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Abstract CaMKII (Ca2+-calmodulin-dependent protein kinase II) is a key regula-
tor of glutamatergic synapses and plays an essential role in many forms of synaptic
plasticity. It has recently been observed experimentally that stimulating a local region
of dendrite not only induces the local translocation of CaMKII from the dendritic
shaft to synaptic targets within spines, but also initiates a wave of CaMKII trans-
location that spreads distally through the dendrite with an average speed of order
1µm/s. We have previously developed a simple reaction–diffusion model of CaMKII
translocation waves that can account for the observed wavespeed and predicts wave
propagation failure if the density of spines is too high. A major simplification of our
previous model was to treat the distribution of spines as spatially uniform. However,
there are at least two sources of heterogeneity in the spine distribution that occur on
two different spatial scales. First, spines are discrete entities that are joined to a den-
dritic branch via a thin spine neck of submicron radius, resulting in spatial variations
in spine density at the micron level. The second source of heterogeneity occurs on a
much longer length scale and reflects the experimental observation that there is a slow
proximal to distal variation in the density of spines. In this paper, we analyze how both
sources of heterogeneity modulate the speed of CaMKII translocation waves along a
spiny dendrite. We adapt methods from the study of the spread of biological invasions
in heterogeneous environments, including homogenization theory of pulsating fronts
and Hamilton–Jacobi dynamics of sharp interfaces.
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1500 P. C. Bressloff

1 Introduction

Reaction–diffusion equations based on the Fisher–Kolmogorov et al. (F-KPP) model
and its generalizations have been used extensively to describe the spatial spread of
invading species including plants, insects, diseases and genes (Fisher 1937;
Kolmogorov et al. 1937; Murray 1989; Holmes et al. 1994; Shigesada and Kawasaki
1997; Cantrell and Cosner 2003; Volpert and Petrovskii 2009). Although such models
were originally formulated under the assumption that the environment is homoge-
neous, there is a growing interest in taking into account spatial heterogeneities. This
reflects the fact that there is often a patch-like mosaic of heterogeneous habitats (for-
ests, plains etc.), which are fragmented by natural or artificial barriers (rivers, roads,
cultivated fields etc.). In recent years, a number of analytical and numerical meth-
ods have been developed to study propagating invasive fronts in periodic and random
media (Gartner and Freidlin 1979; Shigesada et al. 1986; Shigesada and Kawasaki
1997; Xin 2000; Weinberger 2002; Kinezaki et al. 2003; Cantrell and Cosner 2003;
Berestycki et al. 2005; El Smaily et al. 2009). Heterogeneity is often incorporated by
assuming that the diffusion coefficient and the growth rate of a population are period-
ically varying functions of space. One of the simplest examples of a single population
model in a periodic environment was proposed by Shigesada et al. (Shigesada et al.
1986; Shigesada and Kawasaki 1997), in which two different homogeneous patches
are arranged alternately in one-dimensional space so that the diffusion coefficient
and the growth rate are given by periodic step functions. The authors showed how
an invading population starting from a localized perturbation evolves to a traveling
periodic wave in the form of a pulsating front. By linearizing around the leading edge
of the wave, they also showed how the minimal wavespeed of the pulsating front could
be estimated by finding solutions of a corresponding Hill equation (Shigesada et al.
1986). An alternative method for analyzing fronts in heterogeneous media, which is
applicable to slowly modulated environments, was originally developed by Freidlin
(Gartner and Freidlin 1979; Freidlin 1985, 1986) using large deviation theory, and sub-
sequently reformulated in terms of PDEs by Evans and Sougandis (1989). The basic
idea is to rescale space and time so that the front becomes a sharp interface whose
location can be determined by solving a corresponding Hamilton–Jacobi equation.

In this paper we extend the theory of wave propagation in heterogeneous envi-
ronments to a problem in cellular neurophysiology, namely, the translocation of
Ca2+–calmodulin-dependent protein kinase II (CaMKII) in spiny dendrites. There
is now considerable experimental evidence suggesting that CaMKII is one of the
most important signaling molecules involved in the induction of synaptic plasticity
(Hudmon and Schulman 2002; Lisman et al. 2002). There are a number of reasons for
this. First, CaMKII is found to be abundant at postsynaptic sites where it can detect
changes in the local levels of Ca2+ entering the synapse following plasticity-inducing
stimuli, via binding of CaMKII to Ca2+/CaM. Activated CaMKII then phosphorylates
substrates responsible for the expression of synaptic plasticity, namely, the number
and the conductivity of synaptic AMPA receptors (Fukunaga et al. 1995; Mammen
et al. 1997; Barria et al. 1997a; Derkach et al. 1999; Lee et al. 2009). Second, once
activated, CaMKII can transition into a Ca2+/CaM-independent, hyper-activated state
via the autophosphorylation of neighboring enzymatic subunits (Hanson et al. 1994;
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Propagation of CaMKII translocation waves 1501

Fig. 1 An example of a piece of spine studded dendritic tissue (from rat hippocampal region CA1 stratum
radiatum). Magnified view on right-hand side shows a dendrite ∼5 µm in length. Taken with permission
from SynapseWeb, Kristen M. Harris, PI (http://synapses.clm.utexas.edu/)

Rich and Schulman 1998), and thus continue to phosphorylate its substrates even after
the plasticity-inducing Ca2+ signal has ended (Saitoh and Schwartz 1985; Miller and
Kenney 1986; Lou et al. 1986; Yang and Schulman 1999). Third, suppression of CaM-
KII using chemical antagonists blocks all known forms of NMDA receptor-dependent
long-term potentiation (LTP) (Malinow et al. 1989; Fukunaga et al. 1993; Pettit et
al. 1994; Lledo 1995; Barria et al. 1997b; Otmakhov et al. 1997; Malenka and Bear
2004).

Most excitatory synapses in the brain are located within dendritic spines, which
are small, sub-micrometer membranous extrusions that protrude from a neuron’s den-
drite (Yuste 2010). Typically spines have a bulbous head which is connected to the
parent dendrite through a thin spine neck, see Fig. 1. Confinement of CaMKII within
spines arises from the geometry of the spine and through interactions with protein
receptors and cytoskeletal elements within the postsynaptic density (PSD), which is
the protein–rich region at the tip of the spine head. Global stimulation of NMDA
receptors has previously been shown to result in the translocation of CaMKII from
the dendritic shaft into spines (Strack et al. 1997; Shen and Meyer 1999; Shen et al.
2000; Bayer 2006). There are two main isoforms of CaMKII, known as CaMKIIα and
CaMKIIβ. In its inactive state CaMKIIα tends to be located in the cytosol, whereas
CaMKIIβ is weakly actin bound (Shen et al. 1998). Following Ca2+-induced activa-
tion, CaMKII accumulates at post-synaptic sites through binding to NMDA receptors
(Gardoni 1998; Leonard et al. 1999; Bayer et al. 2001). If the calcium signal is rel-
atively weak then this binding is rapidly reversible, whereas for stronger stimulation
the synaptic accumulation of CaMKII can persist for several minutes due to auto-
phosphorylation. Recently, Rose et al. used a local rather than global signal to induce
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1502 P. C. Bressloff

translocation of CaMKII into spines, by stimulating a 30 µm wide region of dendrite
with a 15 ms puff of 100 µM glutamate and 10 µM glycine. Interestingly, this initiated
a wave of CaMKII translocation that spread toward the distal end of the dendrite with
an average speed of ∼1 µm/s. They also observed that the wave was preceded by
a much faster Ca2+ spike mediated by L-type Ca2+ channels, which they hypothe-
sized could provide a mechanism for priming CaMKII outside the stimulus region for
diffusion-based activation. They found translocation waves in both excitatory pyra-
midal neurons and inhibitory interneurons for both the α and β isoforms of CaMKII.
Moreover, the CaMKII translocation wave was associated with an increase in AMPA
receptor numbers at both stimulated and non-stimulated synapses (Rose et al. 2009).
This suggests that it could provide a possible molecular substrate for heterosynaptic
plasticity.

In a previous paper, we introduced a simple model of CaMKII translocation waves
based on a system of reaction–diffusion equations identical in form to the diffusive
SI model, which was originally used to model the spread of bubonic plague (Noble
1974). Following Rose et al. (2009), we assumed that CaMKII exists in either a primed
(P) or activated (A) state and only the latter can translocate into spines. We derived
a simple formula for the speed of translocation waves given by c = 2

√
D(k − h),

where D is the cytosolic diffusivity of CaMKII, k is the effective activation rate for
the irreversible reaction A + P → 2A, and h is the global translocation rate. One
prediction of our model was that wave propagation failure could occur if the density
of spines ρ were too high, assuming that h is proportional to ρ. A major simplifica-
tion of our previous model was to treat the distribution of spines as spatially uniform.
However, there are at least two sources of heterogeneity in the spine distribution that
occur on two different spatial scales. First, spines are discrete entities that are joined
to a dendritic branch via a thin spine neck of submicron radius, resulting in spatial
variations in spine density at the micron level. This discrete structure can be incorpo-
rated into a model of a spiny dendrite by taking ρ to be a sum of Dirac delta functions.
Homogenization theory can then be used to analyze how the discrete nature of spines
effects processes on larger spatial scales, such as variations in voltage/conductances
(Meunier and d’Incamps 2008) and the distribution of protein receptors (Bressloff
2009) along a spiny dendrite. The second source of heterogeneity occurs on a much
longer length scale that is comparable to the length of a dendrite, which can vary
from 100 µm to a few millimeters. The latter heterogeneity reflects the experimental
observation that there is a slow proximal to distal variation in the density of spines
(Konur et al. 2003; Ballesteros-Yanez et al. 2006). In this paper, we analyze how both
sources of heterogeneity modulate the speed of CaMKII translocation waves along a
spiny dendrite.

The structure of the paper is as follows. In Sect. 2, we briefly describe our previous
model of translocation waves (Earnshaw and Bressloff 2010) and summarize some
of the predictions of the model. In Sect. 3, we extend the formulation of pulsating
waves by Shigesada et al. (1986) in order to take into account the discrete nature of
spines. We then use homogenization theory to derive an approximate formula for the
wavespeed as a function of the spine spacing (Sect. 4). Finally, in Sect. 5, we use the
Hamilton–Jacobi formulation to analyze the effects of a slowly varying spine density.
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Propagation of CaMKII translocation waves 1503

2 Model of CaMKII translocation waves

Our previous mathematical model of CaMKII translocation waves within a dendrite
(Earnshaw and Bressloff 2010) is based upon an experimentally motivated mechanism
proposed by Rose et al. (2009), which is illustrated in Fig. 2. The model is given by a
system of reaction–diffusion equations for the concentrations of activated and primed
CaMKII along a uniform one-dimensional non-branching dendritic cable. These equa-
tions incorporate three major components of the dynamics: diffusion of CaMKII along
the dendrite, activation of primed CaMKII, and translocation of activated CaMKII
from the dendrite to spines (Earnshaw and Bressloff 2010):

∂ P

∂t
= D

∂2 P

∂x2 − k0 AP (2.1)

∂ A

∂t
= D

∂2 A

∂x2 + k0 AP − h A. (2.2)

Here D is the diffusivity of CaMKII within the cytosol, P(x, t) and A(x, t) denote
the concentration of primed and activated CaMKII at time t > 0 and location x along
the dendrite. The reaction term k0 AP represents the conversion of CaMKII from its
primed to active state based on the irreversible first-order reaction scheme

A + P → 2A

with mass action kinetics, where k0 is the rate at which primed CaMKII is activated
per unit concentration of activated CaMKII. The decay term h A represents the loss
of activated CaMKII from the dendrite due to translocation into a uniform distribu-
tion of spines at a rate h. Translocation is taken to be irreversible over the time-scale
of experimental or numerical observations, which is reasonable given that activated
CaMKII accumulation at synapses can persist for several minutes (Shen and Meyer
1999). We assume that all of the CaMKII within the stimulated region is instanta-
neously activated at t = 0, but none has yet translocated into spines nor diffused into
the non-stimulated region. We also neglect any delays associated with priming CaM-
KII along the remainder of the dendrite, thus avoiding the need to model explicitly
the Ca2+ spike, see Fig. 2. This is a reasonable approximation, since the Ca2+ spike
travels much faster than the CaMKII translocation wave (Rose et al. 2009). Thus by
the time a significant amount of activated CaMKII has diffused into non-stimulated
regions of the dendrite, any CaMKII encountered there will already be primed. Note,
however, that once could develop a more detailed model that takes into account the
initial transient associated with the priming phase by coupling the reaction–diffusion
equations with additional model equations describing fast propagating Ca2+ spikes
(see Baer and Rinzel 1991; Coombes and Bressloff 2000, 2003).

Note that Eqs. (2.1) and (2.2) are identical in form to the diffusive SI model intro-
duced by Noble (1974) to explain the spread of bubonic plague through Europe in
the fourteenth century. In the latter model, P(x, t) and A(x, t) would represent the
densities of susceptible and infective people at spatial location x at time t , respec-
tively, k0 would be the transmission rate and h the death rate. In the absence of
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Fig. 2 Proposed mechanism of CaMKII translocation waves. a Glutamate/glycine puff activates CaMKII
locally and initiates a fast Ca2+ spike that propagates distally (indicated by larger red arrow) and primes
CaMKII in the remainder of the dendrite. In certain cases one also finds a second wave propagating prox-
imally from the stimulated site to the soma (indicated by smaller red arrow). b Activated CaMKII (green
dots) both translocates into spines (red arrows) and diffuses into distal regions of the dendrite where it
activates primed CaMKII (blue dots). The net effect is a wave of translocated CaMKII propagating along
the dendrite (color figure online)

translocation into spines (h = 0), the total amount of CaMKII is conserved so that
A(x, t) + P(x, t) = P0 for all x and t ≥ 0. Equations (2.1) and (2.2) then reduce to
the scalar Fisher–Kolmogorov et al. (F-KPP) equation

∂ A

∂t
= D

∂2 A

∂x2 + k0 A(P0 − A), (2.3)

which was originally introduced to model the invasion of a gene into a population.
The F-KPP equation and its generalizations have been widely used to describe the
spatial spread of invading species including plants, insects, genes and diseases (see
for example, Murray 1989; Holmes et al. 1994; Shigesada and Kawasaki 1997; Volpert
and Petrovskii 2009 and references therein). One characteristic feature of such equa-
tions is that they support traveling fronts propagating into an unstable steady state, in
which the wavespeed and long-time asymptotics are determined by the dynamics in
the leading edge of the wave—so-called pulled fronts (van Saarloos 2003). In partic-
ular, a sufficiently localized initial perturbation (such as the stimulus used to generate
CaMKII waves) will asymptotically approach the traveling front solution that has the
minimum possible wavespeed.

A traveling wave solution of Eqs. (2.1) and (2.2) takes the form P(x, t) = P(ξ)

and A(x, t) = A(ξ), ξ = x − ct , where c, c > 0, is the wavespeed, such that

P(ξ) → P0, A(ξ) → 0 as ξ → ∞
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Fig. 3 Three successive snapshots of a numerically simulated translocation wave propagating along a
homogeneous dendrite. Solutions of Eqs. (2.1) and (2.2) are plotted for parameter values consistent with
experimental data on CaMKIIα (Shen et al. 1998; Shen and Meyer 1999; Rose et al. 2009). The transloca-
tion rate h = 0.05/s, diffusivity D = 1 µm2/s and the activation rate k0 P0 = 0.21/s. At time t = 0 all of
the CaMKII within the stimulated region (indicated by thick bar) is in the activated state, whereas all of the
CaMKII within the nonstimulated region is in the primed state. Concentrations are normalized with respect
to the initial concentration of primed CaMKII. Composite wave consists of a pulse of activated CaMKII
(green curve) moving at the same speed as a front of primed CaMKII (blue curve). Also shown is the total
CaMKII concentration along the dendrite (thick gray curve), which decreases with time due to translocation
into spines. The front forms an interface between a quiescent region containing a uniform concentration of
primed CaMKII and a region dominated by translocation of activated CaMKII into spines. The dynamics
in the interfacial region is dominated by diffusion-activation of primed CaMKII (color figure online)

and

P(ξ) → P1 < P0, A(ξ) → 0 as ξ → −∞.

Here P1 is the residual concentration of primed CaMKII following translocation of
activated CaMKII into spines. The minimum wavespeed can be calculated by substi-
tuting the traveling wave solution into Eqs. (2.1) and (2.2) and linearizing near the
leading edge of the wave where P → P0 and A → 0. Requiring that the solution
remains positive within the leading edge then shows that a traveling wave solution
with speed c only exists if (Earnshaw and Bressloff 2010)

c ≥ cmin = 2
√

D(k − h), (2.4)

which implies that k > h. An example of a numerically determined traveling wave
solution with minimal speed cmin is shown in Fig. 3 for parameter values consistent
with experimental studies of CaMKIIα. In particular, D ∼1 µm2/s, h ∼ 0.05 s−1 and
c ∼1 µm/s (Shen et al. 1998; Shen and Meyer 1999; Rose et al. 2009) for CaMKIIα;
CaMKIIβ has a diffusivity and translocation rate an order of magnitude smaller but
exhibits comparable wavespeeds. Our formula for the wavespeed then gives an esti-
mate for the unknown activation rate, k ∼0.2 s−1. It can be seen in Fig. 3 that the
wave profile of primed CaMKII is in the form of a front, whereas the comoving wave
profile of activated CaMKII is a localized pulse.

The above analysis predicts wave propagation failure when the translocation rate
h is greater than the effective activation rate k. Experimentally, h is determined by
globally activating CaMKII along a dendrite and determining the rate at which the
level of CaMKII decays (Shen et al. 1998; Shen and Meyer 1999). The detailed
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1506 P. C. Bressloff

microscopic mechanism whereby CaMKII is translocated into spines is currently not
known, so it is difficult to relate h to individual spine properties. In our previous
paper, we assumed that the translocation rate depends on the spine density according
to h = ρν0, where ν0 is an effective “velocity” associated with translocation into
an individual spine. Since the activation rate can be expressed as k = k0 P0, where
P0 is the initial concentration of primed CaMKII in the nonstimulated region of the
dendrite, our model predicts that CaMKII translocation waves will fail to propagate
when

ρν0 > k0 P0. (2.5)

For example, this inequality predicts that dendrites with a high density of spines are
less likely to exhibit translocation waves than those with a low spine density. It also
predicts that dendrites with a larger initial concentration of primed CaMKII in the
shaft are more likely to exhibit translocation waves than those with a smaller initial
concentration. Since the initial concentration P0 of primed CaMKII depends on the
effectiveness of the Ca2+ spike in both propagating along the dendrite and priming
the inactive state, our model agrees with the experimental finding that translocation
waves fail to propagate when L-type Ca2+ channels are blocked (Rose et al. 2009).
One also finds that Ca2+ spikes are less likely to propagate towards the soma, which
could explain why translocation waves are more often observed propagating towards
the distal end of a dendrite.

3 Pulsating waves in the presence of discretely distributed spines

One of the major simplifications of the above model is that the discrete nature of den-
dritic spines is ignored by treating the spine density ρ and, hence, the translocation
rate h, as uniform. Given the fact that the radius of the spine neck is typically at the
submicron level, which is much smaller than any other length scale of the system, we
can take into account the discreteness of spines by representing the spine density as a
sum of Dirac delta functions (Coombes and Bressloff 2003; Bressloff and Earnshaw
2007; Meunier and d’Incamps 2008; Bressloff 2009):

ρ(x) =
∑

n∈Z

δ(x − xn), (3.1)

where xn is the location of the nth spine along the dendrite. It immediately follows
that the translocation rate h is itself space-dependent and Eqs. (2.1) and (2.2) become
heterogeneous. In this paper we are interested in the effects of spine discreteness on
CaMKII translocation waves. In particular, we focus on the case of spine clusters
that are uniformly spaced with xn = n	 where 	 is the spine cluster spacing, and
there are n spines in a cluster. In order to separate the effects of discreteness from the
effects of spine density, we will assume that the size of a cluster scales with 	 so that
n = ρ	 with ρ fixed, see Fig. 4. Thus, setting h = ρν0, we have the space-dependent
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Fig. 4 Spine clustering. Plot of inhomogeneous translocation rate h(x) for various cluster spacings 	.
The effective translocation rate (number of spines in a cluster) at each site is indicated by the height of the
corresponding bar

translocation rate

h(x) = h	
∑

n∈Z

δ(x − n	), (3.2)

such that L−1
∫ L

0 h(x)dx = h for L � 	.
In recent years, there has been an increasing interest in studying biological inva-

sion in heterogeneous environments using reaction–diffusion equations (Gartner and
Freidlin 1979; Shigesada et al. 1986; Shigesada and Kawasaki 1997; Xin 2000;
Weinberger 2002; Kinezaki et al. 2003; Cantrell and Cosner 2003; Berestycki et al.
2005; El Smaily et al. 2009). Heterogeneity is often incorporated by assuming that
the diffusion coefficient and the growth rate of a population are periodically varying
functions of space. One of the simplest examples of a single population model in a peri-
odic environment was proposed by Shigesada et al. (Shigesada et al. 1986; Shigesada
and Kawasaki 1997), in which two different homogeneous patches are arranged alter-
nately in one-dimensional space so that the diffusion coefficient and the growth rate
are given by periodic step functions. The authors showed numerically that an invading
population starting from a localized perturbation evolves to a traveling periodic wave
in the form of a pulsating front. The population density u(x, t) of such a wave is
defined by the condition u(x, t) = u(x +σ, t + T ) such that limx→∞ u(x, t) = 0 and
limx→−∞ u(x, t) = p(x), where p(x) is a spatially periodic stationary solution of
the corresponding reaction–diffusion equation. This form of solution repeats itself in
a time interval T if it is observed at two successive points separated by a distance σ .
The speed of the wave is then taken to be c = σ/T . Shigesada et al. (1986) also
used linearized information within the leading edge of the pulsating front to derive
wavespeed estimates, generalizing the analysis of pulled fronts in homogeneous media
(van Saarloos 2003). An interesting recent extension of this approach has been used
to study pulsating fronts in periodically modulated nonlocal neural field equations
(Coombes and Laing 2011). The theory of pulsating fronts has also been developed in
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1508 P. C. Bressloff

a more general and rigorous setting (Gartner and Freidlin 1979; Xin 2000; Weinberger
2002; Berestycki et al. 2005; El Smaily et al. 2009).

We follow the basic formulation of Shigesada et al. (1986) by linearizing Eq. (2.2)
at the leading edge of the wave where A(x, t) → 0 and P(x, t) → P0:

∂ A

∂t
= D

∂2 A

∂x2 + k A − h(x)A, (3.3)

with h(x) given by the 	-periodic function (3.2). Assume a solution of the form
A(x, t) = a(ξ)P(x), ξ = x − ct , and set

∂

∂t
→ −c

∂

∂ξ
,

∂

∂x
→ ∂

∂x
+ ∂

∂ξ
.

Substitution into Eq. (3.3) then gives

−cP(x)a′(ξ) = D
[
a′′(ξ)P(x) + 2a′(ξ)P ′(x) + a(ξ)P ′′(x)

]

+[k − h(x)]a(ξ)P(x). (3.4)

Dividing through by a(ξ)P(x) and rearranging yields

D
a′′(ξ)

a(ξ)
+

[
2D

P ′(x)

P(x)
+ c

]
a′(ξ)

a(ξ)
= −D

P ′′(x)

P(x)
− k + h(x). (3.5)

Applying the operator ∂x∂ξ to both sides of Eq. (3.5) implies that either P ′(x)/P(x)

is a constant or a′(ξ)/a(ξ) is a constant. Only the latter condition is consistent with
P(x) being a periodic function. Thus, a(ξ) = A0e−λξ with λ determined by solutions
to the damped Hill equation

P ′′(x) − 2λP ′(x) +
[
λ2 + k − h(x) − cλ

D

]
P(x) = 0. (3.6)

Note that if we set P(x) = eλxU (x) then U (x) satisfies the undamped Hill equation

DU ′′(x) + [k − h(x) − cλ] U (x) = 0. (3.7)

In order to determine the minimal wavespeed cmin, it is necessary to find a bounded
periodic solution P(x) of Eq. (3.6), which yields a corresponding dispersion relation
c = c(λ), whose minimum with respect to λ can then be determined (assuming it
exists). Unfortunately, for general periodic functions h(x) it is not possible to solve
Eq. (3.6) explicitly, and some form of approximation scheme is required. We will
proceed by exploiting the fact that the spine cluster spacing 	 is at least an order of
magnitude smaller than the width of the traveling wave of the homogeneous system.
This will allow us to extend a recent homogenization scheme for analyzing the dis-
crete effects of spines, which has previously been applied to studying variations in
electrical voltage/conductance (Meunier and d’Incamps 2008) and the distribution of
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Propagation of CaMKII translocation waves 1509

protein receptors (Bressloff 2009) along spiny dendrites. Interestingly, El Smaily et al.
(2009) independently applied the same homogenization procedure to analyze wave-
speed in the population model of Shigesada et al. (1986). A more general discussion
of homogenization techniques applied to traveling fronts can be found in the review
by Xin (2000).

4 Homogenization of pulsating waves for a fast periodic modulation
of spine density

As a first step, we introduce a macroscopic length scale σ and set 	 = εσ with ε 
 1.
We identify σ with the effective width of the primed CamKII front, which turns out
to be around 20–30 µm in the given parameter regimes. Equation (3.7) can then be
rewritten in the form

d2U

dx2 +
[

 − 	


( x

ε

)]
U (x) = 0, (4.1)

where


 = [
k − cλ − h

]
/D (4.2)

and

	
(y) = h

D

(

σ
∑

n∈Z

δ(y − nσ) − 1

)

(4.3)

such that 	
(y) is a σ -periodic function of y. The basic idea of multi-scale homog-
enization is to expand the solution of Eq. (4.1) as a power series in ε, with each term
in the expansion depending explicitly on the “slow” (macroscopic) variable x and the
“fast” (microscopic) variable y = x/ε (Meunier and d’Incamps 2008; Bressloff 2009;
El Smaily et al. 2009):

U (x, y) = U0(x) + εU1(x, y) + ε2U2(x, y) + · · · , (4.4)

where U j (x, y), j = 1, . . . are σ -periodic in y. The perturbation series expansion is
then substituted into Eq. (4.1) with x, y treated as independent variables so that deriv-
atives with respect to x are modified according to ∂x → ∂x + ε−1∂y . This generates
a hierarchy of equations corresponding to successive powers of ε:

∂2U1

∂y2 = 0 (4.5)

d2U0

dx2 + 2
∂2U1

∂x∂y
+ ∂2U2

∂y2 + [

 − 	
(y)

]
U0 = 0 (4.6)
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at powers ε−1, 1 and

∂2Un

∂x2 + 2
∂2Un+1

∂x∂y
+ ∂2Un+2

∂y2 + [

 − 	
(y)

]
Un = 0 (4.7)

at O(εn), n ≥ 1.
Equation (4.5) and boundedness of U1 imply that U1 is independent of y, and can

thus be absorbed into U0(x). Thus the leading order corrections arising from small-
scale fluctuations in the spine density occur at O(ε2). Define the spatial average of a
periodic function F(y), denoted by 〈F〉, according to

〈F〉 = 1

σ

σ∫

0

F(y)dy. (4.8)

Taking the spatial average of Eq. (4.6) with U0 = 〈U0〉 then gives

d2U0

dx2 + 
U0 = 0. (4.9)

We have exploited the fact that U2 is periodic in y so 〈∂2U2/∂y2〉 = 0. In order to
calculate U2, we first subtract the averaged Eq. (4.9) from (4.6) to obtain

∂2U2

∂y2 = 	
(y)U0(x). (4.10)

It follows that U2(x, y) = U0(x)χ(y) with χ ′′(y) = 	
(y) and χ a σ -periodic func-
tion of y. Integrating once with respect to y gives χ ′(y) = χ ′(0) + ∫ y

0 	
(z)dz. We
can eliminate the unknown χ ′(0) by spatially averaging with respect to y and using
〈χ ′〉 = 0. This gives χ ′(y) = ∮ y

0 	
(z)dz with

y∮

0

f (z)dz ≡
y∫

0

f (z)dz −
〈 y∫

0

f (z)dz

〉

(4.11)

for any integrable function f . Another integration with respect to y shows that

χ(y) = χ(0) +
y∫

0

y′∮

0

	
(z)dzdy′.
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Spatially averaging this equation with respect to y in order to express χ(0) in terms
of 〈χ〉 and multiplying through by U0(x), finally gives

	U2(x, y) ≡ U2(x, y) − 〈U2〉(x)

= U0(x)

y∮

0

y′∮

0

	
(z)dzdy′. (4.12)

It remains to determine the equation satisfied by 〈U2〉. Spatially averaging Eq. (4.7)
for n = 2 gives

d2〈U2〉
dx2 + 
〈U2〉 = 〈	
(y)U2(x, y)〉. (4.13)

Substituting Eq. (4.12) into (4.13) and reordering the resulting multiple integral yields
the result

d2〈U2〉
dx2 + 
〈U2〉 = −

〈⎛

⎝
y∮

0

	
(z)dz

⎞

⎠

2〉

U0(x). (4.14)

Finally, writing 〈U 〉 = U0 + ε〈U2〉 + · · · we obtain the homogenized version of the
Hill equation (3.7):

d2〈U 〉
dx2 + 
ε〈U 〉 = 0, (4.15)

where


ε = 
 − ε2
2 + O(ε3), 
2 =
〈⎛

⎝
y∮

0

	
(z)dz

⎞

⎠

2〉

. (4.16)

Recall that we require the solution P(x) = eλxU (x) to be a bounded periodic
function of x . It follows that 〈P〉 = eλx 〈U (x)〉 should be a finite constant. Writing the
solution of equation (4.15) as 〈U (x)〉 ∼ e−√


εx , we obtain the characteristic equation

λ =
√

cλ − k + h

D
− ε2
2, (4.17)

where we have substituted for 
 using Eq. (4.2). Squaring both sides and rearranging
thus leads to the following dispersion relation for the wavespeed c:

c = c(λ) ≡ Dλ + k − h + ε2 D
2

λ
. (4.18)
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Minimizing with respect λ then shows that

cmin = 2
√

D(k − h) + ε2 D2
2, (4.19)

For sufficiently small ε, we can Taylor expand equation (4.19) to obtain the further
approximation

cmin ≈ c + 2D2
2

c
ε2, (4.20)

with c = 2
√

D(k − h) the wavespeed of the corresponding homogeneous distribution
of spines. Hence, we have shown that a periodic variation in the spine density due
to clustering leads to an O(ε2) increase in the wavespeed. An analogous result was
obtained by El Smaily et al. (2009) for the Shigesada et al. model (Shigesada et al.
1986). Equation (4.12) implies that there are also small-scale fluctuations of the wave
profile in the leading edge of the wave given by:

	P(y)

〈P〉 = ε2

y∮

0

y′∮

0

	
(z)dzdy′ + O(ε3). (4.21)

It is straightforward to calculate the integrals in Eqs. (4.19) and (4.21) for a periodic
spine density with 	
(y) given by Eq. (4.3) (Meunier and d’Incamps 2008):


2 =
〈⎛

⎝
y∮

0

	
(z)dz

⎞

⎠

2〉

= 1

12

(
hσ

D

)2

, (4.22)

y∮

0

y′∮

0

	
(z)dzdy′ = hσ 2

D

[
y

2σ
− y2

2σ 2 − 1

12

]
. (4.23)

Since ε = 	/σ , it follows that fluctuations in the wave profile vary between
−h	2/(12D) at spine clusters and h	2/(24D) between spine clusters, and

cmin = 2

√
D(k − h) + 	2h

2
/12. (4.24)

It immediately follows that for fixed h, k, D (and hence c), spine clustering increases
the speed of a translocation wave. This is illustrated in Fig. 5, where we plot the mini-
mal wavespeed cmin given by Eq. (4.24) as a function of the activation rate k for various
values of the cluster spacing 	. An additional important consequence of clustering is
that it reduces the threshold for the existence of a translocation wave. That is, there
exists a critical value of the activation rate, k = κ(	), below which translocation
waves do not exist and κ(	) is a decreasing function of 	. In the homogenization
limit 	 → 0, we recover the result κ = h.
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Fig. 5 Plot of minimal wavespeed cmin as a function of activation rate k = k0 P0 for various values of the
spine cluster spacing 	. Also shown is the corresponding wavespeed for a homogeneous spine distribution
(black curve). Other parameters are h = 0.1 s−1 and D = 1 µm2/s. Note that wave propagation failure
occurs as k → κ(	) from above where κ(	) is the propagation threshold

The existence of a pulsating wave due to spine clustering and the associated increase
(decrease) in the minimal speed (threshold) of the wave can also be confirmed numer-
ically. For the sake of illustration, we take a dendrite of length L = 300 µm with
reflecting boundary conditions at both ends x = 0, L . The initial conditions are given
by

P(x, 0) = P0, A(x, 0) = 0 for all x /∈ [0, δL]
P(x, 0) = 0, A(x, 0) = P0 for all x ∈ [0, δL],

with δL = 15µm. We discretize space by setting x = mδx , where δx is the step
length and m = 0, 1, . . . , M with M = L/δx . In discrete spatial units the spine clus-
ter spacing is taken to be 	 = Pδx . The spine cluster distribution is then represented
numerically by the discrete sum

ρ(mδx) = 1

δx

M/P∑

j=0

δm, j P , (4.25)

where δm, j is the Kroenecker delta and δx is chosen so that M, P and M/P are
integers. The spatially discretized version of Eqs. (2.1) and (2.2) are then solved in
Matlab (MathWorks) using standard differential equation solvers. Examples of numer-
ical solutions are shown in Figs. 6, 7, 8 for h = 0.1/s and k = 0.19/s. In each figure,
we plot concentration profiles at four successive snapshots in time, following stimu-
lation of a local region of dendrite at an initial time t = 0. We focus on the spread
of CaMKII distally from the site of stimulation. Comparison between waves for a
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Fig. 6 Numerical traveling wave solution of Eqs. (2.1) and (2.2) for a homogeneous (uniform) distribution
of spines. The translocation rate h = 0.1/s, diffusivity D = 1 µm2/s and the activation rate k = 0.19/s. At
time t = 0 all of the CaMKII within the stimulated region (indicated by thick bar) is in the activated state,
whereas all of the CaMKII within the nonstimulated region is in the primed state. Concentrations are nor-
malized with respect to the initial concentration of primed CaMKII. The resulting wave profiles for activated
(green curve) and primed (blue curve) CaMKII along the dendrite are shown at four successive snapshots in
time. Also shown is the total CaMKII concentration along the dendrite (thick gray curve), which decreases
with time due to translocation into spines. The numerically estimated wavespeed cmin ≈ 0.58 µm/s, which
is close to the predicted wavespeed c = 0.6 µm/s (color figure online)

spatially uniform distribution of spines and a spatially discrete distribution of spine
clusters shows that the wave is periodically modulated and faster in the latter case.
This is a consequence of the fact that translocation is less effective in the presence of
spine clusters. Although doubling the degree of clustering only leads to a change in
wavespeed of order 0.05 µm/s (consistent with our analytical calculations), it leads
to a significant difference in propagation times along a 300 µm dendrite. In Figs. 9,
10, 11, we illustrate the effect of spine clustering on lowering the threshold for wave
propagation by taking h = 0.1/s and k = 0.1/s. In this case, since k = h, no wave
propagates for a homogeneous spine distribution as can be seen in Fig. 9. That is, acti-
vated CaMKII only invades a limited region of the dendrite before the concentration
decays to zero. Thus, translocation only occurs within this restricted region and in
the long time limit the system returns to a uniform concentration of primed CaMKII
(but at a slightly reduced level). On the other hand, in the presence of a sufficiently
high degree of spine clustering (sufficiently large 	), wave propagation is observed
as shown in Figs. 10 and 11.
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Fig. 7 Same as Fig. 6 except for an inhomogeneous distribution of spine clusters with periodic spacing
	 = 4 µm. Wave is slightly faster with mean wavespeed cmin ≈ 0.6 µm/s

Finally, note that it is possible to extend the above homogenization scheme to the
case of randomly rather than periodically distributed spines, provided that the resulting
heterogeneous medium is ergodic (Torquato 2002). That is, the result of averaging over
all realizations of the ensemble of spine distributions is equivalent to averaging over
the length L of the dendrite in the infinite-L limit. If such an ergodic hypothesis holds
and L is sufficiently large so that boundary terms can be neglected, then the above
analysis carries over with 〈·〉 now denoting ensemble averaging. Examples of how
to evaluate integrals such as those appearing in Eqs. (4.19) and (4.21) for randomly
distributed spines are presented in Meunier and d’Incamps (2008).

5 Wavespeed for a slowly modulated spine density

So far we have considered the effects of heterogeneity at a microscopic length scale
comparable to the spacing of individual spines. In particular, we took the homoge-
nized translocation rate h to be constant over the length of a dendrite. However, it is
found experimentally that there is a slow proximal to distal variation in the density of
spines (Konur et al. 2003; Ballesteros-Yanez et al. 2006). An illustration of a typical
spine density found in pyramidal neurons of mouse cortex (Ballesteros-Yanez et al.
2006) is shown in Fig. 12. Such a variation in spine density can be incorporated into
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Fig. 8 Same as Fig. 7 except that 	 = 8 µm. Mean wavespeed cmin ≈ 0.66 µm/s

Eqs. (2.1) and (2.2) by setting h = h +	h(εx), where h denotes the translocation rate
at the initiation point x0 of the wave and 	h(εx) represents the slow modulation of
the (homogenized) translocation rate over the length of a dendrite with ε 
 1. A dif-
ferent approach has been developed to study biological invasion in slowly modulated
environments based on a Hamilton–Jacobi formulation. This method was originally
introduced by Freidlen (Gartner and Freidlin 1979; Freidlin 1985, 1986) using large
deviation theory, and subsequently formulated in terms of PDEs by Evans and Sou-
gandis (Evans and Sougandis 1989). More recently it has been used to study waves in
heterogeneous media (see for example, Xin 2000; Mendez et al. 2003). In this section
we apply the Hamilton–Jacobi method to our model of CaMKII translocation waves
with slow periodic modulation.

The first step in the analysis is to rescale space and time in Eqs. (2.1) and (2.2)
according to t → t/ε and x → x/ε (Freidlin 1986; Evans and Sougandis 1989;
Mendez et al. 2003):

ε
∂ P

∂t
= Dε2 ∂2 P

∂x2 − k0 AP (5.1)

ε
∂ A

∂t
= Dε2 ∂2 A

∂x2 + k0 AP − [
h + 	h(x)

]
A. (5.2)
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Fig. 9 Wave propagation failure for a homogeneous distribution of spines. Same as Fig. 6 except that
h = k = 0.1 s−1. As in previous figures, at time t = 0 all of the CaMKII within the stimulated region
(indicated by thick bar) is in the activated state, whereas all of the CaMKII within the nonstimulated region
is in the primed state. However, activated CaMKII now only diffuses into a restricted region of size ∼30 µm
around the induction site. Within this region some primed CaMKII is activated and translates into spines, as
indicated by the reduction of total CaMKII within this region (thick gray curve). However, the concentration
of activated CaMKII decays to zero, and in the long time limit, diffusion leads to a uniform concentration
of primed CaMKII

Under the spatial rescaling the front region where P and A rapidly increase as x
decreases from infinity becomes a step as ε → 0, see Fig. 3. This motivates the
introduction of solutions of the form

P(x, t) ∼ P0

[
1 − e−G(x,t)/ε

]
, A(x, t) ∼ A0(x)e−G(x,t)/ε (5.3)

with G(x, t) > 0 for all x > x(t) and G(x(t), t) = 0. The point x(t) determines the
location of the front and c = ẋ . Substituting (5.3) into Eqs. (5.1) and (5.2) gives

− ∂G

∂t
= D

[
∂G

∂x

]2
− Dε

∂2G

∂x2 − k0 A0(x)
[
1 − e−G(x,t)/ε

]
(5.4)
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Fig. 10 Same as Fig. 9 except for an inhomogeneous distribution of spine clusters with 	 = 4 µm.
Although h = k, a slow translocation wave with mean wavespeed cmin ≈ 0.2 µm/s now propagates. This
reflects the lowering of the propagation threshold due to clustering

−A0(x)
∂G

∂t
= A0(x)

[

D

[
∂G

∂x

]2
− Dε

∂2G

∂x2 + k0 P0

[
1 − e−G(x,t)/ε

]
− [

h + 	h(x)
]
]

+ ε2 A′′
0(x)G − 2ε A′

0(x)
∂G

∂x
. (5.5)

To leading order in ε, these reduce to

− ∂G

∂t
= D

[
∂G

∂x

]2

− k0 A0(x) (5.6)

−∂G

∂t
= D

[
∂G

∂x

]2

+ k − [
h + 	h(x)

]
, (5.7)

where k = ko P0 as before. It immediately follows that

A0(x) =
[

k − h − 	h(x)

k

]

P0. (5.8)
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Fig. 11 Same as Fig. 10 except that 	 = 12 µm. Mean wavespeed cmin ≈ 0.36 µm/s
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Fig. 12 Illustrative example of the spine density variation along the basal dendrite of a pyramidal cell
in mouse cortex (black curve). Density is calculated as the number of spines per 10 µm segment of the
dendrite from the soma to the tip of the dendrite. Abstracted from experimental data in Ballesteros-Yanez
et al. (2006). Also shown is a simplified piecewise linear approximation of the spine density variation (gray
curve)

The remaining Eq. (5.7) can be analyzed along identical lines to a previous study
of the heterogeneous F-KPP equation (Mendez et al. 2003). Formally comparing
Eq. (5.7) with the Hamilton–Jacobi equation ∂t G + H(∂x G, x) = 0, we define the
Hamiltonian
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H = Dp2 + k − [
h + 	h(x)

]
, (5.9)

where p = ∂x G is interpreted as the conjugate momentum of x . It now follows that
Eq. (5.7) can be solved in terms of the Hamilton equations

dx

ds
= 2Dp,

dp

ds
= d	h

dx
. (5.10)

Combining these equations we have the second-order ODE

ẍ − 2D	h(x)′ = 0. (5.11)

This takes the form of a Newtonian particle moving in a “potential” V (x) =
−2D	h(x). Given the solution x(s)=φ(s; x, t) with φ(0; x, t)= x0 and φ(t; x, t) =
x , we can then determine G(x, t) according to

G(x, t) = −E(x, t)t + 1

2D

t∫

0

φ̇(s; x, t)2ds. (5.12)

Here

E(x, t) = H(φ̇(s; x, t)/2D, φ(s; x, t)), (5.13)

which is independent of s due to conservation of energy.
For certain choices of the modulation function 	h(x), Eq. (5.11) can be solved

explicitly (Mendez et al. 2003). In particular, suppose that the spine density curve in
Fig. 3 is approximated by a piecewise linear function, in which the density increases
linearly with distance from the soma to some intermediate location κ along the dendrite
and then decreases linearly towards the distal end. Assuming that the right-moving
wave is initiated beyond the point κ , x0 > κ , then we can simply take 	h(x) =
−β(x − x0) for β > 0. Substituting into equation (5.11) and integrating twice with
respect to s using the Cauchy conditions gives

φ(s; x, t) = x0 + (x − x0)s/t + Dβts − Dβs2. (5.14)

The corresponding “energy” function is then

E(x, t) = (x − x0)
2

4Dt2 + k − h + β

2
(x − x0) + β2

4
Dt2 (5.15)

From equation (5.12) we then have

G(x, t) = (x − x0)
2

4Dt
− [

k − h
]

t − β

2
(x − x0)t − β2

12
Dt3. (5.16)
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Fig. 13 Plot of time-dependent variation in wavespeed c given by Eq. (5.17) for various values of the
activation rate k. Other parameters are h = 0.24 s−1 and D = 1 µm2/s. At t = 0, c(0) = 2

√
D(k − h)

We can now determine the wavespeed c by imposing the condition G(x(t), t) = 0.
This leads to a quadratic equation with positive solution

x(t) = x0 + Dβt2 + 2Dt

√
k − h

D
+ β2

3
t2

= x0 + ct

√

1 + 4β2 D2t2

3c2 + Dβt2

with c = 2
√

D(k − h). Finally, differentiating both sides with respect to t yields

c ≡ ẋ(t) = c
√

1 + 
0β2t2 + c
0β
2t2

√
1 + 
0β2t2

+ 2Dβt, (5.17)

where 
0 = 4D2/(3c2). For sufficiently small times such that Dβt 
 1, we have the
approximation

c ≈ c + 2Dβt + 2(Dβt)2

c
. (5.18)

In Fig. 13, we show example plots of the time-dependent wavespeed for various choices
of the activation rate k. It can be seen that there are significant changes in speed over
a time course of 100 s, which is comparable to the time a wave would travel along a
dendrite of a few hundred microns. In principle, it should be possible to test exper-
imentally the predictions of the above analysis by initiating a translocation wave at
different points along a dendrite and determining the corresponding wavespeed.
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6 Discussion

In this paper we have analyzed the effects of heterogeneities in the dendritic spine dis-
tribution at several length scales on the propagation of CaMKII translocation waves
along dendrites. First, we used a homogenization scheme previously applied to the
study of voltage/conductance changes and protein receptor trafficking along spiny
dendrites to explore the effects of spine clustering. We showed that periodically reg-
ular clustering leads to a pulsating wave that can significantly reduce the propagation
time along a dendrite and the threshold for propagation failure. Second, we applied
Hamilton–Jacobi theory of sharp interfaces to analyze the effects of slow variations
in spine density along the length of a dendrite. In particular we obtained an estimate
for the slow temporal variation of the wavespeed.

One of the potential roles of CaMKII translocation waves is in providing a signaling
mechanism for long-range heterosynaptic plasticity (Frey and Morris 1997). Indeed,
Rose et al. (2009) found that glutamatergic AMPA receptors coaccumulate with CaM-
KII in spines following the propagation of such waves. The upregulation of AMPA
receptor numbers in synapses is a well-established mechanism for the expression of
long-term potentiation (LTP) (Malenka and Bear 2004). On the other hand, it has also
been found that inducing LTP at a single synapse activates CaMKII within the spine
containing the synapse but neither induces LTP at nearby synapses nor raises CaM-
KII content in nearby spines (Zhang et al. 2008; Lee et al. 2009). This is consistent
with our previous result that there exists an activation threshold for wave propagation,
which in the case of a homogeneous spine distribution is k = h. As we have shown
in this paper, spine clustering reduces this threshold. One possible mechanism for
wave propagation failure in the presence of weak stimulation is that the latter may
fail to initiate a Ca2+ spike. Recall that we do not model the Ca2+ spike explicitly
since it appears to be much faster than the CaMKII translocation wave (Rose et al.
2009). However, the effect of the Ca2+ spike is included in the model indirectly via
the initial concentration P0 of primed CaMKII. If a weak stimulus fails to initiate a
fast Ca2+ spike, then P0 ≈ 0 for significant portions of the dendrite. In these regions
the activation rate k = k0 P0 ≈ 0 and so will be smaller than the translocation rate h,
leading to wave propagation failure in our model. One regime in which a Ca2+ spike
could fail to propagate would be if the density of spines were too low. Thus, although
low spine densities are conducive to the propagation of translocation waves, the spines
must be sufficiently dense otherwise no wave will be initiated.

There is an additional source of wave propagation failure that is not taken into
account by our continuum model, namely, discreteness effects associated with the
number of activated and primed CaMKII holoenzymes at low CaMKII concentra-
tions. That is, our model tracks the local concentration of CaMKII and not individual
CaMKII holoenzymes. While such an approach simplifies the model, allowing one
to make explicit the manner in which CaMKII translocation waves are propagated, it
does neglect stochastic effects due to fluctuations in the number and location of CaM-
KII holoenzymes. One well known feature of pulled fronts is that they are particularly
sensitive to the effects of such fluctuations in the leading edge of the front. That is,
there is a fundamental quantum of activity within a local population consisting of a
single activated CaMKII molecule. In other words, there is an effective lower cut-off
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within the leading edge of the front. In the case of nonlinear reaction diffusion equa-
tions, such discreteness effects have been shown to have a significant effect on the
asymptotic velocity of a pulled front (Brunet and Derrida 1997; Panja 2004).

Finally, from a more general biological perspective, CaMKII translocation waves
are of interest because they provide an important example of how the dynamic locali-
zation of signaling proteins is used to regulate signal transduction. There have been a
number of suggestions regarding the possible advantages of including a translocation
step in a signaling pathway (Meyer and Shen 2000). First, it can suppress subthresh-
old inputs such as low Ca2+ concentrations by requiring stimuli to be sufficiently
prolonged or strong for translocation to occur. Second, it can delay or prolong a sig-
naling step through control of the assembly and disassembly of signaling complexes
via slow diffusion and binding/unbinding of signaling molecules. Third, it can enhance
specificity by allowing a high degree of regulation in the assembly of signaling com-
plexes.
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