local increase in τ is
that it can generate stochastic oscillations in the motion
of the motor-complex (Newby and Bressloff, 2010c). As a
kinesin driven cargo encounters the tau-coated trapping
region the motors unbind at their usual rate and can’t
rebind. Once the dynein motors are strong enough to
pull the remaining kinesin motors off the microtubule,
the motor-complex quickly transitions to (−) end di-
rected transport. After the dynein-driven cargo leaves
the tau-coated region, kinesin motors can then reestab-
lish (+) end directed transport until the motor-complex
returns to the tau-coated region. This process repeats
until the motor-complex is able to move forward past the
tau-coated region. Interestingly, particle tracking exper-
iments have observed oscillatory behavior during mRNA
transport in dendrites (Dynes and Steward, 2007; Rook
et al., 2000). In these experiments, motor-driven mRNA
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FIG. 31 Effect of adding tau to the target on the capture
probability Π and MFPT T using parameters from Fig. 30. a)
The analytical approximation P (solid line) and results from
Monte-Carlo simulation. b) The analytical approximation T
along with averaged Monte-Carlo simulations. The synaptic
trap is located at X = 10µm, the trapping region has radius
l = 2µm, and the MT track has length L = 20µm. The
capture rate is taken to be k0 = 0.5s−1.
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FIG. 32 Diagram showing the effective potential well created
by a region of tau coating a MT, and a representative trajec-
tory showing random oscillations.

granules move rapidly until encountering a fixed location
along the dendrite where they slightly overshoot then
stop, move backwards, and begin to randomly oscillate
back and forth. After a period of time, lasting on the
order of minutes, the motor-driven mRNA stops oscil-
lating and resumes fast ballistic motion. The duration
of the oscillations can be estimated by noting that the
FP equation obtained by carrying out the QSS reduction
describes a Brownian particle moving in an effective po-
tential well Ψ(x) =

∫ x
X−l V (x′)dx′, where the drift V (x)

of Eq. (4.118) is reinterpreted as a piecewise constant
force, see Fig. 32. Depending on the length of the re-
gion influenced by the trap, and the magnitude of the
drift velocities, the time spent in the potential well can
be quite long. Suppose that a Brownian particle starts
at the bottom of the potential well. The corresponding
mean exit time (MET) (see (2.30)) is

MB =

∫ X+l

X−l
exp

(
−Ψ(y)

D(y)

)
dy

∫ y

−∞

exp
(

Ψ(z)
D(z)

)
D(z)

dz

=
2lD2

ν

(
e
ν
D2 − 1

)( 1

V1
+

2l

ν

)
− 4l2

ν
,

where ν = −V22l is the depth of the well. In general, the
MET will be an exponentially increasing function of the
depth of the well. This means that any error generated
by the QSS approximation will also grow exponentially.
This is typical of large-deviation behavior in a stochastic
process where it is well known that diffusion approxima-
tions break down. One can still obtain an approximation
of the MET using perturbation methods, but they must
be applied to the full CK equation (Keener and Newby,
2011; Newby and Keener, 2011).

I. Active transport on DNA

So far we have considered the case where ATP hydroly-
sis by a molecular motor facilitates active transport along
a fixed track. However, it is also possible for ATP hy-
drolysis by a track to facilitate active transport. Active
transport occurs when waves of ATP hydrolysis along
the track push a passive element much like ocean waves
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push a surfer toward the shore. Several studies have ex-
amined track-induced transport (Antal and Krapivsky,
2005; Artyomov et al., 2008; Morozov, 2007; Saffarian
et al., 2006). Here, we discuss directed transport of a Hol-
liday junction along DNA (Lakhanpal and Chou, 2007).

A Holliday junction is a site where two segments of
double stranded DNA (dsDNA) bind and exchange one
of their strands in what is known as genetic recombina-
tion. Strands with complimentary base pairs bind and
form a junction. The junction then moves along both
segments until it reaches a termination point. It is well
known that translocation of this junction is an active
transport process, requiring energy from ATP hydrol-
ysis. A protein called RecA forms a helical polymer
wrapped around a segment of DNA, and interactions be-
tween the RecA polymer and the dsDNA drive junction
translocation (Klapstein and Bruinsma, 2000). When
RecA monomers hydrolyze ATP, the nucleoprotein fil-
ament shifts into a different conformational state where
the two strands rotate around each other. We refer to
this as the activated state.

One possibility for how the Holliday junction moves
along dsDNA is by hydrolysis waves along the nucleopro-
tein filament. This reaction proceeds in waves because
activated RecA preferentially catalyzes ATP hydrolysis
by the adjacent monomer on the 3′ side. That is, a
monomer hydrolyses ATP much more rapidly when its
neighboring monomer (on the 5′ side) is activated. This
asymmetry creates waves of hydrolysis, with a resulting
mechanical effect, from the 5′ to the 3′ end (hereafter
specified as the forward direction) of the DNA strand. It
is the mechanical stretching and unwinding of the DNA
induced by the hydrolysis wave that propels the junction
forward. Consider a model of Holliday junction transport
along an infinite lattice of RecA monomers surrounding
a dsDNA. Each lattice site can be in one of two states:
activated or unactivated. Let Sj be a random variable as-
sociated with the jth lattice site. In the activated state
Sj = 1, and in the unactivated state Sj = 0. Transi-
tions between these two states are governed by a Markov
switching process,

(Sj = 0)
α(Sj−1)
−→
←−
k0

(Sj = 1). (4.119)

The rate of transitioning to the activated state depends
on the state of the lattice site to the left, that is, α(0) =
k− and α(1) = k+, with k+ > k− (see Fig. 33). Be-
cause of the coupling between neighboring lattice sites,
one must consider transitions between states of the full
system. If the track contains a finite number of n sites
then the total number of states in the system is 2n, with
each possible state given by the different sequences of 0s

and 1s. In other words, the state space corresponds to
all of the possible binary words of length n.

As a first step, before including the motion of the junc-
tion on the track, one would like to characterize the
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Molecular motors such as kinesins, myosins, helicases,
and polymerases convert part of the free energy of, e.g.,
ATP hydrolysis to a conformational change [1]. The result-
ing molecular deformation leads to motion of the motor
against a load on a track. Although the literature on such
molecular motors is vast, much less attention has been paid
to the theory of molecular motions that exploit the dynam-
ics of the track on which translation occurs. Such loads are
propelled by the track, which itself is undergoing catalyzed
state changes by, e.g., hydrolysis.

Two biological strategies involving track-propelled par-
ticles are collagenase catalysis and Holliday junction trans-
port. Collagenase MMP-1, an enzyme that associates with
collagen, cleaves its track asymmetrically as it diffuses,
thus biasing its motion [2]. The dynamics of this track-
driven propulsion has been modeled using burnt bridge
models [3–5].

Another system where substrate reactions may lead to
biased motion is the translocation of Holliday junctions
[6]. The Holliday junction at which two double-stranded
DNA molecules exchange one of their strands may be
moved by the dynamics of hydrolysis states of the DNA
binding protein RecA. RecA polymerizes on at least one of
the strand-exchanging dsDNA molecules, assembling into
a long nucleoprotein filament. The RecA monomers hydro-
lyze ATP and can exist in different states, much like the
intermediate hydrolysis states of myosin motors. The dy-
namics of the interconversion among these hydrolysis
states may provide the force necessary to rotate DNA
strands about each other during Holliday junction trans-
location. An especially promising model of this process
exploits asymmetric cooperativity in the hydrolysis of the
ATP cofactors associated with each RecA monomer. This
intrinsic asymmetry of the filament gives rise to ‘‘waves’’
of hydrolyzed monomers with a preferred direction,
thereby moving the junction by virtue of its preferential
attachment to the hydrolyzed segment of the RecA fila-
ment [6,7]. These examples constitute only two of many
mechanisms by which chemical energy may be harnessed

by the substrate, rather than directly by a molecular motor,
to perform mechanical work. In this Letter, we develop a
general stochastic theory of track-driven, hydrolysis wave-
mediated transport. In addition to analyzing our model
using Monte Carlo (MC) simulations, we also formulate
a moving-frame mean field theory (MFT) that accurately
predicts novel features of the transport.

As in models of the ATP cycle of myosin motors, in
RecA hydrolysis wave-mediated transport the RecA sub-
units can exist in a number of substates corresponding to
sites that have bound ATP, ADP" Pi, ADP, or are empty.
To simplify our model, we will assume that each site of the
substrate lattice exists in one of only two possible states,
‘‘hydrolyzed’’ (! # 1) and ‘‘unhydrolyzed’’ (! # 0). Any
lattice site i can transition from state !i # 1 to state !i #
0 with rate k0. The reverse process, physically correspond-
ing to ‘‘hydrolysis’’ or ‘‘nucleation’’, fills an empty site. In
our model, an asymmetry arises in the nucleation transi-
tions. If site i! 1 is also in the state !i!1 # 0, then the
transition !i # 0 ! !i # 1 occurs with rate k!. However,
if !i!1 # 1, then the transition !i # 0 ! !i # 1 occurs
with rate k". If k" ! k!, the process is asymmetric and
can lead to a net steady-state current of domain walls. If a
particle is associated with the lattice, it will be pushed each
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FIG. 1 (color online). Schematic of the asymmetric nucleation
process. An intrinsic asymmetry in the lattice sites gives rise to
asymmetric cooperativity and nucleation. The transported parti-
cle is represented by a triangle.
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FIG. 33 Diagram describing stochastic hydrolysis dynamics.

steady state properties of the hydrolysis waves on the
track. However, analytical solutions are only possible in
thermodynamic equilibrium, where directed transport is
not possible. Therefore an approximation must be found,
and one approach is to use a mean field approximation.
From the Master equation governing the process, one
can derive a hierarchy of equations for the moments of
Sj . This system of equation is not closed so that the
equation for the mean, σj ≡ 〈Sj〉, depends upon terms
such as 〈Sj−1Sj〉. The mean field approximation assumes
that 〈Sj−1Sj〉 ≈ σj−1σj , and with this assumption, one
obtains a system of n equations for each σj . However,
since we must consider the n → ∞ limit, solving the
system of nonlinear differential equations is impractical.
The simplest mean-field approximation is to assume that
σj−1 ≈ σj = σ, which yields

σ =
k+ − 2k− − k0 +

√
(k+ − k0)2 + 4k−k0

2(k+ − k−)
. (4.120)

When compared to Monte-Carlo simulation results, this
approximation is only in qualitative agreement, which
suggests that accounting for correlations between adja-
cent sites is necessary to correctly capture the steady-
state behavior.

It is a reasonable assumption that the correlations be-
tween sites is short ranged. This motivates an approach
called the finite segment mean field theory (FSMFT) ap-
proximation (Nowak et al., 2007b). Consider a small
segment within the track containing m sites so that the
number of states in the system is M = 2m. Clearly, It is
much simpler to enumerate the Master equation for this
segment than for an infinite lattice. Define the proba-
bility density vector p = (p0, · · · , pM−1)T where each pj
corresponds to a different state of the track segment. The
master equation is dp/dt = Ap. The simplest mapping
of the binary state to the index j is the binary represen-
tation of base-ten numbers. For example, if m = 2 then
j = 0 corresponds to the state (0 · 0), j = 1 corresponds
to (0 · 1), j = 2 ↔ (1 · 0), and j = 3 ↔ (1 · 1). In this
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example, the matrix of transition rates is

A =


−2k− − σ∆ k0 k0 0

k− −k0 − k− − σ∆ 0 k0

k− + σ∆ 0 −k+ − k0 k0

0 k−σ∆ k+ −2k0

 ,
where ∆ = k+ − k−. Recall that the rate of activation
for each site depends upon the state of its neighbor to
the left. The approximation made by the FSMFT is to
set the activation rate of the leftmost site in the finite
segment to k−(1 − σ) + k+σ, where 0 ≤ σ ≤ 1 is the
mean activation level of the site immediately to the left
of the segment. One way to determine σ is to set it equal
to the mean activation level of the rightmost site in the
segment. This results in the auxiliary equation,

〈Sm〉 =

M−1∑
j=0
j odd

pj = σ. (4.121)

To find the steady state hydrolysis activity, one first
solves the linear system of equations for the nullspace
of A using standard methods. Then, combining the re-
sult with (4.121) results in a nonlinear equation to solve
for σ. Notice that the simplest mean field approximation
(4.120) is recovered by setting m = 1.

The movement of the Holliday junction can be incor-
porated into the model by considering a segment (with
m odd), centered on the position of the junction, that
moves with the junction. For simplicity take m = 3. The
frame shifts whenever a wall passes through the junction.
When the frame shifts, the state of the new site is deter-
mined by the far field mean activity, σ. This requires
modification of transition from states (1 · 0 · 0), (1 · 0 · 1),
and (0 · 0 · 1) to appropriate frame-shifted states after
activation of the center cite. Let the master equation be
dq/dt = Âq, where q(t) is the probability distribution
for the activation state of the sites surrounding the junc-
tion, with indexing the same as for p. Assume that the
only way to reach the (1 · 1 · 1) state, where the center
cite is activated, is from (1 ·0 ·1); this transition does not
result in movement of the junction. Note that transitions
where the shifted segment has the same state as the orig-
inal do not apear in the modified transition-rate matrix.
For example, suppose a wall moves the junction to the
right via a transition from (1 · 0 · 0) when the center cite
is activated. The shifted segment can be either (1 · 0 · 1)
or (1 · 0 · 0). Transition to state (1 · 0 · 1) occurs at a rate
k+σ, and transition to (1 · 0 · 0) at a rate k+(1− σ), but
the transition to (1 · 0 · 0) does not apear in the modified
transition rate matrix because it has the same activation
state as the pre-shifted segment.

Let q+ correspond to state (1 · 0 · 0) and q− to state
(0·0·1) (or the sum of qj over appropriate states ifm > 3).
Then, the steady state velocity and effective diffusivity of
the junction is V = k+q+−k−q− and D = k+q+ +k−q−.

As long as m is chosen large enough so that σ is close
to the far-field bulk value, the FSMFT approximation
accurately captures the correlations near the junction; in
practice the authors find the m = 5 is a good choice. One
expects the velocity of the junction to depend strongly
upon the catalyzed hydrolysis rate, k+. As this rate is in-
creased, the asymmetry should increase the speed of the
forward hydrolysis waves. While this is true for small
values of k+, the velocity begins to decrease after a crit-
ical value of k+ where the velocity is maximal. This is
due to an increase in the total fraction of activated sites.
A high fraction of activated sites means that the junc-
tion is more likely to be trapped within a long segment
of purely activated sites where it does not move.

V. TRANSPORT AND SELF-ORGANIZATION IN CELLS

A. Axonal elongation and cellular length control

During neural development, the formation of synapses
involves the elongation of an axon of one cell to locate
the dendrites of another cell. Axon elongation is a con-
sequence of the interplay between force generation at the
growth cone that pulls the axon forward, pushing forces
due to microtubule and actin polymerization and depoly-
merization, the rate of protein synthesis at the cell body,
and the action of cytoskeletal motors (Baas and Ahmad,
2001; Goldberg, 2003; Lamoureux et al., 1989; Mitchi-
son and Kirschner, 1988; O’Toole et al., 2008; Suter and
Miller, 2011). Several models of axonal elongation have
focused on the sequence of processes based on the pro-
duction of tubulin dimers at the cell body, the active
transport of these proteins to the the tip of the grow-
ing axon, and microtubule extension at the growth cone
(Graham et al., 2006; Kiddie et al., 2005; McLean and
Graham, 2004; Miller and Samulels, 1997; van Veen and
van Pelt, 1994). One motivation for identifying the poly-
merization of microtubules as a rate limiting step is that
axonal growth occurs at a similar rate to the slow axonal
transport of tubulin, namely, around 1mm per day. (It
is possible that short, freshly nucleated microtubles are
also actively transported into axons (Baas and Buster,
2004)). For the sake of illustration, consider a continuum
model of the active transport of tubulin (Graham et al.,
2006; McLean and Graham, 2004). Let c(x, t) denote the
concentration of tubulin at position x along the axon at
time t. Suppose that at time t the axon has length l(t)
so that x ∈ [0, l(t)]. The transport of tubulin is modeled
macroscopically in terms of an advection-diffusion equa-
tion with an additional decay term representing degra-
dation at a rate g:

∂c

∂t
= D

∂2c

∂x2
− V ∂c

∂x
− gc. (5.1)

Such a model can be derived from a more detailed
stochastic model of active transport as detailed in Sec.
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(IV.C), with V the effective drift due to motor-driven
transport and D the effective diffusivity. It is assumed
that there is a constant flux of newly synthesized tubulin
from the cell body at x = 0 so that

∂c

∂x
= −ε0c0 atx = 0. (5.2)

The flux at the growing end x = l(t) is equal to the
difference between the fluxes associated with microtubule
assembly and disassembly:

∂c

∂x
= −εlc+ γl atx = l(t). (5.3)

Finally, the rate of growth is also taken to be proportional
to the difference between these two fluxes according to

dl

dt
= Ω [εlc− γl] , x = l(t). (5.4)

The constant Ω depends on the size of each tubulin dimer,
the number of microtubules at the tip and the cross-
sectional area of the axon.

It is straightforward to determine the steady-state
length L of the axon (McLean and Graham, 2004). First,
dl/dt = 0 implies that c(L) = cL ≡ γl/εl and and
∂c/∂x = 0 at x = L. The steady-state concentra-
tion profile takes the form c(x) = Aeλ+x + Beλ−x with
λ± = (V/2D)

[
1±
√

1 + 4h
]

and h = Dg/V 2. The co-
efficients A,B are determined from the boundary condi-
tions at x = L. Finally, a transcendental equation for
the steady-state length L is obtained by imposing the
boundary condition (5.2):

F (L) ≡ e−λ−L − e−λ+L =
Dε0
g

c0
cL

(λ+ − λ−), (5.5)

having used λ+λ− = −g/D. For small L, the expo-
nentials can be Taylor expanded to give L ≈ Dε0

g
c0
cL

,
whereas for large L the first exponential is dominant and

L = V
g log

(
Dε0
g

c0
cL

)
. The last equation follows from tak-

ing h � 1 so that λ+ ≈ V/D and λ− ≈ −g/V . In the
first regime diffusion is dominant, whereas in the other
active transport is dominant. Numerical simulations of
the full time-dependent model show that these steady-
states are stable and in both regimes the approach to
steady-state is overdamped. On the other hand, for inter-
mediate values of L damped oscillations occur resulting
in overshoot (Graham et al., 2006).

There are a number of simplifications assumed in the
above model (Goldberg, 2003; Vitriol and Zheng, 2012).
First, the rate of elongation is based on the average rate
of assembly and disassembly of a bundle of microtubules,
which neglects the stochastic switching between periods
of of elongation and rapid contraction exhibited by in-
dividual microtubules (Mitchison and Kirschner, 1984).
Second, tensile forces acting on the microtubules within

the growth cone due to interactions with the actin cy-
toskeleton are neglected (Suter and Miller, 2011). Third,
there are a number of other processes that could act as
rate limiting steps in axonal growth, namely, the recy-
cling of lipid membrane and the maintenance of the en-
ergy needs at the growth tip via the transport of mi-
tochondria (Hollenbeck and Saxton, 2005; Miller and
Sheetz, 2004; Morris and Hollenbeck, 1993; O’Toole et al.,
2008). A recent stochastic model incorporates a number
of these features (Atanasova et al., 2009). First, the rate
of growth of the axon tip is determined by the rates at
which newly delivered membrane proteins are inserted
into the tip via exocytosis and are removed via endocy-
tosis. Meanwhile, microtubules grow via polymerization
until they reach the axon tip, where they are stabilized
by interactions with the actin cytoskeleton. This in turn
reduces the rate of endocytosis of membrane vesicles.

Axonal length control is one example of how cells reg-
ulate the size of their organelles and internal structures.
Size control mechanisms, which are critical for proper
cell function, can be distinguished according to whether
the underlying structure is static (remains intact once
assembled (Katsura, 1987; Keener, 2005)) or dynamic.
Dynamic structures are constantly turning over so that
in order for them to maintain a fixed size, there must be
a balance between the rates of assembly and disassem-
bly. If these rates depend on the size in an appropriate
way then there will be a unique balance point that stabi-
lizes the size of the organelle. Recent experimental work
suggests that such a dynamic mechanism may also oc-
cur in eukaryotic flagella (Ishikawa and Marshall, 2011;
Marshall et al., 2005; Marshall and Rosemblum, 2001).
These are microtubule–based structures that extend to
about 10 µm from the cell and are surrounded by an ex-
tension of the plasma membrane. They are at least an
order of magnitude longer than bacterial flagella. Flagel-
lar length control is a particularly convenient system for
studying organelle size regulation, since a flagellum can
be treated as 1D structure whose size is characterized by
a single length variable. The length of a eukaryotic flag-
ellum is important for proper cell motility, and a number
of human diseases appear to be correlated with abnormal
length flagella (Gerdes and Kasanis, 2005).

Radioactive pulse–labeling has been used to measure
protein turnover in the flagella of Chlamydomonas, a uni-
cellular green alga with genetics similar to budding yeast
(Marshall and Rosemblum, 2001). Such measurements
have suggested that turnover of tubulin occurs at the
distal + end of flagellar microtubules, and that the as-
sembly part of the turnover is mediated by intraflagellar
transport (IFT). This is a motor-assisted motility within
flagella in which large protein complexes move from one
end of the flagellum to the other (Kozminski et al., 1993;
Scholey, 2003). Particles of various size travel to the
flagellar tip (anterograde transport) at 2.0 µm/s, and
smaller particles return from the tip (retrograde trans-
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FIG. 34 Schematic diagram of intraflagellar transport (IFT),
in which IFT particles travel with speed v± to the ± end
of a flagellum. When an IFT particle reaches the + end it
releases its cargo of protein precursors that contribute to the
assembly of the flagellum. Disassembly occurs independently
of IFT transport at a speed V .

port) at 3.5 µm/s after dropping off their cargo of as-
sembly proteins at the + end. A schematic diagram of
IFT transport is shown in Fig. 34. Immunoflourescence
analysis indicates that the number of IFT particles (esti-
mated to be in the range 1–10) is independent of length
(Marshall et al., 2005; Marshall and Rosemblum, 2001).
If a fixed number of transport complexes M move at a
fixed mean speed v̄, then the rate of transport and assem-
bly should decrease inversely with the flagellar length L.
On the other hand, measurements of the rate of flagellar
shrinkage when IFT is blocked indicate that the rate of
disassembly is length–independent. This has motivated
the following simple deterministic model for length con-
trol (Marshall and Rosemblum, 2001):

dL

dt
=
av̄M

2L
− V, (5.6)

where a is the size of the precursor protein transported
by each IFT particle and V is the speed of disassem-
bly. Eq. (5.6) has a unique stable equilibrium given by
L∗ = av̄M/2V . Using the experimentally based values
M = 10, v̄ = 2.5 µm/s, L∗ = 10 µm and V = 0.01 µm/s,
the effective precursor protein size is estimated to be
a ≈ 10 nm. A stochastic version of a model for flagellar
length control has also been developed using the theory
of continuous time random walks (Bressloff, 2006)

B. Cooperative transport of proteins in cellular organelles

The extensive secretory pathway of eukaryotic cells
provides an alternative system for transporting newly
synthesized lipids and proteins along axons and dendrites
(Kennedy and Ehlers, 2006; Ramirez and Couve, 2011;
Valenzuela et al., 2011). One major organelle of the
secretory pathway is the endoplasmic reticulum (ER),
which tends to be dispersed throughout the cytoplasm
of a cell (Lippincott-Schwartz et al., 2000), see Fig. 35.
Proteins and lipids destined for the plasma membrane
enter the ER from the nucleus as they are translated
by ER-associated ribosomes, where they fold into their

C1 C2

C1 C2

FIG. 35 LEFT: Diagram of secretory pathway including nu-
cleus, ER and Golgi apparatus. 1. Nuclear membrane; 2.
Nuclear pore; 3. RER; 4. SER; 5. Ribosome; 6. Protein;
7. Transport vesicles; 8. Golgi apparatus; 9. Cis face of
Golgi apparatus; Trans face of Golgi apparatus ; 11 Cister-
nae of Golgi apparatus; 12. Secretory vesicle; 13. Plasma
membrane; 14. Exocytosis; 15 Cytoplasm; 16. Extracellu-
lar domain. [Public domain image from WikiMedia Com-
mons]. RIGHT: When two compartments continually ex-
change products via vesicular transport, a symmetry breaking
mechanisms is needed to maintain nonidentical compartments
(C1 6= C2).

proper 3D structure. The ER can be partitioned into
the rough ER (RER), which is rich in ribosomes, and
the smooth ER (SER), which has only a few sparse ribo-
somes and tends to form a tubular structure. In neurons,
the RER is present in the soma and proximal dendritic
compartments, whereas the SER is distributed in distal
dendrites (including some dendritic spines) and axons.
The diffusivity of proteins within the tubular-like SER is
3-6 times smaller than within the cytoplasm. However,
the ER is constantly being remodeld by motor-driven
sliding along microtubules, for example, which could add
an active component to protein transport (Ramirez and
Couve, 2011; Valenzuela et al., 2011). Moreover, the thin
tubular structure of the SER reduces the effective spa-
tial dimension of diffusion, thus enhancing progression
along a dendrite. Another important aspect of the secre-
tory pathway is that it is tightly regulated (Lippincott-
Schwartz et al., 2000). Proteins accumulate at specific
exit sites and leave the ER in vesicles that transfer the
cargo to organelles forming the Golgi network where final
packaging and sorting for target delivery is carried out.
In most eucaryotic cells the Golgi network is confined
to a region around the nucleus known as the Golgi ap-
paratus, whereas in neurons there are Golgi “outposts”
distributed throught the dendrite. Thus it is possible
that some proteins travel long distances within the SER
(rather than via active transport along microtubules) be-
fore being sorted for local delivery at a synapse.

One of the significant features of the secretory pathway
is that there is a constant active exchange of molecules
between organelles such as the ER and Golgi apparatus,
which have different lipid and protein compositions. Such
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an exchange is mediated by motor-driven vesicular trans-
port. Vesicles bud from one compartment or organelle,
carrying various lipids and proteins, and fuse with an-
other compartment. Transport in the anterograde direc-
tion has to be counterbalanced by retrograde transport
in order to maintain the size of the compartments and
to reuse components of the transport machinery. Since
bidirectional transport would be expected to equalize
the composition of both compartments, there has been
considerable interest in understanding the self-organizing
mechanisms that allow such organelles to maintain their
distinct identities while constantly exchanging material
(Mistelli, 2001), see Fig. 35. One model for generating
stable, non-identical compartments has been proposed
by Heinrich and Rapoport (2005), (see also Binder et al.
(2009); Dmitrieff and Sens (2011); Gong et al. (2010);
Klann et al. (2012)), based on the observation that vesic-
ular transport involves a complex network of molecular
interactions between vesicles, transported molecules and
recipient organelles (Barlowe, 2000; Lippincott-Schwartz
and Phair, 2010; Pelham, 2001). That is, the rates of
vesicle exchange between compartments are influenced
by their composition. An inutitive understanding of the
basic mechanism can be obtained by considering the ex-
change of four types of protein (SNARES), X,U, Y, V
say, between two compartments. Suppose that in steady-
state many vesicles with a low content of X,U move in
one direction (from the first to the second compartment),
whereas a few vesicles with a large content of X,U move
in the opposite direction so that the total protein fluxes
are balanced. This would reflect differences in composi-
tion of X,U in the two compartments. However, lipid
balance would not be maintained because there would
be a net flux of vesicles in one direction. However a
balance of lipid fluxes can also be achieved by having
a complemetary transport of Y, V molecules in the op-
posite direction. The asymmetric states are stablilized
by taking the rates of budding and fusion to depend on
interactions between vesicles and compartments medi-
ated by the protein pairs (X,U) and (Y, V ) (Heinrich
and Rapoport, 2005).

C. Cell polarity

Many cellular processes depend critically on the stable
maintenance of polarized distributions of signaling pro-
teins on the plasma membrane. These include cell motil-
ity, epitheleal morphogenesis, embryogenesis, and stem
cell differentiation. In many cases cell polarity can occur
spontaneously in the absence of pre-existing spatial cues.
Various experimental studies suggest that there are at
least two independent but coordinated positive feedback
mechanisms that can establish cell polarity (Wedlich-
Soldner et al., 2004). One involves the reinforcement of
spatial asymmetries by the directed transport of signal-

ing molecules along the cytoskeleton to specific locations
on the plasma membrane (Altschuler et al., 2008; Layton
et al., 2011; Marco et al., 2007), whereas the other in-
volves the coupling of membrane diffusion with bistable
enzymatic dynamics (Gamba et al., 2009; Mori et al.,
2008; Semplice et al., 2012).

One example of the first class of model is shown in
Fig. 36. Here the asymmetric distribution of a signaling
molecule within the plasma membrane ∂Ω and the orien-
tation of actin filaments are mutually enhanced through
a positive feedback loop (Marco et al., 2007). Let u(r, t)
denote the concentration of signaling molecules within
the plasma membrane. Then u depends on six physically
interpretable quantities: (i) the membrane diffusivity D;
(ii) the index function χ(r) indicating the region of the
plasma membrane to which cytoskeletal tracks are at-
tached, that is, the cluster within which u is high; (iii)
the total amount of signaling molecule Ntot; (iv) the rate
of directed transport h; (v) the endocytosis rate k within
the cluster; and (vi) the endocytosis rate K outside the
cluster with K < k. The density u evolves according to
the macroscopic equation (Marco et al., 2007)

∂u

∂t
= D∆u− [kχ+Kχ̄]u+ hNcyt

χ∫
∂Ω
χdr

, (5.7)

where ∆ is the Laplace-Beltrami operator for diffusion
in the membrane, χ̄(r) = 1− χ(r), and Ncyt is the total
amount number of signaling molecules within the cyto-
plasm: Ncyt = Ntot −

∫
∂Ω
udr. The cytoplasmic pool is

assumed to be homogeneous due to the fast dispersion
of vesicles in the cytosol. Numerical simulations show
that a stable spatially asymmetric distribution of sig-
naling molecules within the plasma membrane can be
maintained. Moreover, the degree of polarization can be
optimized by varying the rates of endocytosis. One lim-
itation of the model, however, is that the packaging of
signaling molecules into discrete vesicles is ignored, that
is, the model treats transport as a continuous flux of
proteins. As highlighted by Layton et al. (2011), incor-
porating vesicular transport into the model makes cell
polarization more difficult to sustain. A simple argu-
ment for this proceeds as follows. Exocytic vesicles need
to have higher concentrations of the signaling molecule
than the polarization site in order to enhance the concen-
tration. A dynamic equlibrium of recycling can only be
maintained if endocytic vesicles also have an enhanced
concentration of signaling molecules. This appears to
put unrealistically strong constaints on the mechanisms
for loading vesicles with cargo prior to transport.

The second basic mechanism for establishing cell polar-
ity does not depend on active transport, and can be mod-
eled in terms of a reaction–diffusion system. One exam-
ple of such a model is described in Fig. 37 (Gamba et al.,
2009; Semplice et al., 2012). Consider a macroscopic ver-
sion of the model, in which φ± denote the concentration
of activated and inactivated signaling molecules within
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FIG. 36 Model of Marco et al. (2007). Signaling molecules
can attach and orient actin filaments that deliver vesicles car-
rying the signaling molecule from the cytoplasm to the plasma
membrane. The additional signaling molecules orient more
actin filaments that transport more molecules in a positive
feedback loop. The local orientation of actin filaments also
increases the rate of endocytosis within the cluster.

the plasma membrane. Let xc, yc be the concentration
of the counteracting enzymes in the cytosol (which is
assumed to be homogeneous), let x′, y be the concentra-
tions of membrane associated enzymes activated by Φ+

and Φ−, respectively, and let x′′ denote the concentration
of membrane associated enzyme activated by a distribu-
tion of receptors s. The model equations take the form
(Semplice et al., 2012)

∂φ±/∂t = D∆φ± ± g(φ+, φ−, x′, x′′, y) (5.8a)

∂x′/∂t = k′asx
′
c − k′dx′ (5.8b)

∂x′′/∂t = k′′aφ+xc − k′dx′′, (5.8c)

∂y/∂t = kaφ
−yc − kdy. (5.8d)

Here ∆ is the Laplace-Beltrami operator, k′a, k
′′
a , ka and

k′d, k
′′
d , kd are the forward and backward reaction rates of

the signaling and feedback pathways, and

g = k′c
x′φ−

K ′ + φ−
+ k′′c

x′′φ−

K ′′ + φ−
− kc

yφ+

K + φ−
(5.9)

is the enzymatic conversion rate of Φ+ to Φ−. The total
amount of Φ+ and Φ− is conserved, φ+ + φ− = c, as are
the total amounts of each enzyme X, Y . Using a time-
scale separation in which the equilibria for the concen-
trations x′, x′′, y, xc, yc are reached much faster than the
equilibria for the surface distributions φ±, the dynamics
for the concentration difference φ = φ+ − φ− reduces to
the system (Semplice et al., 2012)

∂φ

∂t
= D∆φ+ V ′(φ), (5.10)

where

V ′(φ) = (c2 − φ2)[Γ′(φ) + Γ′′(φ) + Γ(φ)], (5.11)

with

Γ′ =
2(k′ck

′
a/k
′
d)xcs

(2K ′ + c− φ)(c+ φ)
, Γ′′ =

2(k′′c k
′′
a/k

′′
d )xc

2K ′′ + c− φ

Γ =
2(kcka/kd)yc
2K + c− φ

.
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FIG. 37 Model of Semplice et al. (2012). (a) A set of receptors
transduce an external distribution of chemotactic cues into
an internal distribution of activated enzymes X that catalyze
the switch of a signaling molecule from an unactivated state
Φ− to an activated state Φ+. A counteracting enzyme Y
transforms Φ+ back to Φ−. Amplifying feedback loops, in
which Φ+ activates X and Φ− activates Y , result in chemical
bistability. The signaling molecules are permanently bound
to the plasma membrane, where they exhibit lateral diffusion,
whilst the enzymes are free to move between the membrane
and the cytosol. (b) Cell polarization occurs when there is
phase separation into two stable chemical states.

Under the adiabatic approximation, the dynamics can be
written in the variational form

∂φ

∂t
(r, t) = − δF [φ]

δφ(r, t)
(5.12)

with F an effective energy functional

F [φ] =

∫
∂Ω

[
D(∇φ)2 + V (φ)

]
dS. (5.13)

Here integration is with respect to the membrane sur-
face. Stable homogeneous solutions correspond to min-
ima of the potential V (φ) for which V ′(φ) = 0. One finds
that for a range of parameter values, the system exhibits
bistability. That is, there exist two stable equilibria ϕ±
corresponding to phases enriched in Φ± separated by an
unstable equilibrium.

The polarization of the cell membrane can now be un-
derstood in terms of the theory of phase separation kinet-
ics familiar from the study of condensed matter systems
(Gamba et al., 2009; Semplice et al., 2012). A polar-
ized state will exist when the cell membrane is divided
into two complementary regions, see Fig. 37(b), that
correspond to two distinct stable chemical phases, sepa-
rated by a thin diffusive interface. Such a spatially in-
homogeneous solution has to minimize both terms in the
functional (5.13). One condition for stability is phase
coexistence, that is,

∆V = V (ϕ+)− V (ϕ−) =

∫ ϕ+

ϕ−

V ′(φ)dφ = 0. (5.14)

A second condition is that the diffusive “energy” associ-
ated with the interface is minimized. Even when a stable
polarized state exists, the evolution to such a state in-
volves a complex process of nucleation and competitive
growth of heterogeneous patches. Suppose, for example,
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that the membrane is initially in a metastable state con-
siting of the ϕ− phase. External stimulation may make
the ϕ+ phase energetically more favorable but there is
an energy barrier to overcome, which blocks a continu-
ous transition to the ϕ+ phase. Instead, patches of the
ϕ+ phase are nucleated by thermal fluctuations and start
expanding due to front propagation, see also (Mori et al.,
2008). In fact, one finds that only patches larger than a
critical size rc ∼ 1/∆V can expand into the backgound
ϕ− phase with a front velocity ∼ ∆V . However, the
growth of the ϕ+ phase decreases xc and increases yc, re-
sulting in a reduction of the barrier height. Thus, growth
slows, the critical radius increases, and large patches
grow at the expense of smaller patches until only a sin-
gle ϕ+ patch remains, which coexists with the ϕ− phase.
A microscopic version of the model has also been devel-
oped (Semplice et al., 2012), in which the cell membrane
is represented by a 2D lattice with sites populated by
a discrete number of molecules of each chemical species.
The probability distribution of the discrete populations
evolves according to a master equation that keeps track
of all possible chemical reactions and diffusive jumps.

VI. DISCUSSION

In this review we have focused on analytically tractable
microscopic and macroscopic models of intracellular
transport. A complementary approach is to develop more
biologically realistic multi-scale computational models,
which include details of the structure of individual macro-
molecules, the biochemical network of signaling path-
ways, the acqueous environment of the cytoplasm, the
mechanical properies of the cytoskeleton, and the geom-
etry of the cell. One major challenge in stochastic sim-
ulations is how to efficiently couple stochastic chemical
reactions with diffusion in complex environments (An-
drews and Bray, 2004; Bhalla, 2004a,b; Erban and Chap-
man, 2009; Isaacson and Peskin, 2006; Turner et al.,
2004). Many approaches are based on spatial extensions
of the Gillespie algorithm for well-mixed chemical reac-
tions (Gibson and Bruck, 2000; Gillespie, 1977, 2001).
Several stochastic simulation packages have also been
developed including MCell (Franks et al., 2001, 2002)
and smoldyn (Andrews, 2012). In addition to the ex-
ample of phase separation during cell polarity, macro-
scopic reaction-diffusion systems can exhibit complex
spatiotemporal dynamics including coherent oscillations,
wave propagation and Turing pattern formation (Fal-
cke, 2003; Igoshin et al., 2001; Keener and Sneyd, 2009;
Lenz and Sogaard-Andersen, 2011; Loose et al., 2011).
These are thought to play an important role in a variety
of cellular processes including morphogenesis, cell divi-
sion, and embryogenesis (Murray, 2002). Understanding
the affects of noise at the microscopic level on reaction-
diffusion dynamics is an active area of current research.
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