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Front Propagation in Stochastic Neural Fields∗

Paul C. Bressloff† and Matthew A. Webber‡

Abstract. We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field
with excitatory connections. Using a separation of time scales, we represent the fluctuating front in
terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position
at long time scales, and fluctuations in the front profile around its instantaneous position at short
time scales. One major result of our analysis is a comparison between freely propagating fronts and
fronts locked to an externally moving stimulus. We show that the latter are much more robust to
noise, since the stochastic wandering of the mean front profile is described by an Ornstein–Uhlenbeck
process rather than a Wiener process, so that the variance in front position saturates in the long
time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field
that supports a pulled front in the deterministic limit, and show that the wandering of such a front
is now subdiffusive.
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1. Introduction. Front propagation is a topic of ongoing interest in the study of nonequi-
librium systems. Within the biological context, fronts describe a wide variety of processes
including the spread of epidemics, the invasion of species, and biological evolution [44]. One
fundamental result in the theory of deterministic fronts is the difference between fronts prop-
agating into a linearly unstable state and those propagating into a metastable state (a state
that is linearly stable but nonlinearly unstable). In the latter case, the front has a unique
velocity that is obtained by solving the associated PDE in traveling wave coordinates. The
former, on the other hand, supports a continuum of possible velocities and associated travel-
ing wave solutions; the particular velocity selected depends on the initial conditions. Fronts
propagating into unstable states can be further partitioned into two broad categories: the
so-called pulled and pushed fronts [56] emerging from sufficiently localized initial conditions.
Pulled fronts propagate into an unstable state such that the asymptotic velocity is given by
the linear spreading speed v∗, which is determined by linearizing about the unstable state
within the leading edge of the front. That is, perturbations around the unstable state within
the leading edge of the front grow and spread with speed v∗, thus “pulling along” the rest of
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the front. On the other hand, pushed fronts propagate into an unstable state with a speed
greater than v∗, and it is the nonlinear growth within the region behind the leading edge that
pushes the front speeds to higher values.

The properties of a deterministic front also play an important role in the effects of fluc-
tuations (see the review by Panja [46]). In particular, pulled fronts are extremely sensitive
to noise in the leading edge. Fluctuations arise when the underlying physical or biological
substrate consists of discrete constituents interacting on a lattice (intrinsic noise), or when
there are external environmental perturbations (extrinsic noise). In contrast to deterministic
fronts, which asymptotically propagate with a fixed shape and speed, different snapshots of
one particular realization of a fluctuating front will have a different shape, and the position of
the front at a fixed value (level set) will be a stochastic variable. Nevertheless, by performing
an ensemble average over many realizations, it is often possible to represent the fluctuating
front in terms of a fixed front profile whose center of mass moves according to a Langevin
equation with a constant drift velocity v and diffusivity D [43, 55, 47, 3, 54]. However, this
relatively simple picture breaks down in the case of pulled fronts where, for example, the
center of mass exhibits subdiffusive behavior [53]. (For alternative approaches to studying
stochastic traveling waves, see, for example, [23, 42].)

In this paper, we extend the theory of fluctuating fronts to the case of stochastic neural
fields. Neural fields represent the large-scale dynamics of spatially structured networks of
neurons in terms of nonlinear integrodifferential equations, whose associated kernels represent
the spatial distribution of neuronal synaptic connections. Such models provide an important
example of spatially extended dynamical systems with nonlocal interactions. As in the case of
nonlinear PDE models of reaction-diffusion systems, neural fields can exhibit a rich repertoire
of wave phenomena, including solitary traveling fronts, pulses, and spiral waves [26, 19, 13].
They have been used to model wave propagation in cortical slices [48, 51] and in vivo [34]. A
common in vitro experimental method for studying wave propagation is to remove a slice of
brain tissue and bathe it in a pharmacological medium that blocks the effects of inhibition.
Synchronized discharges can then be evoked by a weak electrical stimulus to a local site on the
slice, and each discharge propagates away from the stimulus at a characteristic speed of about
60–90 mm/s [49, 51]. These waves typically take the form of traveling pulses, with the decay of
activity at the trailing edge resulting from some form of local adaptation or refractory process.
On the other hand, a number of phenomena in visual perception involve the propagation of
a traveling front, in which a suppressed visual percept replaces a dominant percept within
the visual field of an observer. A classical example is the wave-like propagation of perceptual
dominance during binocular rivalry [58, 41, 38, 12]. Binocular rivalry is the phenomenon
whereby perception switches back and forth between different images presented to the two
eyes. The resulting fluctuations in perceptual dominance and suppression provide a basis
for noninvasive studies of the human visual system and the identification of possible neural
mechanisms underlying conscious visual awareness [7].

In the case of a scalar neural field equation with purely excitatory connections and a
sigmoidal firing rate function, it can be proven that there exists a traveling front solution with
a unique speed that depends on the firing threshold and the range/strength of synaptic weights
[2, 25]. The wave thus has characteristics typical of a front propagating into a metastable
state. Various generalizations of deterministic front solutions have also been developed in
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order to take into account the effects of network inhomogeneities [9, 21], external stimuli
[30, 27], and network competition in a model of binocular rivalry waves [12]. As far as we
are aware, however, there has been very little work on the effects of fluctuations on front
propagation in neural fields. One notable exception is a study by Brackley and Turner [8],
who consider a specific model of a neural field with a fluctuating threshold. Waves in stochastic
neural fields are also briefly considered by Coombes et al. [22], although their main emphasis
is the effects of quenched noise. Here we develop a general theory of fluctuating fronts in
neural fields with extrinsic multiplicative noise by adapting methods developed previously for
PDEs [43, 55, 47, 3, 54]. Such methods exploit a separation of time scales in which there is a
diffusive-like displacement (wandering) of the front from its uniformly translating position at
long time scales, and fluctuations in the front profile around its instantaneous position at short
time scales. In the case of multiplicative noise under the Stratonovich interpretation, there is
also a renormalization of the front velocity. In sections 2 and 3, we consider fronts propagating
into a metastable state by taking the nonlinear firing rate function to be a sigmoid or Heavisde
function. One major result of our analysis is a comparison between freely propagating fronts
(see section 2) and fronts locked to an externally moving stimulus (see section 3). We show
that the latter are much more robust to noise, since the center of mass of the front wanders
according to an Ornstein–Uhlenbeck process rather than a Wiener process, so that the variance
in front position saturates in the long time limit rather than increasing linearly with time.
In section 4, we consider a neural field equation that supports fronts propagating into an
unstable state, which take the form of pulled rather than pushed fronts. We then show that
multiplicative noise leads to a subdiffusive wandering of the front, as previously found for a
reaction-diffusion system [53].

A few general comments are in order before we proceed. First, there does not yet exist
a rigorous multiscale analysis of neural systems, in which continuum neural fields are derived
from microscopic models of synaptically coupled spiking neurons. (However, some prelimi-
nary steps in this direction have been taken [37, 17, 4, 57].) Such models need to take proper
account of noise-induced fluctuations and statistical correlations between neurons at multiple
spatial and temporal scales. Consequently, current formulations of stochastic neural field the-
ory tend to be phenomenologically based, as highlighted in a recent review [13]. One approach
is to consider a Langevin version of the deterministic neural field equations involving some
form of extrinsic spatiotemporal white noise [36, 28], which is the approach taken here. In
order to make the analysis as general as possible, we take the extrinsic noise to be multi-
plicative in nature and of the Stratonovich rather than Ito form, which is more natural when
considering extrinsic noise as the zero correlation limit of a colored noise process [32]. (We
acknowledge, however, that the appearance of extrinsic noise at the population level may be
more complicated. As shown by Touboul and coworkers, averaging with respect to extrinsic
fluctuations at the single neuron level can lead to a stochastic population model that is an
implicit function of the noise [28, 4, 57]. That is, the drift term in the stochastic differential
equation involves averages with respect to the noise.) An alternative approach is to treat the
deterministic neural field equations as the thermodynamic limit of an underlying master equa-
tion [15, 16, 10, 11]. In the latter case, a diffusion approximation leads to an effective Langevin
equation with multiplicative noise of the Ito form (see section 4.3). A second point is that
we base our analysis on formal perturbation methods developed previously for PDEs, since
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a rigorous mathematical framework is currently lacking. However, we justify our approach a
posteriori by showing that the perturbation approximations agree well with numerical sim-
ulations. Moreover, the fact that we can carry over stochastic PDE methods to neural field
equations is consistent with a number of studies that have shown how neural fields can be
reduced to an equivalent PDE for particular choices of the weight kernel [52, 20, 35, 40].

2. Effects of multiplicative noise on freely propagating fronts.

2.1. Deterministic scalar neural field. Let us begin by briefly reviewing front propagation
in a scalar neural field equation of the form

(2.1) τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)F (u(x′, t))dx′.

Here u(x, t) is a measure of activity within a local population of excitatory neurons at x ∈ R

and time t, τ is a membrane time constant (of order 10 msec), w(x) denotes the spatial
distribution of synaptic connections between local populations, and F (u) is a nonlinear firing
rate function. F is often taken to be a sigmoid function,

(2.2) F (u) =
1

1 + e−γ(u−κ)
,

with gain γ and threshold κ. In the high-gain limit γ → ∞, this reduces to the Heaviside
function

(2.3) F (u) → H(u− κ) =

{
1 if u > κ,
0 if u ≤ κ.

We will assume that the weight distribution is a positive even function of x, w(x) ≥ 0 and
w(−x) = w(x), and that w(x) is a monotonically decreasing function of x for x ≥ 0. A
common choice is the exponential weight distribution

(2.4) w(x) =
1

2σ
e−|x|/σ,

where σ determines the range of synaptic connections. The latter tends to range from 100
μm to 1 mm. We fix the units of time and space by setting τ = 1, σ = 2.

A homogeneous fixed point solution U∗ of (2.1) satisfies

(2.5) U∗ =W0F (U
∗), W0 =

∫ ∞

−∞
w(y)dy.

In the case of a sigmoid function with appropriately chosen gain and threshold, it is straight-
forward to show graphically that there exists a pair of stable fixed points U∗± separated by
an unstable fixed point U∗

0 . In the high gain limit F (U) → H(U − κ) with 0 < κ < W0,
the unstable fixed point disappears and U∗

+ = W0, U
∗− = 0. As originally shown by Amari

[2], an explicit traveling front solution of (2.1) that links U∗
+ and U∗− can be constructed in

the case of a Heaviside nonlinearity. In order to construct such a solution, we introduce the
traveling wave coordinate ξ = x− ct, where c denotes the wave speed, and set u(x, t) = U(ξ)
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with limξ→−∞ U(ξ) = U∗
+ > 0 and limξ→∞ U(ξ) = 0 such that U(ξ) crosses the threshold κ

only once. Since (2.1) is equivariant with respect to uniform translations, we are free to take
the threshold crossing point to be at the origin, U(0) = κ, so that U(ξ) < κ for ξ > 0 and
U(ξ) > κ for ξ < 0. Substituting this traveling front solution into (2.1) with F (u) = H(u−κ)
then gives

(2.6) −cU ′(ξ) + U(ξ) =
∫ 0

−∞
w(ξ − ξ′)dξ′ =

∫ ∞

ξ
w(x)dx ≡W (ξ),

where U ′(ξ) = dU/dξ. Multiplying both sides of the above equation by e−ξ/c and integrating
with respect to ξ leads to the solution

(2.7) U(ξ) = eξ/c
[
κ− 1

c

∫ ξ

0
e−y/cW (y)dy

]
.

Finally, requiring the solution to remain bounded as ξ → ∞ (ξ → −∞) for c > 0 (for c < 0)
implies that κ must satisfy the condition

(2.8) κ =
1

|c|
∫ ∞

0
e−y/|c|W (sign(c)y)dy,

and thus

(2.9) U(ξ) = 1

c

∫ ∞

0
e−y/cW (y + ξ)dy.

Hence, one of the useful aspects of the constructive method is that it allows us to derive
an explicit expression for the wave speed as a function of physiological parameters such as
the firing threshold. In the case of the exponential weight distribution (2.4), the relationship
between wave speed c and threshold κ is

c = c+(κ) ≡ 1

2κ
[1− 2σκ] for κ < 0.5,

(2.10)

c = c−(κ) ≡ σ

2

1− 2κ

1− κ
for 0.5 < κ < 1.

This establishes the existence of a unique front solution for fixed κ, which travels to the right
(c > 0) when 0 < κ < 0.5 and travels to the left (c < 0) when 1 > κ > 0.5. Using Evans
function techniques, it can also be shown that the traveling front is stable [59, 18]. Finally,
given the existence of a traveling front solution for a Heaviside rate function, it is possible
to prove the existence of a unique front in the case of a smooth sigmoid nonlinearity using a
continuation method [25].

2.2. Stochastic neural field with multiplicative noise. Several recent studies have con-
sidered stochastic versions of neural field equations such as (2.1) that are based on a corre-
sponding Langevin equation formulation [36, 28]. The extrinsic noise is typically taken to be
additive, that is, independent of the activity state u. However, it is also possible to consider
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multiplicative sources of noise arising from parametric fluctuations in the firing threshold, for
example [8]. Motivated by these examples, we consider the following Langevin equation for
the stochastic activity variable U(x, t):1

(2.11) dU(x, t) =

[
−U(x, t) +

∫ ∞

−∞
w(x− y)F (U(y, t))dy

]
dt+ ε1/2g(U(x, t))dW (x, t).

We assume that dW (x, t) represents an independent Wiener process such that

(2.12) 〈dW (x, t)〉 = 0, 〈dW (x, t)dW (x′, t′)〉 = 2C([x− x′]/λ)δ(t − t′)dtdt′,

where 〈·〉 denotes averaging with respect to the Wiener process. Here λ is the spatial cor-
relation length of the noise such that C(x/λ) → δ(x) in the limit λ → 0, and ε determines
the strength of the noise, which is assumed to be weak. Following standard formulations of
Langevin equations [32], the multiplicative noise term is taken to be of Stratonovich form in
the case of extrinsic noise. Note, however, that an alternative formulation of stochastic neural
field theory has been developed in terms of a neural master equation [15, 16, 10, 11], in which
the underlying deterministic equations are recovered in the thermodynamic limit N → ∞,
where N is a measure of the system size of each local population. In the case of large but
finite N , a Kramers–Moyal expansion of the master equation yields a Langevin neural field
equation with multiplicative noise of the Ito form [10, 11].

The effects of multiplicative noise on front propagation can be analyzed using methods
previously developed for reaction-diffusion equations [43, 55, 47, 3, 54]; we will follow the par-
ticular formulation of Armero et al. [3]. The starting point of such methods is the observation
that multiplicative noise in the Stratonovich sense leads to a systematic shift in the speed
of the front (assuming a front of speed c exists when ε = 0). This is a consequence of the
fact that 〈g(U)dW 〉 
= 0 even though 〈dW 〉 = 0. The former average can be calculated using
Novikov’s theorem [45]:

(2.13) ε1/2〈g(U)dW 〉 = εC(0)〈g′(U)g(U)〉dt.
An alternative way to derive the above result is to Fourier transform (2.11) and evaluate
averages using the corresponding Fokker–Planck equation in Fourier space (see the appendix
and [54]). Note that in the limit λ → 0, C(0) → 1/Δx, where Δx is a lattice cut-off, which
can be identified with the step size of the spatial discretization scheme used in numerical
simulations. Following [3], it is convenient to rewrite (2.11) so that the fluctuating term has
zero mean:

(2.14) dU(x, t) =

[
h(U(x, t)) +

∫ ∞

−∞
w(x− y)F (U(y, t))dy

]
dt+ ε1/2dR(U, x, t),

where

(2.15) h(U) = −U + εC(0)g′(U)g(U)

1More precisely, this is a stochastic integrodifferential equation, whereas the corresponding Langevin equa-
tion is obtained by dividing through by dt after setting dW (x, t) = ξ(x, t)dt. With a slight abuse of notation,
we will refer to (2.11) and related equations as Langevin equations.
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and

(2.16) dR(U, x, t) = g(U)dW (x, t) − ε1/2C(0)g′(U)g(U)dt.

The stochastic process R has zero mean (so does not contribute to the effective drift, that is,
the average wave speed) and variance

(2.17) 〈dR(U, x, t)dR(U, x′, t)〉 = 〈g(U(x, t))dW (x, t)g(U(x′ , t))dW (x′, t)〉+O(ε1/2).

The next step in the analysis is to assume that the fluctuating term in (2.14) generates two
distinct phenomena that occur on different time scales: a diffusive-like displacement of the
front from its uniformly translating position at long time scales, and fluctuations in the front
profile around its instantaneous position at short time scales [43, 55, 47, 3, 54]. In particular,
following [3], we express the solution U of (2.14) as a combination of a fixed wave profile U0

that is displaced by an amount Δ(t) from its uniformly translating position ξ = x− cεt and a
time-dependent fluctuation Φ in the front shape about the instantaneous position of the front:

(2.18) U(x, t) = U0(ξ −Δ(t)) + ε1/2Φ(ξ −Δ(t), t).

The wave profile U0 and associated wave speed cε are obtained by solving the modified deter-
ministic equation

(2.19) −cε dU0

dξ
− h(U0(ξ)) =

∫ ∞

−∞
w(ξ − ξ′)F (U0(ξ

′))dξ′.

Both cε and U0 depend nontrivially on the noise strength ε due to the ε-dependence of the
function h; see (2.15). Thus, cε 
= c for ε > 0 and c0 = c, where c is the speed of the front in
the absence of multiplicative noise. It also follows that the expansion (2.18) is not equivalent
to a standard small-noise expansion in ε. Equation (2.19) is chosen so that, to leading order,
the stochastic variable Δ(t) undergoes unbiased Brownian motion with a diffusion coefficient
D(ε) = O(ε) (see below). Thus Δ(t) represents the effects of slow fluctuations, whereas Φ
represents the effects of fast fluctuations.

The next step is to substitute the decomposition (2.18) into (2.14) and expand to first
order in O(ε1/2):

−cεU ′
0(ξ −Δ(t))dt− U ′

0(ξ −Δ(t))dΔ(t) + ε1/2
[
dΦ(ξ −Δ(t), t)− cεΦ

′(ξ −Δ(t), t)dt
]

− ε1/2Φ′(ξ −Δ(t), t)dΔ(t)

= h(U0(ξ −Δ(t)))dt+ h′(U0(ξ −Δ(t)))ε1/2Φ(ξ −Δ(t), t)dt

+

∫ ∞

−∞
w(ξ − ξ′)

(
F (U0(ξ

′ −Δ(t))) + F ′(U0(ξ
′ −Δ(t)))ε1/2Φ(ξ′ −Δ(t), t)

)
dξ′dt

+ ε1/2dR(U0(ξ −Δ(t)), ξ, t) +O(ε).

Imposing (2.19), after shifting ξ → ξ −Δ(t), and dividing through by ε1/2 then gives

dΦ(ξ −Δ(t), t) = L̂ ◦Φ(ξ −Δ(t), t)dt+ ε−1/2U ′
0(ξ −Δ(t))dΔ(t)

+ dR(U0(ξ −Δ(t), ξ, t) +O(ε1/2),(2.20)
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where L̂ is the non–self-adjoint linear operator

(2.21) L̂ ◦A(ξ) = cε
dA(ξ)

dξ
+ h′(U0(ξ))A(ξ) +

∫ ∞

−∞
w(ξ − ξ′)F ′(U0(ξ

′))A(ξ′)dξ′

for any function A(ξ) ∈ L2(R). Finally, for all terms in (2.20) to be of the same order we
require that Δ(t) = O(ε1/2). It then follows that U0(ξ −Δ(t)) = U0(ξ) +O(ε1/2), and (2.20)
reduces to

(2.22) dΦ(ξ, t) = L̂ ◦ Φ(ξ, t)dt+ ε−1/2U ′
0(ξ)dΔ(t) + dR(U0(ξ), ξ, t) +O(ε1/2).

It can be shown that, for a sigmoid firing rate function and exponential weight distribution,
the operator L̂ has a one-dimensional null space spanned by U ′

0(ξ) [25]. (The fact that U ′
0(ξ)

belongs to the null space follows immediately from differentiating (2.19) with respect to ξ.)
We then have the solvability condition for the existence of a nontrivial solution of (2.22),
namely, that the inhomogeneous part is orthogonal to all elements of the null space of the
adjoint operator L̂∗. The latter is defined with respect to the inner product

(2.23)

∫ ∞

−∞
B(ξ)L̂A(ξ)dξ =

∫ ∞

−∞

[
L̂∗B(ξ)

]
A(ξ)dξ,

where A(ξ) and B(ξ) are arbitrary integrable functions. Hence,

(2.24) L̂∗B(ξ) = −cε dB(ξ)

dξ
+ h′(U0(ξ))B(ξ) + F ′(U0(ξ))

∫ ∞

−∞
w(ξ − ξ′)B(ξ′)dξ′.

It can be proven that L̂∗ also has a one-dimensional null space [25]; that is, it is spanned by
some function V(ξ). Thus taking the inner product of both sides of (2.22) with respect to
V(ξ) leads to the solvability condition

(2.25)

∫ ∞

−∞
V(ξ)

[
U ′
0(ξ)dΔ(t) + ε1/2dR(U0, ξ, t)

]
dξ = 0.

Thus Δ(t) satisfies the stochastic differential equation (SDE)

(2.26) dΔ(t) = −ε1/2
∫∞
−∞ V(ξ)dR(U0, ξ, t)dξ∫∞

−∞ V(ξ)U ′
0(ξ)dξ

.

Using the lowest order approximation dR(U0, ξ, t) = g(U0(ξ))dW (ξ, t), we deduce that (for
Δ(0) = 0)

(2.27) 〈Δ(t)〉 = 0, 〈Δ(t)2〉 = 2D(ε)t,

where D(ε) is the the effective diffusivity

D(ε) = ε

∫∞
−∞

∫∞
−∞ V(ξ)V(ξ′)g(U0(ξ))g(U0(ξ

′))〈dW (ξ, t)dW (ξ′, t)〉dξdξ′[∫∞
−∞ V(ξ)U ′

0(ξ)dξ
]2

= ε

∫∞
−∞ V(ξ)2g2(U0(ξ))dξ[∫∞

−∞ V(ξ)U ′
0(ξ)dξ

]2 .(2.28)
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Note that since Δ(t) = O(ε1/2), equation (2.18) implies that U(x, t) = U0(x− cεt) +O(ε1/2).
Hence, averaging with respect to the noise shows that 〈U(x, t)〉 = U0(x − cεt) + O(ε1/2).
Thus, in the case of weak noise, averaging over many realizations of the stochastic wave front
generates a mean front whose speed is approximately equal to cε. This is indeed found to be
the case numerically; see below.

2.3. Explicit results for the Heaviside rate function. We now illustrate the above analysis
by considering a particular example where the effective speed cε and diffusion coefficient D(ε)
can be calculated explicitly. That is, we take g(U) = g0U for the multiplicative noise term
and set F (U) = H(U − κ). (The constant g0 has units of

√
length/time.) The deterministic

equation (2.19) for the fixed profile U0 then reduces to

(2.29) −cε dU0

dξ
+ U0(ξ)γ(ε) =

∫ ∞

−∞
w(ξ − ξ′)H(U0(ξ

′)− κ)dξ′,

with

(2.30) γ(ε) = (1− εg20C(0)).

This is identical in structure to (2.6) for the deterministic neural field modulo the rescaling
of the decay term. The analysis of the wave speeds proceeds along lines similar to those in
section 2.1. Thus, multiplying both sides of (2.29) by e−ξγ(ε)/cε and integrating with respect
to ξ gives

(2.31) U(ξ) = eξγ(ε)/cε
[
κ− 1

cε

∫ ξ

0
e−yγ(ε)/cεW (y)dy

]
.

Finally, requiring the solution to remain bounded as ξ → ∞ (ξ → −∞) for cε > 0 (for cε < 0)
implies that κ must satisfy the condition

(2.32) κ =
1

|cε|
∫ ∞

0
e−yγ(ε)/|cε|W (sign(cε)y)dy.

Hence, in the case of the exponential weight distribution (2.4), we have

(2.33) cε = γ(ε)c+(γ(ε)κ) =
σ

2κ
[1− 2κγ(ε)]

for cε > 0, and

(2.34) cε = γ(ε)c−(γ(ε)κ) =
σγ(ε)

2

1− 2κγ(ε)

1− κγ(ε)

for cε < 0 with c±(κ) defined in (2.10). Assuming that 0 ≤ γ(ε) ≤ 1, we see that multiplicative
noise shifts the effective velocity of front propagation in the positive ξ direction.

In order to calculate the diffusion coefficient, it is first necessary to determine the null
vector V(ξ) of the adjoint linear operator L̂∗ defined by (2.24). Setting F (U) = H(U −κ) and
g(U) = g0U , the null vector V satisfies the equation

(2.35) cεV ′(ξ) + γ(ε)V(ξ) = − δ(ξ)

U ′
0(0)

∫ ∞

−∞
w(ξ′)V(ξ′)dξ′.
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This can be solved explicitly to give [9]

(2.36) V(ξ) = −H(ξ) exp (−Γ(ε)ξ) , Γ(ε) =
γ(ε)

cε
.

We have used the fact that the solution to (2.29) is of the form

(2.37) U0(ξ) =
1

cε

∫ ∞

0
e−Γ(ε)yW (y + ξ)dy,

with W (ξ) defined in (2.6), and hence,

(2.38) U ′
0(ξ) = − 1

cε

∫ ∞

0
e−Γ(ε)yw(y + ξ)dy.

In the case of an exponential weight distribution, U0(ξ) can be evaluated explicitly to give

(2.39) U0(ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2cε

σe−ξ/σ

1 + σΓ(ε)
, ξ ≥ 0,

1
2cε

[
2eξΓ(ε)

Γ(ε)
(−1 + σ2Γ(ε)2

) + 2
Γ(ε)

+ σeξ/σ

1− σΓ(ε)

]
, ξ < 0.

Using (2.36), equation (2.28) reduces to the form

(2.40) D(ε) = ε

∫∞
0 e−2Γ(ε)ξU0(ξ)

2dξ[∫∞
0 e−Γ(ε)ξU ′

0(ξ)dξ
]2 ,

which can be evaluated explicitly using (2.39) to obtain

(2.41) D(ε) =
1

2
εσg20(1 + σΓ(ε)).

In Figure 1 we show the temporal evolution of a single stochastic wave front, which is
obtained by numerically solving the Langevin equation (2.11) for F (U) = H(U − κ), g(U) =
U , and an exponential weight distribution w. In order to numerically calculate the mean
location of the front as a function of time, we carry out a large number of level set position
measurements. That is, we determine the positions Xa(t) such that U(Xa(t), t) = a for various
level set values a ∈ (0.5κ, 1.3κ), and then define the mean location to be X(t) = E[Xa(t)],
where the expectation is first taken with respect to the sampled values a and then averaged
over N trials. The corresponding variance is given by σ2X(t) = E[(Xa(t)− X̄(t))2]. In Figure
2 we plot X(t) and σ2X(t) as functions of t. It can be seen that both vary linearly with t,
consistent with the assumption that there is a diffusive-like displacement of the front from its
uniformly translating position at long time scales. The slopes of these curves then determine
the effective wave speed and diffusion coefficient according to X(t) ∼ cεt and σ

2
X(t) ∼ 2D(ε)t.

In Figure 3 we plot the numerically estimated speed and diffusion coefficient for various values
of the threshold κ and compare these to the corresponding theoretical curves obtained using
the above analysis. It can be seen that there is excellent agreement with our theoretical
predictions, provided that κ is not too large. As κ → 0.5, the wave speed decreases toward
zero so that the assumption of relatively slow diffusion breaks down.
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Figure 1. Numerical simulation showing the propagation of a front solution of the stochastic neural field
equation (2.11) for Heaviside weight function F (U) = H(U − κ) with κ = 0.35, exponential weight function
(2.4) with σ = 2, and multiplicative noise g(U) = U . Noise strength ε = 0.005, and C(0) = 10. The wave
profile is shown at successive times (a) t = 0, (b) t = 12, (c) t = 18, and (d) t = 24, with the initial profile at
t = 0 given by (2.37). In numerical simulations we take the discrete space and time steps Δx = 0.1, Δt = 0.01.
The deterministic part U0 of the stochastic wave is shown by the blue curves, and the corresponding solution in
the absence of noise (ε = 0) is shown by the red curves.
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Figure 2. Plot of (a) mean X(t) and (b) variance σ2
X(t) of front position as functions of time, averaged

over N = 4096 trials. Same parameter values as in Figure 1.

3. Effects of multiplicative noise on stimulus-locked fronts.

3.1. Stimulus-locked fronts. So far we have assumed that the underlying deterministic
neural field equation is homogeneous in space, so that there exists a family of traveling front
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Figure 3. Plot of (a) wave speed cε and (b) diffusion coefficient D(ε) as functions of threshold κ. Numerical
results (solid dots) are obtained by averaging over N = 4096 trials starting from the initial condition given by
(2.37). Corresponding theoretical predictions (solid curves) for cε and D(ε) are based on (2.33) and (2.40),
respectively. Other parameters as in Figure 1.

solutions related by a uniform shift. Now suppose that there exists an external front-like input
that propagates at a uniform speed v, so that the deterministic equation (2.1) becomes

(3.1)
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)F (u(x′, t))dx′ + I(x− vt),

where the input is taken to be a positive, bounded, monotonically decreasing function of
amplitude I0 = I(−∞)− I(∞). Previously we have shown that the resulting inhomogeneous
neural field equation can support a traveling front that locks to the stimulus, provided that
the amplitude of the stimulus is sufficiently large [30]. Consider, in particular, the case of a
Heaviside firing rate function F (u) = H(u − κ). (See [27] for a recent extension to the case
of a smooth sigmoid function F .) We seek a traveling wave solution u(x, t) = U(ξ), where
ξ = x− vt and U(ξ0) = κ at a single threshold crossing point ξ0 ∈ R. The front is assumed to
travel at the same speed as the input (stimulus-locked front). If I0 = 0, then we recover the
homogeneous equation (2.1) and ξ0 becomes a free parameter, whereas the wave propagates
at the natural speed c(κ) given by (2.10). Substituting the front solution into (3.1), we have

(3.2) −vdU(ξ)
dξ

= −U(ξ) +
∫ ξ0

−∞
w(ξ − ξ′)dξ′ + I(ξ).

This can be solved for v > 0 by multiplying both sides by the integrating factor v−1e−vξ and
integrating over the interval [ξ,∞) with U(ξ) → 0 as ξ → ∞ to give

U(ξ) = 1

v

∫ ∞

ξ
e(ξ−ξ′)/v [W (ξ′ − ξ0) + I(ξ′)]dξ′,

withW (ξ) defined according to (2.6). Similarly, for v < 0 we multiply by the same integrating
factor and then integrate over (−∞, ξ] with U(ξ) →W0 as ξ → −∞ to find

U(ξ) = −1

v

∫ ξ

−∞
e(ξ−ξ′)/v[W (ξ′ − ξ0) + I(ξ′)]dξ′.
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The threshold crossing condition U(ξ0) = κ then determines the position ξ0 of the front relative
to the input as a function of speed v, input amplitude I0, and threshold κ.

As a specific example, suppose that I(ζ) = I0H(−ζ) and w(x) is the exponential weight
distribution (2.4). The threshold condition reduces to

(3.3) κ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ

2(σ + v)
+

⎧⎨⎩
0, ξ0 ≥ 0,

I0(1− eξ0/v), ξ0 < 0,

⎫⎬⎭ v > 0;

σ + 2|v|
2(σ + |v|) +

⎧⎨⎩
I0e

ξ0/v, ξ0 > 0,

I0, ξ0 ≤ 0,

⎫⎬⎭ v < 0.

Note that in the absence of any input (I0 = 0), we recover (2.10) with v → c(κ), the natural
wave speed. Equation (3.3) for I0 > 0 can then be used to determine the regions of the
(v, I0)-parameter subspace for which stimulus-locked waves exist. Let us first consider the
case v > 0. If ξ0 ≥ 0, then κ = σ/[2(σ + v)], which implies that stimulus-locking occurs only
when the input speed equals the natural wave speed, that is, v = c+(κ) for 0 < κ < 1

2 and
ξ0 > 0. There are infinitely many such waves, which are parameterized by ξ0 ∈ [0,∞). This
degeneracy is a consequence of using the Heaviside input and would not occur if a continuous,
strictly monotonic input were used; however, the analysis is considerably more involved [27].
On the other hand, if ξ0 < 0, then κ = σ/[2(σ + v)] + I0(1− eξ0/v), which can be inverted to
solve for ξ0 as a function of v:

ξ0(v) = v ln

[
1− 1

I0

(
κ− σ

2(σ + v)

)]
.

Since ξ0 < 0 and v > 0, it follows that solutions exist only if

(3.4) 2(κ − I0) <
σ

σ + v
≤ 2κ.

The right inequality of (3.4) implies that if κ < 1
2 , then v > c+(κ), where c+(κ) is the wave

speed of freely propagating fronts; see (2.10). Similarly, the left inequality implies that if
I0 < κ, then 0 < v < c+(κ − I0). Hence, for 0 < κ ≤ 1

2 we obtain the existence regions
in the (v, I0)-plane shown in Figure 4(a). The left boundary is given by v = c+(κ), and the
right boundary by v = c+(κ− I0). The two boundaries form a tongue that emerges from the
natural speed c+(κ) at I0 = 0.

Now consider the case v < 0. For ξ0 < 0 we have the threshold condition κ = (σ +
2|v|)/(2(σ + |v|)) + I0, which implies that v = c−(κ − I0) < 0. Again we have an infinite
family of waves corresponding to a single speed. Since |v| ≥ 0, such solutions exist only
for κ − 1 < I0 < κ − 1/2. On the other hand, for ξ0 ≥ 0 we have the threshold condition
κ = (σ + 2|v|)/(2(σ + |v|)) + I0e

ξ0/v , which can be inverted to give

ξ0(v) = v ln

[
1

I0

(
κ− σ + 2|v|

2(σ + |v|)
)]

.
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Figure 4. Existence regions for stimulus-locked traveling fronts in the (I0, v)-plane (gray) for various
thresholds κ: (a) κ = 0.5, (b) κ = 0.95, (c) κ = 1.25.

Since v < 0 and ξ0 ≥ 0, it follows that waves exist only for v satisfying

(3.5) κ− I0 ≤ σ + 2|v|
2(σ + |v|) < κ.

The right inequality of (3.5) implies that if 1
2 < κ < 1, then c−(κ) < v < 0. Thus, for

1/2 < κ < 1 we obtain the existence region shown in Figure 4(b); the left boundary is given
by v = c−(κ), and the right boundary by v = c−(κ − I0) for v < 0 and v = c+(κ − I0) for
v > 0. Again there is a tongue with tip at the natural speed. For κ > 1 the left boundary
disappears, and one finds stimulus-locked waves only when I0 > κ − 1, i.e., when there no
longer exist natural waves. The left inequality of (3.5) implies that if 1/2 < κ− I0 < 1, then
v < c−(κ− I0) < 0, whereas if κ− I0 > 1, then no solution exists; see Figure 4(c).

In summary, the results of Figure 4 imply that if the threshold κ is chosen so that there
exists a traveling front of speed c in the absence of a stimulus, then stimulus-locking occurs,
provided that the speed v of the stimulus satisfies v ≥ c. Moreover, the minimum stimulus
amplitude I0(v) for which locking occurs increases monotonically with v and I0(c) = 0. On
the other hand, if a traveling front does not exist in the absence of a stimulus, then stimulus
locking occurs for all v with I0(v) > 0 and I0(v) an increasing function of v.

3.2. Locking in the presence of multiplicative noise. We now extend the analysis of
section 2 in order to determine the effects of multiplicative noise on stimulus-locked fronts,
and show that diffusive-like behavior found for freely propagating fronts no longer holds.
Incorporating the external input into the Langevin equation (2.11) gives

dU(x, t) =

[
−U(x, t) +

∫ ∞

−∞
w(x− y)F (U(y, t))dy + I(x− vt)

]
dt

+ ε1/2g(U(x, t))dW (x, t).(3.6)
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Applying (2.13), we then rewrite (3.6) so that the fluctuating term has zero mean:

(3.7) dU(x, t) =

[
h(U(x, t)) +

∫ ∞

−∞
w(x− y)F (U(y, t))dy + I(x− vt)

]
dt+ ε1/2dR(U, x, t),

where h and R are given by (2.15) and (2.16), respectively. Proceeding along lines similar to
our analysis of freely propagating fronts, we express the solution U of (3.7) as a combination
of a fixed wave profile U0, that is displaced by an amount Δ(t) from its uniformly translating
mean position ξ = x − vt, and a time-dependent fluctuation Φ in the front shape about the
instantaneous position of the front:

(3.8) U(x, t) = U0(ξ −Δ(t)) + ε1/2Φ(ξ −Δ(t), t).

We are assuming that the fixed profile U0 is locked to the stimulus (has speed v). However,
multiplicative noise still has an effect on U0 by generating an ε-dependent threshold crossing
point ξε such that U0(ξε) = κ.

Substituting (3.8) into (3.7) and taking averages gives to leading order the following de-
terministic equation for U0:

(3.9) −vdU0

dξ
− h(U0(ξ))− I(ξ) =

∫ ∞

−∞
w(ξ − ξ′)F (U0(ξ

′))dξ′.

Note that U0 depends nontrivially on the noise strength ε due to the ε-dependence of the
function h; see (2.15). Proceeding to the next order and imposing (3.9), we find that Δ(t) =
O(ε1/2) and

(3.10) dΦ(ξ, t) = L̂ ◦Φ(ξ, t)dt+ ε−1/2U ′
0(ξ)dΔ(t) + dR(U0, ξ, t) + ε−1/2I ′(ξ)Δ(t)dt,

where L̂ is the non–self-adjoint linear operator (2.21) with cε → v. The last term on the right-
hand side of (3.10) arises from the fact that, in (3.8), U0 and Φ are expressed as functions of
ξ−Δ(t), so that we have made the approximation I(ξ) = I(ξ −Δ(t) +Δ(t)) ≈ I(ξ −Δ(t)) +
I ′(ξ − Δ(t))Δ(t). We then have the solvability condition for the existence of a nontrivial
solution of (3.10), namely, that the inhomogeneous part is orthogonal to the null vector V(ξ)
of the adjoint operator L̂∗ defined by (2.24) with cε → v. Taking the inner product of both
sides of (3.10) with respect to V(ξ) thus leads to the solvability condition

(3.11)

∫ ∞

−∞
V(ξ)

[
U ′
0(ξ)dΔ(t) + I ′(ξ)Δ(t)dt+ ε1/2dR(U0, ξ, t)

]
dξ = 0.

It follows that, to leading order, Δ(t) satisfies the Ornstein–Uhlenbeck equation

(3.12) dΔ(t) +AΔ(t)dt = dŴ (t),

where

(3.13) A =

∫∞
−∞ V(ξ)I ′(ξ)dξ∫∞
−∞ V(ξ)U ′

0(ξ)dξ
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and

(3.14) Ŵ (t) = −ε1/2
∫∞
−∞ V(ξ)g(U0(ξ))W (ξ, t)dξ∫∞

−∞ V(ξ)U ′
0(ξ)dξ

.

Note that A > 0 for I0 > 0, since both U0(ξ) and I(ξ) are monotonically decreasing functions
of ξ. Moreover,

(3.15) 〈dŴ (t)〉 = 0, 〈dŴ (t)dŴ (t)〉 = 2D(ε)dt,

with D(ε) given by (2.28). Using standard properties of an Ornstein–Uhlenbeck process [32],
we conclude that

(3.16) 〈Δ(t)〉 = Δ(0)e−At, 〈Δ(t)2〉 − 〈Δ(t)〉2 = D(ε)

A

[
1− e−2At

]
.

In particular, the variance approaches a constant D(ε)/A in the large t limit.

3.3. Heaviside rate function. In order to illustrate the above analysis, we take g(U) =
g0U for the multiplicative noise term and set F (U) = H(U − κ). The deterministic equation
(3.9) for the profile U0 then reduces to

(3.17) −vdU0

dξ
+ U0(ξ)[1− εg20C(0)] + I(ξ) =

∫ ∞

−∞
w(ξ − ξ′)H(U0(ξ

′)− κ)dξ′.

Proceeding as in section 3.1, we can explicitly calculate the existence regions for stimulus-
locked fronts when I(ξ) = I0H(−ξ), that is, for a step function input of speed v and amplitude
I0. Setting γ(ε) = 1 − εg20C(0) with 0 < γ(ε) ≤ 1, and introducing the threshold crossing
point ξε for which U0(ξε) = κ, we derive a set of threshold conditions similar to those in (3.3)
under the rescalings κ→ ηγ(ε) and v → v/γ(ε):

(3.18) γ(ε)κ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ

2(σ + v/γ(ε))
+

⎧⎨⎩
0, ξ0 ≥ 0,

I0(1− eγ(ε)ξ0/v), ξ0 < 0,

⎫⎬⎭ v > 0;

σ + 2|v|/γ(ε)
2(σ + |v|/γ(ε)) +

⎧⎨⎩
I0e

γ(ε)ξ0/v, ξ0 > 0,

I0, ξ0 ≤ 0,

⎫⎬⎭ v < 0.

It follows that the boundaries of the existence tongues are now determined by the modified
functions γ(ε)c±(γ(ε)κ − I0). The resulting ε-dependent shift in the existence tongues is
illustrated in Figure 5.

In Figure 6 we show the temporal evolution of a single stimulus-locked front, which is
obtained by numerically solving the Langevin equation (3.6) for F (U) = H(U−κ), g(U) = U ,
and an exponential weight distribution w. Numerically speaking, it is convenient to avoid
discontinuities in the input by taking I(x, t) = I0Erfc[x − vt] rather than using a Heaviside
function. Next we determine the mean X(t) and variance σ2X(t) of the position of the front
by averaging over level sets along lines identical to those in section 2.3. The results are shown
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Figure 5. Plot of existence regions of a stimulus-locked front without noise (γ = 1, dark blue) and in the
presence of noise (γ = 0.9, light blue) with overlapping regions indicated by medium blue. (a) κ = 0.95, (b)
κ = 1.25. Stimulus taken to be of the form I(x, t) = I0H(−ξ), ξ = x−vt, with amplitude I0 and speed v. Other
parameter values as in Figure 1.

0.0

(a)

50403020100 x 50403020100 x

50403020100 x 50403020100 x

2.0

1.5

1.0

0.5

0.0

U

4.0

3.0

2.0

1.0

U

0.0

4.0

3.0

2.0

1.0

U

(b)

(c) (d)

0.0

3.0

2.0

1.0

U

Figure 6. Numerical simulation showing the propagation of a stimulus-locked wavefront solution (black
curves) of the stochastic neural field equation (3.6) for Heaviside weight function F (U) = H(U − κ) with
κ = 0.35, exponential weight function (2.4) with σ = 2, and multiplicative noise g(U) = U . The external input
(blue curves) is taken to be of the form I(x, t) = I0Erfc[x − vt] with amplitude I0 = 0.4 and speed v = 1.5.
Noise strength ε = 0.005 and C(0) = 10. The wave profile is shown at successive times (a) t = 0, (b) t = 6,
(c) t = 12, and (d) t = 24, with the initial profile at t = 0 given by the solution U0 of (3.9). In numerical
simulations we take the discrete space and time steps Δx = 0.1, Δt = 0.01.
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Figure 8. Plot of mean wave speed c̄ as a function of threshold κ. Other parameters as in Figure 7.
Horizontal curve indicates speed v of stimulus. Stimulus-locked waves do not exist for κ < 0.30, which explains
why the data point at κ = 0.30 is an outlier.

in Figure 7. It can be seen that, as predicted by the analysis, X(t) varies linearly with t
with a slope equal to the stimulus speed v = 1.5. Moreover, the variance σ2X(t) approaches a
constant value as t → ∞, which is comparable to the theoretical value D(ε)/A evaluated for
the given input. Thus, we find that stimulus-locked fronts are much more robust to noise than
are freely propagating fronts, since the variance of the mean position saturates as t → ∞.
Consequently, stimulus-locking persists in the presence of noise over most of the parameter
range for which stimulus-locking is predicted to occur. This is further illustrated in Figure 8,
where we plot the mean speed of the wave as a function of the threshold κ.

4. Neural fields and pulled fronts. Neural field equations with a sigmoidal or Heaviside
nonlinearity tend to support a pair of stable spatially uniform fixed points (corresponding
to low and high activity states, respectively) so that a front solution linking these states
propagates into a (meta)stable state rather than an unstable state. However, it is possible
to construct a neural field equation in which the low activity state is unstable. Consider, for
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example, the model

(4.1) τ
∂a(x, t)

∂t
= −a(x, t) + F

(∫ ∞

−∞
w(x− x′)a(x′, t)dx′

)
.

In contrast to (2.1), in which u(x, t) represents a local population current or voltage, the field
a(x, t) represents a local population firing rate. (For a detailed discussion of different neural
field representations, see the reviews [26, 13].) In addition to the convolution integral now
being inside the nonlinear rate function F , we have the additional constraint that a(x, t) ≥ 0
for all (x, t). Note that the restriction to positive values of a is a feature shared with population
models in ecology or evolutionary biology, for example, where the corresponding dependent
variables represent number densities. Indeed, (4.1) has certain similarities with a nonlocal
version of the equation of Fisher, Kolmogorov, and coworkers (F-KPP), which takes the form
[33, 6]

(4.2) τ
∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
+ μp(x, t)

(
1−

∫ ∞

−∞
K(x− x′)p(x′, t)dx′

)
.

One major difference from a mathematical perspective is that (4.2) supports traveling fronts
even when the range of the interaction kernel K goes to zero, that is, K(x) → δ(x), since we
recover the standard local F-KPP equation [29, 39]. In particular, as the nonlocal interactions
appear nonlinearly in (4.2), they do not contribute to the linear spreading velocity in the
leading edge of the front. On the other hand, nonlocal interactions play a necessary role in
the generation of fronts in the neural field equation (4.1).

4.1. Wave speed and asymptotic convergence. Suppose that F (a) in (4.1) is a positive,
bounded, monotonically increasing function of a with F (0) = 0, lima→0+ F

′(a) = 1, and
lima→∞ F (a) = κ. For concreteness, we take

(4.3) F (a) =

⎧⎨⎩
0, a ≤ 0,
a, 0 < a ≤ κ,
κ, a > κ.

A homogeneous fixed point solution A∗ of (4.1) satisfies

(4.4) A∗ = F (W0A
∗), W0 =

∫ ∞

−∞
w(y)dy.

In the case of the given piecewise linear firing rate function, we find that if W0 > 1, then there
exists an unstable fixed point at A∗ = 0 and a stable fixed point at A∗ = κ. The construction
of a front solution linking the stable and unstable fixed points differs considerably from that
considered in section 2. Following the PDE theory of fronts propagating into unstable states
[56], we expect there to be a continuum of front velocities and associated traveling wave
solutions. A conceptual framework for studying such solutions is the linear spreading velocity
v∗, which is the asymptotic rate with which an initial localized perturbation spreads into
an unstable state based on the linear equations obtained by linearizing the full nonlinear
equations about the unstable state. Thus, consider a traveling wave solution A(x − ct) of
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(4.1) with A(ξ) → κ as ξ → −∞ and A(ξ) → 0 as ξ → ∞. One can determine the range
of velocities c for which such a solution exists by assuming that A(ξ) ≈ e−λξ for sufficiently
large ξ. The exponential decay of the front suggests that we linearize (4.1), which in traveling
wave coordinates (with τ = 1) takes the form

(4.5) −cdA(ξ)

dξ
= −A(ξ) +

∫ ∞

−∞
w(ξ − ξ′)A(ξ′)dξ′.

However, in order to make the substitution A(ξ) ≈ e−λξ we need to restrict the integration
domain of ξ′ to the leading edge of the front. Suppose, for example that w(x) is given by the
Gaussian distribution

(4.6) w(x) =
W0√
2πσ2

e−x2/2σ2
.

Given the fact that the front solution A(ξ) is bounded, we introduce a cut-off X with σ �
X � ξ and approximate (4.5) by

(4.7) −cdA(ξ)

dξ
= −A(ξ) +

∫ ξ+X

ξ−X
w(ξ − ξ′)A(ξ′)dξ′.

Substituting the exponential solution A(ξ) ≈ e−λξ into (4.7) then yields the dispersion relation
c = c(λ) with

(4.8) c(λ) =
1

λ

[∫ X

−X
w(y)e−λydy − 1

]
.

Finally, we now take the limit X → ∞ under the assumption that w(y) is an even function
to yield

(4.9) c(λ) =
1

λ

[
Ŵ (λ) + Ŵ (−λ)− 1

]
,

where Ŵ (λ) is the Laplace transform of w(x):

(4.10) Ŵ (λ) =

∫ ∞

0
w(y)e−λydy.

If W0 > 1 (necessary for the zero activity state to be unstable), then c(λ) is a positive
unimodal function with c(λ) → ∞ as λ→ 0 or λ→ ∞ and a unique minimum at λ = λ∗; see
the solid black curve in Figure 9. Assuming that the full nonlinear system supports a pulled
front, then a sufficiently localized initial perturbation (one that decays faster than e−λ∗x) will
asymptotically approach the traveling front solution with the minimum wave speed c∗ = c(λ∗).
Note that c∗ ∼ σ and λ∗ ∼ σ−1.

One of the most important properties of nonlinear diffusion equations supporting pulled
fronts is that the long-time convergence of steep initial conditions toward the pulled front
solution is universal in leading and subleading order with respect to an asymptotic expansion
in 1/

√
t [24]. This result generalizes to higher order PDEs, difference-differential equations,
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Figure 9. Velocity dispersion curve (solid black) for a Gaussian weight distribution with σ = 1.0 and
W0 = 1.2. Minimum wave speed is c∗ = 0.71. Also shown are shifted dispersion curves in the presence of
multiplicative noise for various noise amplitudes ε and C(0) = 10 (see section 4.2).

and equations with a memory kernel. For a formal proof of this universal behavior using
matched asymptotics, see Ebert and van Saarloos [24]. Unfortunately, this analysis cannot be
applied straightforwardly to the neural field equation (4.1) with F given by (4.3), since the
nonlinear rate function has a discontinuous first derivative. Nevertheless, it is still possible to
give a heuristic argument for the asymptotic convergence to the pulled front, which can also
be found in [24]. Linearizing (4.1) about a = 0 with (4.3) gives

(4.11)
∂a(x, t)

∂t
= −a(x, t) +

∫ ∞

−∞
w(x− x′)a(x′, t)dx′.

An arbitrary initial condition a(x, 0) will evolve under (4.11) as

(4.12) a(x, t) =

∫ ∞

−∞
G(x− y, t)a(y, 0)dy,

where G(x, t) is the Green’s function

(4.13) G(x, t) =

∫ ∞

−∞
eikx−iω(k)t dk

2π

and

(4.14) ω(k) = i[Ŵ (ik) + Ŵ (−ik)− 1].

(Note that if a(x, 0) ≥ 0 for all x, then (4.11) ensures that a(x, t) ≥ 0 for all x and t > 0.
One way to see this is to note from (4.11) that a(x, t+Δt) = (1−Δt)a(x, t) +Δt

∫∞
−∞w(x−

x′)a(x′, t)dx′. Assuming positivity of the solution at time t and using the fact that the neural
network is purely excitatory (w(x) ≥ 0 for all x), it follows that a(x, t+Δt) is also positive.)

Given a sufficiently steep initial condition, for which the Fourier transform of a(x, 0) is
analytic, the asymptotic behavior of a(x, t) can be obtained from the large-time asymptotics
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of G(x, t) based on steepest descents [1]. The latter will depend on the frame of reference. In
a uniformly moving frame ξ = x− ct, we have

(4.15) G(ξ, t) =

∫ ∞

−∞
eikξ−i[ω(k)−ck]tdk

2π
.

In the limit t → ∞ and fixed ξ, we can deform the k-contour to go through the saddle point
k∗ in the complex k-plane where ω(k)− ck varies least, that is,

(4.16)
d[ω(k) − ck]

dk
= 0 =⇒ c =

dω(k)

dk

∣∣∣∣
k∗
.

The integral will then be dominated by the contribution in a neighborhood of the saddle. (If
there are several saddle points, then the dominant one will be the saddle with the maximal
growth rate.) Expanding the integral expression for the Green’s function about the saddle to
second order leads to the Gaussian approximation

(4.17) G(ξ, t) = eik
∗ξ−i[ω(k∗)−ck∗]tψ(ξ, t)

with

(4.18) ψ(ξ, t) ≈
∫ ∞

−∞
ei(k−k∗)ξ−D(k−k∗)2 dk

2π
=

e−ξ2/(4Dt)

√
4πDt

and

(4.19) D =
i

2

d2ω(k)

dk2

∣∣∣∣
k∗
.

It is important not to confuse the diffusion coefficient D associated with the asymptotics of a
deterministic pulled front with the diffusion coefficient D associated with the effects of noise
on the stochastic wandering of a front.

For general speeds c, the growth or decay rate of the Fourier mode at the saddle, which
is given by Im[ω(k∗)− ck∗], will be nonzero. The linear spreading velocity is then defined as
the one for which there is zero growth rate [24], so that

(4.20) c∗ =
Imω(k∗)
Im k∗

,

which supplements (4.16). Let ki = Im k∗, kr = Re k∗, ωi = Imω(k∗), and ωr = Reω(k∗).
Equating real and imaginary parts in (4.16) and using the Cauchy–Riemann relations shows
that c∗ = dωi/dki and 0 = dωi/dkr. As with all the examples considered in [24], we find that
kr = 0 and ωr = 0 for a Gaussian weight distribution. Equations (4.14), (4.16), and (4.20)
then imply that c∗ = c(λ∗) as before, with λ∗ = ki. Moreover, D is positive and real with

(4.21) D =
λ∗

2

d2c(λ)

dλ2

∣∣∣∣
λ∗
.
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Positivity of D follows from the fact that λ∗ is a minimum of c(λ). We conclude from the
asymptotic analysis of the linear problem (4.11) that, given a sufficiently localized initial
condition, we have the long-time solution a(x, t) ∼ e−λ∗ξψ(ξ, t), where ξ = x − c∗t and the
so-called leading edge variable ψ(ξ, t) satisfies the diffusion equation

(4.22)
∂ψ

∂t
= D∂

2ψ

∂ξ2
+ h.o.t.

As previously pointed out by Ebert and van Saarloos [24], although the spreading of the leading
edge under linearization gives the right qualitative behavior, it fails to correctly match the
traveling front solution of the full nonlinear system. In particular, the asymptotic front profile
takes the form A(ξ) ∼ ξe−λ∗ξ for ξ � 1. The factor of ξ reflects the fact that at the saddle
point the two branches of the velocity dispersion curve c(λ) meet, indicating a degeneracy.
If one considers the asymptotic behavior of the solution of the full nonlinear neural field
equation, we find that in the asymptotic regime ξ � 1, t � 1, we have a linear equation
whose Green’s function can be analyzed as before using steepest descents. In particular, we
obtain a leading edge variable ψ(ξ, t) that satisfies a diffusion equation. Hence, in order to
match the ξe−λ∗ξ asymptotics of the front solution we follow [24] and take the so-called dipole
solution of the diffusion equation

(4.23) ψ(x, t) = −∂ξ e
−ξ2/(4Dt)

√
4πDt = ξ

e−ξ2/(4Dt)

√
2π(2Dt)3/2 .

Putting all of this together, we expect the leading edge to relax asymptotically as

(4.24) a ∼ ξe−λ∗ξe−ξ2/(4Dt)t−3/2

with ξ = x− v∗t. Finally, writing

(4.25) e−λ∗ξt−3/2 = e−λ∗[x−v∗t−X(t)], X(t) = − 3

2λ∗
ln t,

suggests that to leading order the velocity relaxes to the pulled velocity v∗ according to (see
also [24])

(4.26) v(t) = v∗ + Ẋ(t) = v∗ − 3

2λ∗t
+ h.o.t.

In the above analysis we have made two major assumptions. First, that the piecewise-
linear neural field equations (4.1) and (4.3) support the propagation of a pulled front rather
than a pushed front; in the latter case velocity selection would depend on the full nonlinear
system. Second, given the existence of a pulled front, the asymptotic convergence to the front
exhibits universal features also found for the nonlinear diffusion equation even though the
nonlinearity is piecewise smooth. These assumptions appear to be confirmed by numerical
solutions of (4.1). In Figure 10(a) we show snapshots of a traveling front evolving from an
initial condition consisting of a steep sigmoid. The corresponding mean displacement is a
linear function of time (see Figure 10(b)) with a slope c ≈ 0.68, consistent with the minimal
wave speed c∗ = 0.71 of Figure 9. Such a wave speed was also found for other values of
κ. The universal nature of the asymptotic convergence of the wave speed to its final value
independent of the height of the wave (level set) is illustrated in Figure 11.
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Figure 10. Propagation of a pulled front solution of the neural field equation (4.1) with piecewise linear
firing rate function (4.3) and a Gaussian weight distribution (4.6). Here W0 = 1.2, σ = 1.0, and κ = 0.4. (a)
Snapshots of the front profile evolving from an initial condition consisting of a steep sigmoid function of unit
amplitude (blue curve). (b) Plot of mean displacement X(t) as a function of time t.
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Figure 11. Plot of numerically obtained wave speed v(t) as a function of inverse time 1/t for various front
amplitudes (level sets). Straight blue line is analytical expression for speed given by (4.26). All parameters as
in Figure 10.

4.2. Subdiffusive fluctuations in the presence of multiplicative noise. In the case of the
F-KPP equation with multiplicative noise, it has previously been shown that the stochastic
wandering of a pulled front about its mean position is subdiffusive with varΔ(t) ∼ t1/2, in
contrast to the diffusive wandering of a front propagating into a metastable state, for which
varΔ(t) ∼ t [53]. Such scaling is a consequence of the asymptotic relaxation of the leading
edge of the deterministic pulled front. Since pulled front solutions of the neural field equation
(4.1) exhibit similar asymptotic dynamics (see (4.24)), it suggests that there will also be
subdiffusive wandering of these fronts in the presence of multiplicative noise. In order to
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Figure 12. Plot of (a) mean X(t) and (b) variance σ2
X(t) of the position of a stochastic pulled front as a

function of time. Noise amplitude ε = 0.005 and κ = 0.8. Other parameter values as in Figure 10.

illustrate this, consider the Langevin equation

(4.27) dA(x, t) =

[
−A(x, t) + F

(∫ ∞

−∞
w(x− y)A(y, t)dy

)]
dt+ ε1/2g0A(x, t)dW (x, t)

with W (x, t) a Wiener process satisfying (2.12). Note that the noise term has to vanish when
A(x, t) = 0, since the firing rate A is restricted to be positive. Hence, the noise has to be
multiplicative. Formally speaking, we can carry over the analysis of the Langevin equation
(2.11). First, we decompose the solution along lines similar to those used for (2.18):

(4.28) A(x, t) = A0(ξ −Δ(t)) + ε1/2Φ(ξ −Δ(t), t)

with ξ = x− cεt, with the fixed front profile A0 satisfying the deterministic equation

(4.29) −cε dA0

dξ
+A0(ξ)[1 − εg20C(0)] = F

(∫ ∞

−∞
w(ξ − ξ′)A0(ξ

′)dξ′
)
.

The effective velocity cε of the front is given by the minimum of the dispersion curve

(4.30) cε(λ) =
1

λ

[
Ŵ (λ) + Ŵ (−λ)− [1− εg20C(0)]

]
.

Fluctuations thus shift the dispersion curve to higher velocities, as shown in Figure 9. However,
it is no longer possible to derive an expression for the diffusion coefficient D(ε) along the lines
of (2.28), since both numerator and denominator would diverge for a pulled front. This
reflects the asymptotic behavior of the leading edge of the front. It is also a consequence of
the fact that there is no characteristic time scale for the convergence of the front velocity to
its asymptotic value, which means that it is not possible to separate the fluctuations into a
slow wandering of front position and fast fluctuations of the front shape [24, 46].

Nevertheless, numerical simulations of (4.27) with F given by the piecewise-linear firing
rate (4.3) are consistent with subdiffusive wandering of the front. In Figure 12 we plot the
mean X(t) and variance σ2X(t) of the position of a pulled front solution of (4.27), which are
obtained by averaging over level sets along lines identical to those used in section 2.3. It
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Figure 13. Log-log plot of variance σ2
X(t) as a function of time t. Same parameter values as in Figure 12.

can be seen that X(t) varies linearly with t with a slope equal to a speed c ≈ 0.8, which
is consistent with the shifted minimal wave speed; see Figure 9 for ε = 0.005. Moreover,
the variance appears to exhibit subdiffusive behavior over longer time scales. This is further
illustrated by plotting a log-log plot of σ2X(t) against time t; see Figure 13. It can be seen that
at intermediate time scales the slope of the curve is approximately equal to one, consistent
with normal diffusion, but at later times the slope decreases, indicating subdiffusive behavior.

4.3. Master equation for stochastic neural fields. One of the interesting features of the
neural field equation (4.1) is that it forms the starting point for a master equation formulation
of stochastic neurodynamics [15, 16, 10, 11]. The latter treats a neural field as a continuum
of interacting local populations. The state of each population is represented by the number of
currently active neurons, and the state transitions of the associated discrete Markov process
are chosen such that deterministic neural field equations of the form (4.1) are recovered in the
thermodynamic limit N → ∞, where N is the number of neurons in each local population. In
order to develop the basic formalism, it is simpler to start off with a spatially discrete network
and take the continuum limit at the end.

Thus, suppose that there exist M homogeneous local neuronal populations labeled i =
1, . . . ,M , each of size N . Assume that all neurons of a given population are equivalent in the
sense that the effective pairwise synaptic interaction between a neuron of population i and a
neuron of population j depends only on i and j. Suppose that there are Nk(t) active neurons
in the kth population. The state or configuration of the network is now specified by the
vector N(t) = (N1(t), N2(t), . . . , NM (t)), where each Ni(t) is treated as a stochastic variable
that evolves according to a one-step jump Markov process. Let P (n, t) = Prob[N(t) = n]
denote the probability that the network of interacting populations has configuration n =
(n1, n2, . . . , nM ) at time t, t > 0, given some initial distribution P (n, 0). The probability
distribution is then taken to evolve according to a master equation of the form [15, 16, 10]

(4.31)
dP (n, t)

dt
=

M∑
k=1

∑
r=±1

[Tk,r(n − rek)P (n− rek, t)− Tk,r(n)P (n, t)].
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Here ek denotes the unit vector whose kth component is equal to unity. The corresponding
transition rates are given by

(4.32) Tk,−1(n) = nk, Tk,+1(n) = NF

(∑
l

wklnl/N

)
,

where wkl is the effective synaptic weight distribution from the lth to the kth population.
Equation (4.31) is supplemented by the boundary conditions P (n, t) ≡ 0 if ni = −1 for some
i. The master equation preserves the normalization condition

∑
n1≥0

∑
nM≥0 P (n, t) = 1 for

all t ≥ 0. Now introduce the rescaled variables ak = nk/N and corresponding transition rates

(4.33) Ωk,−1(a) = ak, Ωk,1(a) = F

(∑
l

wklal

)
.

Carrying out a Kramers–Moyal expansion to second order then leads to the multivariate
Fokker–Planck equation

(4.34)
∂P (a, t)

∂t
= −

M∑
k=1

∂

∂ak
[Vk(a)P (a, t)] +

ε

2

M∑
k=1

∂2

∂a2k
[Bk(a)P (a, t)]

with ε = N−1,

(4.35) Vk(a) = Ωk,1(a)− Ωk,−1(a), Bk(a) = Ωk,1(a) + Ωk,−1(a).

The solution to the Fokker–Planck equation (4.34) determines the probability density function
for a corresponding stochastic process A(t) = (A1(t), . . . , AM (t)), which evolves according to
a neural Langevin equation of the form

(4.36) dAk = Vk(A)dt + ε1/2bk(A)dWk(t),

with bk(x)
2 = Bk(x)/2. Here Wk(t) denotes an independent Wiener process such that

(4.37) 〈dWk(t)〉 = 0, 〈dWk(t)dWl(s)〉 = 2δk,lδ(t− s)dtds.

We can now take the continuum limit of the above Langevin equation along the lines
outlined in [10]. Suppose that there is a uniform density ρ of neuronal populations distributed
along the x-axis. We partition the x-axis into discrete intervals of length Δx within which there
are ρΔx populations. Let us denote the set of populations in the interval [mΔx, (m+ 1)Δx)
by N (mΔx). As a further approximation, suppose that the weights wkl are slowly varying
on the length scale Δx, so that we can write wkl = w(mΔx, nΔx) for all k ∈ N (mΔx) and
l ∈ N (nΔx). It follows that∑

l

wklAl =
∑
n

ω(mΔx, nΔx)
∑

l∈N (nΔx)

Al.
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Define the local spatially averaged activity variable A(nΔx) according to

(4.38) A(nΔx) = 〈Al〉 ≡ 1

ρΔx

∑
l∈N (nΔx)

Al,

where ρΔx is the number of populations in each set N (nΔx). Performing a local population
averaging of the Langevin equation (4.36) with respect to k ∈ N (mΔx) and making the mean
field approximation 〈bk(A)dWk〉 = bk(〈A〉)〈dWk〉 then gives2

dA(mΔx, t) =

[
−A(mΔx, t) + F

(
ρΔx

∑
n

w(mΔx, nΔx)A(nΔx)

)]
dt

+ ε1/2gm[A]dW (mΔx, t),(4.39)

where

(4.40) gm[A] =

√√√√A(mΔx, t) + F

(
ρΔx

∑
n

w(mΔx, nΔx)A(nΔx)

)

and W (mΔx, t) = (ρΔx)−1
∑

k∈N (mΔx)Wk(t). Thus, 〈dW (mΔx, t)〉 = 0 and

〈dW (mΔx, t)dW (nΔx, t)〉 = 1

(ρΔx)2

∑
k∈N (mΔx)

∑
l∈N (nΔx)

〈dWk(t)dWl(s)〉

=
1

ρΔx
δm,nδ(t− s)dtds.(4.41)

Finally, setting x = mΔx, y = nΔx and taking the continuum limit Δx→ 0 with ρ1/2W (mΔx, t)
→ W (x, t), ρw(mΔx, nΔx) → w(x, y), and A(mΔx, t) → A(x, t), we obtain a neural field
Langevin equation of the form (4.27), except that now the multiplicative noise term is nonlo-
cal:

(4.42) g0A(x, t) → ρ−1/2

√
A(x, t) + F

(∫ ∞

−∞
w(x, y)A(y, t)dy

)
.

We conclude that under the Langevin and local mean field approximations, the master equa-
tion reduces to a stochastic neural field equation with nonlocal multiplicative noise, which in
the thermodynamic limit N → ∞ or ε→ 0 reduces to the deterministic neural field equation
(4.1). Note, however, that in contrast to the previous examples, the multiplicative noise is Ito
rather than Stratonovich.

2Note that (4.39) would be exact in the case of additive noise under the local homogeneity assumption for
the synaptic weights. However, performing the local averaging with respect to k ∈ N (mΔx) in the case of
multiplicative noise is nontrivial. At the very least, some form of perturbation expansion in ε would be needed
in order to determine corrections to the mean field approximation. The issue of local population averaging
has been addressed in some detail within the context of spatially discrete versions of (2.1) with additive noise,
where the nonlinearity F appears inside the sum over weights [28].
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Previously, Buice and Cowan [15] have used path integral methods and renormalization
group theory to establish that a master equation formulation of neural field theory that evolves
according to (4.1) in the deterministic limit belongs to the universality class of directed per-
colation, and consequently exhibits power law behavior suggestive of many measurements of
spontaneous cortical activity in vitro and in vivo [5, 50]. One crucial assumption of their
theory is that the neural field supports a zero absorbing state, which holds provided that the
rate function satisfies F (0) = 0. In light of our current study, we see that another feature of
this master equation is that the underlying deterministic mean field equation (4.1) supports
a propagating pulled front. Such a front is particularly sensitive to the effects of fluctuations
in the leading edge of the front. This has important implications for front solutions of the
underlying master equation, where discreteness effects (in space and in the number of active
neurons) play a crucial role within the leading edge of the front. That is, there is a funda-
mental quantum of activity within a local population consisting of a single active neuron, that
is, A = 1/N . In other words, there is an effective lower cut-off within the leading edge of
the front. In the case of nonlinear reaction-diffusion equations, such discreteness effects have
been shown to have a significant effect on the asymptotic velocity of a pulled front [14, 46]. It
would be interesting to explore how such results carry over to neural field master equations
with nonlocal interactions.

5. Discussion. In this paper we have explored the effects of multiplicative noise on front
propagation in a one-dimensional scalar neural field with excitatory nonlocal connections. We
have shown that the effects of noise on the wandering of the mean front position depend on
properties of the underlying deterministic front. In the case of a freely propagating front
linking a stable and metastable state, we find diffusive wandering, with the mean square
displacement growing linearly with time t. On the other hand, if the front is locked to a
moving stimulus, then the wandering is described by an Ornstein–Uhlenbeck process, and the
mean square displacement saturates in the long time limit. Finally, in the case of a pulled front
linking a stable and an unstable state, propagation is very sensitive to noise in the leading
edge of the front, and wandering becomes subdiffusive. The sensitivity to noise could also
have important implications for traveling front solutions of the master equation formulation
of stochastic neural fields.

One possible application of our work would be to explore the role of noise in the propaga-
tion of binocular rivalry waves. Previously we have shown that some form of local adaptation
such as synaptic depression is needed in order to break the symmetry between the left and
right eye neural fields, thus allowing a front to propagate [12]. Such a front represents a
perceptual switching wave, in which activity invades the suppressed eye network and retreats
from the previously dominant eye network. In order to extend our analysis of stochastic front
propagation, it will be necessary to consider a vector-valued neural field consisting of two
pairs of activity and adaptation variables, one for each eye. One interesting issue concerns
whether or not there are differences between the effects of noise in the adaptation variables
and the noise in the activity variables. Finally, in most studies of disinhibited cortical slices,
waves take the form of pulses rather than fronts, so it is also important to develop techniques
for analyzing pulse propagation in stochastic neural fields.
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Appendix. Here we present a derivation of (2.13); see also [54]. Consider the Langevin
equation

(A.1) dU(x, t) =

[
−U(x, t) +

∫ ∞

−∞
w(x− y)F (U(y, t))dy

]
dt+ ε1/2g(U(x, t))dW (x, t)

with (in the limit λ→ 0)

(A.2) 〈dW (x, t)〉 = 0, 〈dW (x, t)dW (x′, t)〉 = δ(x − x′)dt.

It is convenient to restrict x to a bounded domain, −L/2 ≤ x ≤ L/2, and to impose periodic
boundary conditions. We can then introduce the discrete Fourier series,

(A.3) U(x, t) =
1

L

∑
n

eiknxUn(t), W (x, t) =
1

L

∑
n

eiknxWn(t),

with kn = 2πn/L and Wn(t) an independent Wiener process such that

(A.4) 〈dWn(t)〉 = 0, 〈dWn(t)dWm(t)〉 = 2Lδm+n,0dt.

Fourier transforming (A.1) gives

(A.5) dUn(t) = [−Un(t) + wnFn(t)]dt+
ε1/2

L

∑
m

gn−m(t)dWm(t),

where wn is the nth Fourier coefficient of the weight distribution w(x), and Fn and gn are the
Fourier coefficients of the time-dependent functions F ◦ U(t) and g ◦ U(t), respectively. The
associated Stratonovich Fokker–Planck equation takes the form [31]

(A.6)
∂P

∂t
= −

∑
l

∂

∂ul
[(−ul + wlFl)P ] +

ε

L

∑
l,m,q

∂

∂ul
gl−q

∂

∂um
gm+qP.

Multiplying both sides of this equation by un and integrating with respect to um, integer m,
leads to the following evolution equation for the mean:

(A.7)
d〈Un〉
dt

= −〈Un〉+ wn〈Fn〉+ ε

L

∑
m,q

〈
∂gn−q

∂Um
gm+q

〉
.

Finally, taking the inverse transform of (A.7) gives

d〈U(x, t)〉
dt

= −〈U(x, t)〉+
∫
w(x− y)〈F (U(y, t))〉dy

+
ε

Δx

〈
g(U(x, t))g′(U(x, t))

〉
,(A.8)

where we have used the result ∂gn/∂Um = [g′(U)]n−m. Note that it is necessary to introduce
a cut-off in the frequencies, which is equivalent to introducing a fundamental lattice spacing of
Δx. Alternatively, the multiplicative noise can be taken to have a small but finite correlation
length in space, so that C(0) = 1/Δx. Comparison of (A.7) with the mean of (A.1) yields the
desired result.
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