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Abstract
We survey recent analytical approaches to studying the spatiotemporal
dynamics of continuum neural fields. Neural fields model the large-scale
dynamics of spatially structured biological neural networks in terms of
nonlinear integrodifferential equations whose associated integral kernels
represent the spatial distribution of neuronal synaptic connections. They
provide an important example of spatially extended excitable systems with
nonlocal interactions and exhibit a wide range of spatially coherent dynamics
including traveling waves oscillations and Turing-like patterns.
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1. Introduction

Analysis of the dynamical mechanisms underlying spatially structured activity states in neural
tissue is crucially important for understanding a wide range of neurobiological phenomena,
both naturally occurring and pathological. For example, neurological disorders such as epilepsy
are characterized by spatially localized oscillations and waves propagating across the surface
of the brain [1], whilst traveling waves can be induced in vitro by electrically stimulating
disinhibited cortical slices [2–5]. Spatially coherent activity states are also prevalent during
the normal functioning of the brain, encoding local properties of visual stimuli [6], representing
head direction [7], and maintaining persistent activity states in short-term working memory
[8, 9]. One of the major challenges in neurobiology is understanding the relationship between
spatially structured activity states and the underlying neural circuitry that supports them. This
has led to considerable recent interest in studying reduced continuum neural field models in
which the large-scale dynamics of spatially structured networks of neurons is described in
terms of nonlinear integrodifferential equations, whose associated integral kernels represent
the spatial distribution of neuronal synaptic connections. Such models, which build upon
the original work of Wilson, Cowan and Amari [10–12], provide an important example of
spatially extended excitable systems with nonlocal interactions. As in the case of nonlinear
partial differential equation (PDE) models of diffusively coupled excitable systems [13, 14],
neural field models can exhibit a rich repertoire of spatiotemporal dynamics, including solitary
traveling fronts and pulses, stationary pulses and spatially localized oscillations (breathers),
spiral waves, and Turing-like patterns [15, 16]. In recent years, neural fields have been
used to model a wide range of neurobiological phenomena, including wave propagation in
cortical slices [4, 17] and in vivo [18], geometric visual hallucinations [19, 20], EEG rhythms
[21–24], orientation tuning in primary visual cortex (V1) [25, 26], short term working memory
[27, 28], control of head direction [29], and motion perception [30].

In this review we present a detailed survey of the nonlinear dynamics of continuum
neural fields. In particular, we give a pedagogical account of analytical methods for solving
these integrodifferential equations, which are adapted from previous studies of nonlinear PDEs.
These include regular and singular perturbation methods, weakly nonlinear analysis and pattern
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formation, symmetric bifurcation theory, Evans functions and wave stability, homogenization
theory and averaging, and stochastic processes. We also consider exact methods of solution
based on the use of Heaviside nonlinearities. Although we mainly focus on dynamical aspects
of neural fields, we also highlight various neurobiological applications. The structure of the
review is as follows. We begin by describing the sequence of simplifying approximations that
can be used to derive continuum neural field equations starting from a conductance-based
model of a network of synaptically coupled spiking neurons (section 2). This provides the
necessary background for understanding the biological basis of neural field equations and how
they relate to discrete neural network models. We then systematically cover three distinct forms
of spatiotemporal dynamics, traveling waves (section 3), spatially localized persistent activity
states (section 4), and neural pattern formation (section 5). In the last case, we focus on neural
field models of primary visual cortex (V1), which is the first region of the cerebral cortex to
process visual information from the eyes. We end the review by discussing some recent work
on extending neural field equations to take into account the effects of noise (section 6).

2. From neural networks to neural fields

We begin by describing the basic biological components of synaptically coupled networks
of spiking neurons. We consider conductance-based models of action potential generation
(section 2.1), synaptic processing (section 2.2), and dendritic processing (section 2.3). We
then highlight a sequence of approximations that can be made to reduce a network of
spiking neurons to an effective rate-based model, distinguishing between voltage-based and
activity-based versions along the lines of Ermentrout [15, 31]. This provides a biological
perspective on well-known neural network models such as Hopfield networks [32]. Finally,
we consider spatially structured neural networks, which are needed in order to represent the
spatial organization of cerebral cortex, and show how to derive from these various forms of
neural field equations in the continuum limit (section 2.5). The advantage of a continuum
rather than a discrete representation of spatially structured networks is that various techniques
from the analysis of PDEs can be adapted to study the nonlinear dynamics of cortical patterns,
oscillations and waves, which will be explored in the remainder of the review.

2.1. Conductance-based model of a neuron

Cortical neurons typically consist of a cell body (or soma) where the nucleus containing DNA
is located, a branching output structure known as the axon and a branching input structure
known as the dendritic tree, see figure 1. Neurons mainly communicate with each other by
sending electrical impulses or spikes (action potentials) along their axons. (Some neurons are
also coupled diffusively via gap junctions [33].) These axons make contacts on the dendrites
of other neurons via microscopic junctions known as synapses. The arrival of an electrical
spike at a synaptic junction leads to the flow of electrical current along the dendritic tree of the
stimulated neuron. If the total synaptic current from all of the activated synapses forces the
electrical potential within the cell body to cross some threshold, then the neuron fires a spike.
The standard biophysical model for describing the dynamics of a single neuron with somatic
membrane potential V is based upon conservation of electric charge:

C
dV

dt
= −Icon + Isyn + Iext, (2.1)

where C is the cell capacitance, Icon is the membrane current, Isyn denotes the sum of synaptic
currents entering the cell and Iext describes any externally injected currents. Ions can diffuse
in and out of the cell through ion specific channels embedded in the cell membrane. Ion
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Figure 1. Basic structure of a neuron. Inset shows a synaptic connection from an upstream or
presynaptic neuron labeled j and a downstream or postsynaptic neuron labeled i. wi j denotes the
weight or strength of the synapse and �(t) is the time course of synaptic processing. See text for
details.

pumps within the cell membrane maintain concentration gradients, such that there is a higher
concentration of Na+ and Ca2+ outside the cell and a higher concentration of K+ inside the
cell. The membrane current through a specific channel varies approximately linearly with
changes in the potential V relative to some equilibrium or reversal potential, which is the
potential at which there is a balance between the opposing effects of diffusion and electrical
forces. Summing over all channel types, the total membrane current (flow of positive ions)
leaving the cell through the cell membrane is

Icon =
∑

s

gs(V − Vs), (2.2)

where gs is the conductance due to channels of type s and Vs is the corresponding reversal
potential.

The generation and propagation of an action potential arises from nonlinearities associated
with active membrane conductances. Recordings of the current flowing through single channels
indicate that channels fluctuate rapidly between open and closed states in a stochastic fashion.
Nevertheless, most models of a neuron use deterministic descriptions of conductance changes,
under the assumption that there are a large number of approximately independent channels of
each type. It then follows from the law of large numbers that the fraction of channels open at
any given time is approximately equal to the probability that any one channel is in an open
state. The conductance gs for ion channels of type s is thus taken to be the product gs = ḡsPs

where ḡs is equal to the density of channels in the membrane multiplied by the conductance
of a single channel and Ps is the fraction of open channels. The voltage-dependence of the
probabilities Ps in the case of a delayed-rectifier K+ current and a fast Na+ current were
originally obtained by Hodgkin and Huxley [34] as part of their Nobel prize winning work on
the generation of action potentials in the squid giant axon. The delayed-rectifier K+ current
is responsible for repolarizing a neuron after an action potential. One finds that opening of
the K+ channel requires structural changes in 4 identical and independent subunits so that
PK = n4 where n is the probability that any one gate subunit has opened. In the case of the
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Figure 2. Various forms of the nonlinear firing-rate function F(I). Sigmoid function (black curve)
and Heaviside function (dashed curve) have a threshold κ = 0.3, whereas the square root function
(gray curve) has a critical current Ic = 0.05.

fast Na+ current, which is responsible for the rapid depolarization of a cell leading to action
potential generation, the probability of an open channel takes the form PNa = m3h where m3

is the probability that an activating gate is open and h is the probability that an inactivating
gate is open. Depolarization causes m to increase and h to decrease, whereas hyperpolarization
has the opposite effect. The dynamics of the gating variables m, n, h are usually formulated in
terms of a simple kinetic scheme that describes voltage-dependent transitions of each gating
subunit between open and closed states. More specifically, for each X ∈ {m, n, h}

dX

dt
= αX (V )(1 − X )− βX (V )X, (2.3)

where αX (V ) is the rate of the transition closed → open and βX (V ) is the rate of the reverse
transition open → closed. The transition rates are typically bounded, monotonic functions of
the voltage V .

For the moment, let us ignore synaptic currents and consider what happens as the external
input Iext is increased. Experimentally it is found that most cortical neurons switch from a
resting state characterized by a low rate of (noise-driven) spontaneous firing to an active
state characterized by either tonic (regular, repetitive) firing or bursting [35]. There has been
considerable theoretical work on the transitions from resting to active states in conductance-
based models based on bifurcation theory, see [31, 36] for excellent recent reviews. We will
focus on tonic firing neurons, since these comprise the majority of cells in cortical networks.
In the case of constant input Iext = I, the firing rate a (number of spikes per second) of the
neuron is a nonlinear function of the input:

a = F(I) (2.4)

with the form of F depending on the nature of the bifurcation to repetitive firing. A common
bifurcation scenario in conductance-based models of cortical neurons is a saddle node on an
invariant circle [31, 36], so that close to the bifurcation point, see figure 2, we have

F(I) = F0

√
I − Ic, (2.5)
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where Ic is the critical current for onset of regular spiking. If one includes stochastic effects
arising from synaptic and membrane noise, for example, then the effective mean firing rate
becomes a smooth sigmoid-like function of injected current, which is often modeled as

F(I) = F0

1 + e−η(I−κ) , (2.6)

where η is the gain and κ is the firing threshold. In the high-gain limit η → ∞, this reduces
to a Heaviside firing rate function

F(I) = F0H(I − κ) =
{

F0 if I > κ
0 if I < κ

. (2.7)

Yet another commonly used firing rate function is the piecewise linear function

F(I) =
⎧⎨⎩

0, I < κ,
η(u − κ), κ < I < κ + η−1,

1, I > κ + η−1.

(2.8)

This preserves the hard threshold of the saddle-node on a limit cycle bifurcation but ensures
that the firing rate saturates at high input currents.

2.2. Synaptic processing

The basic stages of synaptic processing induced by the arrival of an action potential at an axon
terminal is as follows. (See [37] for a more detailed description.) An action potential arriving
at the terminal of a presynaptic axon causes voltage-gated Ca2+ channels within an active
zone to open. The influx of Ca2+ produces a high concentration of Ca2+ near the active zone
[38, 39], which in turn causes vesicles containing neurotransmitter to fuse with the presynaptic
cell membrane and release their contents into the synaptic cleft (a process known as exocytosis).
The released neurotransmitter molecules then diffuse across the synaptic cleft and bind to
specific receptors on the post-synaptic membrane. These receptors cause ion channels to open,
thereby changing the membrane conductance and membrane potential of the postsynaptic cell.
A single synaptic event due to the arrival of an action potential at time T induces a synaptic
current of the form

Isyn(t) = gsyn(t − T )(Vsyn − V (t)), (2.9)

where V is the voltage of the postsynaptic neuron, Vsyn is the synaptic reversal potential and
gsyn(t) is the change in synaptic conductance with gsyn(t) = 0 for t < 0. A typical form for
gsyn(t) is the difference of exponentials

gsyn(t) = ḡ

(
1

τd
− 1

τr

)−1

(e−t/τd − e−t/τr )H(t), (2.10)

where H(t) is the Heaviside function, ḡ is a constant conductance and τr,d are time constants
determining the rise and fall of the synaptic response respectively. In the limit τd → τr = α−1,
equation (2.10) reduces to the so-called α function

gsyn(t) = ḡα(t), α(t) = α2t e−αtH(t). (2.11)

In many cases, the rise time is much shorter than the fall time (τr � τd) so that we have an
exponential synapse with gsyn(t) = ḡe−t/τd . The sign of Vsyn relative to the resting potential
Vrest (typically Vrest ≈ −65 mV) determines whether the synapse is excitatory (Vsyn > Vrest) or
inhibitory (Vsyn < Vrest). For simplicity, it is often assumed that a neuron spends most of its
time close to rest such that Vsyn − V ≈ Vsyn − Vrest, with the factor Vsyn − Vrest absorbed into
gsyn. One is then effectively taking the arrival of a spike as generating a synaptic current rather
than a change in conductance.
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A single synaptic event due to the arrival of an action potential at time T induces a
synaptic current of the form (2.9). As a crude approximation we might try summing individual
responses to model the synaptic current arising from a train of action potentials arriving at
times T m, integer m:

Isyn(t) =
∑

m

gsyn(t − T m)(Vsyn − V (t)). (2.12)

Note that this sum only includes spikes for which T m < t since gsyn(t) = 0 for t < 0 (causality
condition). For many synapses such a simple ansatz does not hold, since some form of short-
term synaptic depression causes the amplitude of the response to depend on the previous
history of presynaptic firing [40, 41]. One way to incorporate this history-dependent effect is
to take [42]

Isyn(t) =
[∑

m

q(T m)gsyn(t − T m)

]
(Vsyn − V (t)), (2.13)

where the factor q(T m) reduces the response evoked by an action potential by an amount that
depends upon the details of the previous spike train data. One interpretation of the factor q
is that it represents a short-term (reversible) reduction in the release probability for synaptic
transmission due to a depletion in the number of vesicles that can readily fuse with the cell
membrane [43]. In certain cases, it is also possible for a synapse to undergo a temporary
facilitation in response to activation, which may be due to the presence of residual calcium in
the axonal terminal [43].

A common phenomenological model of synaptic depression is to assume that between
spikes q(t) relaxes at a rate τq to its steady state value of 1, but that directly after the arrival of
a spike it changes discontinuously, that is, q → γ q with γ < 1. The depression time constant
τq can vary between around 100 ms and a few seconds [41]. The model for synaptic depression
may be written succinctly as

dq

dt
= (1 − q)

τq
− (1 − γ )

∑
n

q(T n)δ(t − T n), q(0) = 1 (2.14)

which has the solution of the form

q(T m) = 1 − (1 − γ )
∑
n<m

γ [m−n−1]β e−(T m−T n)/τq . (2.15)

Assuming a regular sequence of incoming spikes T n − T n−1 = 
 for all n we find that the
asymptotic amplitude q∞(
) ≡ limm→∞ q(T m) is given by

q∞(
) = 1 − e−
/τq

1 − γ e−
/τq
. (2.16)

One possible computational role for synaptic depression is as a mechanism for cortical gain
control [41]. The basic idea can be understood from the dependence of the asymptotic
amplitude q∞(
) on the stimulus frequency f = 
−1. Assuming that τq � 
, we can
Taylor expand q∞ in equation (2.16) to find that q∞( f ) ≈ �/ f , where � = τq/(1 − γ ). The
main point to note is that the postsynaptic response per unit time is approximately independent
of f (assuming that each spike elicits the same response in the steady-state). This means that
the synapse is very sensitive to changes in the stimulus frequency. The instantaneous response
to a rapid increase 
 f in the stimulus rate is given by �
 f / f . In other words, the synapse
responds to relative rather than absolute changes in the rate of input stimulation.
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Figure 3. Schematic diagram of a neuron consisting of a soma resistively coupled to one end of
a dendritic cable. A synaptic conductance change 
g(x, t) at position x on the cable induces a
synaptic current into the soma at x = 0.

2.3. Dendritic filtering of synaptic inputs

So far we have neglected the fact that the synapses of a neuron are spatially distributed across
the neuron’s dendritic tree. At the simplest level, the dendritic tree can be treated as a passive
electrical medium that filters incoming synaptic stimuli in a diffusive manner. The current
flow and potential changes along a branch of the tree may be described with a second-order,
linear PDE commonly known as the cable equation [44, 45]. The cable equation is based on a
number of approximations: (i) magnetic fields due to the movement of electric charge can be
neglected, (ii) changes in ionic concentrations are sufficiently small so that Ohm’s law holds,
(iii) radial and angular components of voltage can be ignored so that the cable can be treated
as one-dimensional medium, and (iv) dendritic membrane properties are voltage-independent,
that is, there are no active elements. Given a distribution of synaptic inputs innervating the
dendritic tree, what is the net synaptic current Isyn entering the soma or cell body of a neuron?
In order to address this problem we consider, for simplicity, a semi-infinite uniform dendritic
cable, 0 � x < ∞, with the soma located at the end x = 0, see figure 3. We assume that the
soma is passively coupled to the dendritic cable via a resistor with conductance σ , so that the
net synaptic input flowing into the soma is

Isyn = σ (v(0, t)− V (t)), (2.17)

where v(x, t) is the membrane potential of the cable at position x. The dendritic potential
v(x, t) evolves according to the cable equation

τm
∂v(x, t)

∂t
= −v(x, t)+ λ2 ∂

2v(x, t)

∂x2
+ rmI(x, t), (2.18)

where τm is the membrane time constant, rm is the membrane resistance, and λ is the
corresponding space constant, both of which are determined by the passive electrical properties
of the cable. Here I(x, t) is the synaptic current density at location x at time t:

I(x, t) = ρ(x)
∑

m

gsyn(t − T m(x))[Vsyn − v(x, t)], (2.19)

where ρ(x) is the density of synapses (assuming that they have identical properties) and
{T m(x)} is the sequence of spikes arriving into the synapses located at x. In the case of
a discrete set of identical synapses at dendritic locations {xm,m = 1, . . . ,M}, we have
ρ(x) = ∑

m δ(x − xm). It follows from current conservation that there is also the boundary
condition

−1

r

∂v

∂x
(0, t) = σ [v(0, t)− V (t)], (2.20)

where r is the intracellular resistance per unit length of cable.
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We can formally solve the inhomogeneous boundary value problem for v(0, t) using the
Green’s function G for the semi-infinite cable with a closed boundary [46]:

v(0, t) = rm

∫ t

−∞

∫ ∞

0
G(0, x′, t − t ′)I(x′, t ′) dx′ dt ′

− σ r
∫ t

−∞
G(0, 0, t − t ′)[v(0, t ′)− u(t ′)] dt ′, (2.21)

with

G(x, y, t) = G0(x − y, t)+ G0(x + y, t), (2.22)

and

G0(x, t) = 1

2λ
√
πtτm

e−t/τm e−τmx2/4λ2tH(t) (2.23)

is the Green’s function of the cable equation on an infinite domain. We see that the effective
synaptic current Isyn flowing into the soma will itself be affected by the cell firing an action
potential, due to the dependence of v(0, t) on V (t). However, if the second term on the rhs of
equation (2.21) is small compared to the first term arising from synaptic inputs, then the total
synaptic input into the soma reduces to

Isyn(t) = σ rm

∫ t

−∞

∫ ∞

0
G(0, x′, t − t ′)I(x′, t ′) dx′ dt ′ − σV (t). (2.24)

Note that the term σV (t) can be absorbed into the ionic current Icon. A similar analysis
can also be carried out for more general dendritic topologies with the soma coupled to one
of the terminals of the tree. We conclude that under the given approximations, the passive
dendritic tree acts like a spatio-temporal linear filter on incoming spike trains, whose properties
are determined by the underlying Green’s function on the tree. The effects of the dendritic
filtering of synaptic inputs on network dynamics is reviewed in some detail by Bressloff and
Coombes [47].

2.4. Rate-based neural network models

Let us now consider a network of synaptically coupled cortical neurons labeled i = 1, . . . ,N.
Denote the sequence of firing times of the jth neuron by {T m

j , m ∈ Z}. The net synaptic current
into postsynaptic neuron i due to innervation by the spike train from presynaptic neuron j (see
inset of figure 1) is taken to have the general form

∑
m�i j(t − T m

j ), where �i j(t) represents
the temporal filtering effects of synaptic and dendritic processing. (For the moment we ignore
short-term synaptic depression.) Assuming that all synaptic inputs sum linearly, we find that
the total synaptic input to the soma of the ith neuron, which we denote by ui(t), is

ui(t) =
N∑

j=1

∑
m

�i j
(
t − T m

j

) =
N∑

j=1

∫ t

−∞
�i j(t − t ′)a j(t

′) dt ′, (2.25)

where we have set

a j(t) =
∑
m∈Z

δ
(
t − T m

j

)
. (2.26)

That is, a j(t) represents the output spike train of the jth neuron in terms of a sum of Dirac
delta functions. In order to obtain a closed set of equations, we have to determine the firing
times T m

i . This takes the form of a threshold condition

T m
i = inf

{
t, t > T m−1

i |Vi(t) = κ, V̇i(t) > 0
}
, (2.27)

9
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where κ is the firing threshold and the somatic membrane potential Vi(t) evolves according to
the conductance-based model

C
dVi

dt
= −Icon,i(Vi, . . .)+ ui, (2.28)

supplemented by additional equations for the ionic gating variables. (For the moment we are
ignoring any external currents.) In general, equations (2.25), (2.27) and (2.28) are difficult to
analyze, particularly when N is large. However, considerable simplification can be obtained if
the total synaptic current ui(t) is slowly varying compared to the membrane potential dynamics
given by equation (2.28). This would occur, for example, if the network could be partitioned
into multiple homogeneous subnetworks each of which consisted of identical neurons firing
asynchronously [48]. One is then essentially reinterpreting the activity variables ai(t) and ui(t)
as mean fields of local populations. The issue of asynchronous states and mean field theory
will be considered further in section 6.1. Alternatively, a slowly varying synaptic current
would occur if the synapses are themselves sufficiently slow [49, 50]. Under these simplifying
assumptions, we can carry out a short-term temporal averaging of equation (2.25) in which we
approximate the output spike train a j(t) by the instantaneous firing rate a j(t) = Fj(u j(t))with
Fj the corresponding rate function. Equation (2.25) then forms the closed system of integral
equations

ui(t) =
∫ t

−∞

N∑
j=1

�i j(t − t ′)Fj(u j(t
′)) dt ′. (2.29)

Note that within the mean-field framework Fi would represent the population-averaged rate
function of a local homogeneous population of cells rather than a single neuron response
function. (In the case of a fully-connected or sparsely connected integrate-and-fire network,
which is introduced in section 6.1, it is possible to calculate Fi explicitly [51, 52].) In neural
network models, Fi is usually approximated by the sigmoid function (2.6).

As highlighted elsewhere [15, 31], equation (2.29) can be reduced to a system of ordinary
differential equations provided that we place rather mild restrictions on the time dependence
of�i j(t). First, suppose that�i j(t) = wi j�i(t) where wi j denotes the synaptic strength of the
connection from neuron j to neuron i and�i(t) determines the time course of the input, which
is assumed to depend only on properties of the postsynaptic cell i. Furthermore, suppose that
there exists a differential operator L̂i such that

L̂i�i(t) = δ(t). (2.30)

Applying the operator L̂i to both sides of equation (2.29) then leads to a system of differential
equations for the currents ui(t):

L̂iui(t) =
N∑

j=1

wi jFj(u j(t)). (2.31)

Note that we could easily convert the total synaptic current ui(t) into an input voltage
vi(t) = ui(t)/σ using the input conductance σ of figure 3, for example. Thus equation
(2.31) is often referred to as a voltage equation and forms the basis of most classical neural
networks such as the Hopfield model [32]. On the other hand, if the time course of the
inputs depends only on presynaptic parameters, �i j(t) = wi j� j(t), with � j having inverse
differential operator L̂ j, then we obtain a system of differential equations for the so-called
synaptic drives

νi(t) =
∫ t

−∞
�i(t − t ′)Fi(ui(t

′)) dt ′. (2.32)
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That is, applying the differential operator L̂i to equation (2.32) and using ui(t) =∑N
j=1wi jν j(t)

leads to the activity-based model

L̂iνi(t) = Fi

⎛⎝ N∑
j=1

wi jν j(t)

⎞⎠ . (2.33)

The differential operator L̂i appearing in equations (2.31) and (2.33) is usually taken to
be first order in time:

L̂i = ∂

∂t
+ 1

τi
, (2.34)

with inverse kernel �i(t) = H(t) e−t/τi . In order to relate the effective time constant τi to
membrane and synaptic time constants, let us assume for simplicity that all synapses are
sufficiently close to the soma so that the dendrite simply acts as a first order low pass filter and
set (with Vrest = 0)

�i j(t) = σirm,iVsyn,jḡi jH(t)
∫ t

0
e−(t−s)/τm,i h j(s) ds, (2.35)

with

h j(s) = τd, j

τd, j − τr, j
(e−s/τd, j − e−s/τr, j ). (2.36)

We have made explicit that the reversal potential Vsyn and synaptic rise/fall times τr,d only
depend on the particular class of synapses innervated by the presynaptic neuron j, whereas
the membrane time constant τm, resistance rm and conductance σ are solely properties of
the postsynaptic neuron i. Only the maximum conductance ḡ is specific to the particular
synapse j → i. The various constant factors can be combined to define the synaptic weight
wi j. In particular, wi j ∼ Vsyn,j so that the sign of Vsyn,j (relative to the resting potential)
determines whether the synapse is excitatory or inhibitory. If τm � τr, τd then the time course
is effectively independent of the presynaptic label j and we have the voltage-based model
(2.31) with first-order operator L̂i and τi = τm. On the other hand, if τd � τm, τr then we
obtain the activity-based model with τi = τd .

Synaptic depression. It is relatively straightforward to incorporate synaptic depression into
the rate-based network models. Let qi j(t) denote the depression variable associated with
synapse j → i. It is assumed to evolve according to an equation of the form (2.14), which we
write as

dqi j

dt
= 1 − qi j

τq
− (1 − γ )qi j(t)a j(t), (2.37)

where a j(t) denotes the output of neuron j. Within the rate-based framework, we take
a j = Fj(u j) with u j satisfying the modified integral equation (cf equation (2.25))

ui(t) =
N∑

j=1

∫ t

−∞
�i j(t − t ′)qi j(t

′)a j(t
′) dt ′.

Since all depression variables {qi j, i = 1, . . . ,N} for fixed j have a common input drive aj(t),
it follows that

τq
d(qi j − qi′ j)

dt
= −[qi j − qi′ j],

and thus qi j(t) → qi′ j(t) = q j(t) for all i, i′ = 1, . . . ,N. In other words, after an initial
transient of duration τq, we can identify all depression variables associated with a given
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presynaptic neuron j. If we now assume that�i j(t) = wi j� j(t), we can introduce the synaptic
drives (2.32) and derive the modified activity-based model [53–56]

L̂iνi(t) = Fi

⎛⎝ N∑
j=1

wi jq j(t)ν j(t)

⎞⎠ , (2.38)

with

dqi

dt
= 1 − qi(t)

τq
− (1 − γ )qi(t)Fi

⎛⎝ N∑
j=1

wi jq j(t)ν j(t)

⎞⎠ . (2.39)

Similarly, we can derive a corresponding voltage-based model when �i j(t) = wi j�i(t):

L̂iui(t) =
N∑

j=1

wi jq j(t)Fj(u j(t)). (2.40)

with
dqi

dt
= 1 − qi(t)

τq
− (1 − γ )qi(t)Fi (ui(t)) . (2.41)

Axonal propagation delays. In the above derivation of rate-based models, we have assumed
that the spiking of a presynaptic neuron has an instantaneous effect on downstream postsynaptic
neurons. This neglects the fact that action potentials take time to propagate along an axon to
innervate a synaptic terminal. Let us denote the corresponding axonal delay of synapse j → i
by τi j. The integral equation (2.25) is then modified according to

ui(t) =
N∑

j=1

∫ t

−∞
�i j(t − t ′)a j(t

′ − τi j)dt ′. (2.42)

The corresponding voltage-based model then takes the form of a system of delay-differential
equations,

L̂iui(t) =
N∑

j=1

wi jFj(u j(t − τi j)), (2.43)

and similarly for the activity-based model.

Adaptive threshold dynamics. Another biophysical process that can be incorporated into
rate-based models is spike frequency adaptation. Spike frequency adaptation causes a neuron’s
firing rate to decay to a submaximal level and occurs when a potassium current, presumably
activated by elevated intracellular calcium, hyperpolarizes the membrane voltage [57–59].
This so-called after hyperpolarization current has a time constant of around 40–120 ms. Spike
frequency adaptation can be introduced as a negative current −ci on the right-hand side of
the conductance-based model equation (2.28). Assuming that ci(t) varies slowly relative to
the voltage Vi(t), it can be shown that ci effectively acts as an adaptive threshold that varies
linearly with the firing rate [57]. Thus, the voltage-based model becomes

L̂iui(t) =
N∑

j=1

wi jFj(u j(t)− c j(t)). (2.44)

with
dci

dt
= −ci(t)

τc
+ γcFi(ui(t)− ci(t)). (2.45)
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2.5. Spatially structured networks and neural fields

So far we have not made any assumptions about the topology of the underlying neural network,
that is, the structure of the weight matrix W with components wi j. If one looks at a region
of cortex such as primary visual cortex (V1), one finds that it has a characteristic spatial
structure, in which a high density of neurons (105 mm−3 in primates) are distributed according
to an approximately two-dimensional (2D) architecture. That is, the physical location of a
vertical column of neurons within the two-dimensional cortical sheet often reflects the specific
information processing role of that population of neurons. For example, in V1 there is an orderly
retinotopic mapping of the visual field onto the cortical surface, with left and right halves of
the visual field mapped onto right and left visual cortices respectively. Superimposed upon this
are additional two-dimensional maps reflecting the fact that neurons respond preferentially to
stimuli with particular features such as local orientation [60]. (A more detailed description
of the functional architecture of V1 is given in section 5.2.) This suggests labeling neurons
according to their spatial location in cortex. We now give a heuristic argument for how such
labeling leads to a continuum neural field model of cortex, following along similar lines to
Gerstner and Kistler [48].

For simplicity, consider a population of neurons distributed along a one-dimensional axis.
(Extensions to higher dimensions proceed in a similar fashion.) Suppose that we partition space
into segments of length d such that the number of neurons in segment [nd, (n+1)d] is N = ρd
where ρ is the cell density. We treat neurons in that interval as a homogeneous population of
cells (cortical column) labeled by the integer n, and assume that synaptic interactions between
the nth and mth populations only depend on the discrete locations of the populations on the
line. Writing �nm(t) = ρd�(nd,md, t) and un(t) = u(nd, t), equation (2.29) becomes

u(nd, t) = ρd
∑

m

∫ t

−∞
�(nd,md, t − t ′)F(u(md, t ′)) dt ′.

Taking the limit d → 0, the summation on the right-hand side can be replaced by an integral
to give

u(x, t) =
∫ ∞

−∞

∫ t

−∞
�(x, y, t − t ′)F(u(y, t ′)) dt ′ dy, (2.46)

where we have absorbed the factor ρ into�. Following our derivation of the discrete voltage-
based model (2.31), suppose that we can decompose the integral kernel as

�(x, y, t) = w(x, y)�(t), �(t) = e−t/τH(t).

That is, we assume that there is only one type of neuron so that the temporal kernel �(t) is
independent of the presynaptic label y and the postsynaptic label x. Applying the differential
operator L̂t = ∂t + τ−1 to the integral equation for u then leads to the scalar neural field
equation

∂

∂t
u(x, t) = −u(x, t)

τ
+
∫ ∞

−∞
w(x, y)F(u(y, t)) dy. (2.47)

Alternatively, we could have applied the differential operator L̂t to the corresponding synaptic
drive ν(x, t) = ∫ t

−∞�(t − t ′)F(u(x, t ′)) dt ′ to obtain the activity-based neural field model

∂

∂t
ν(x, t) = −ν(x, t)

τ
+ F

(∫ ∞

−∞
w(x, y)ν(y, t) dy

)
. (2.48)

Following the same basic procedure, it is straightforward to incorporate into the neural field
equation (2.47) or (2.48) additional features such as synaptic depression [61–63], adaptive
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thresholds [61, 64] and axonal propagation delays [22–24, 65–68]. For example, a voltage-
based neural field equation with synaptic depression takes the form

∂

∂t
u(x, t) = −u(x, t)

τ
+
∫ ∞

−∞
w(x, y)q(y, t)F (u(y, t)) dy,

∂

dt
q(x, t) = 1 − q(x, t)

τq
− βq(x, t)F (u(x, t)) , (2.49)

with β = 1 − γ . In the case of axonal delays, τi j → τ (x, y) in the continuum limit.
Assuming that an action potential propagates with constant speed v along the axon, then
τ (x, y) = |x − y|/v so that the voltage-based equation (2.47) becomes

∂

∂t
u(x, t) = −u(x, t)

τ
+
∫ ∞

−∞
w(x, y)F(u(y, t − |x − y|/v)) dy. (2.50)

Two-dimensional versions of these various models are obtained by taking x → x = (x1, x2)

and y → y = (y1, y2) with dy = dy1 dy2.
Now suppose that there are M classes of neuron distributed along the line labeled by

the population index a = 1, . . .M. Equation (2.46) then generalizes to the multi-population
integral equation

ua(x, t) =
∫ ∞

−∞

∫ t

−∞

M∑
b=1

�ab(x, y, t − t ′)Fb(ub(y, t
′ − |x − y|/vab)) dt ′ dy. (2.51)

We have included axonal delays with vab the conduction velocity along axonal projections
from neurons of type b to neurons of type a. Assuming that�ab(x, y, t) = wab(x, y)�(t) with
�(t) = e−t/τH(t), we obtain multi-population neural field equations

∂ua

∂t
= −ua(x, t)

τ
+

M∑
b=1

∫ ∞

−∞
wab(x, y)Fb(ub(y, t − |x − y|/vab)) dy (2.52)

and

∂νa

∂t
= −νa(x, t)

τ
+ Fb

(
M∑

b=1

∫ ∞

−∞
wab(x, y)νb(y, t − |x − y|/vab) dy

)
. (2.53)

The latter is a version of the Wilson–Cowan equations for cortical dynamics [10, 11]. Note
that all synapses innervated by a particular type of neuron have the same sign. That is, if type
b neurons are excitatory (inhibitory) then wab(x, y) � 0 (wab(x, y) � 0) for all a = 1, . . . ,M
and (x, y). Thus, one of the major reasons for considering more than one class of neuron is
to incorporate both excitatory and inhibitory synapses. It can be argued that since excitatory
and inhibitory synapses tend to have different time courses in response to action potentials,
one should take�ab(x, y, t) = wab(x, y)�b(t), suggesting that the activity-based model (2.53)
with τ → τa is more biologically realistic than the voltage-based model, at least in the case
of excitatory-inhibitory networks [31]. However, in practice, both versions of the neural field
equations are used to model cortical dynamics. Since both versions exhibit very similar types
of solution. and since most analytical results have been obtained for voltage-based neural
fields, we will mainly focus our review on the latter.

Under certain additional simplifying assumptions, it is possible to incorporate inhibition
into the scalar neural field equations (2.47) or (2.48) [69]. For example, consider a two-
population model (M = 2) of excitatory (a = E) and inhibitory (a = I) neurons evolving
according to the pair of equations

∂uE

∂t
= −uE (x, t)

τE
+
∫ ∞

−∞
wEE (x, y)FE (uE (y, t)) dy +

∫ ∞

−∞
wEI(x, y)FI (uI(y, t)) dy (2.54)

14



J. Phys. A: Math. Theor. 45 (2012) 033001 Topical Review

and
∂uI

∂t
= −uI (x, t)

τI
+
∫ ∞

−∞
wIE (x, y)FE (uE (y, t)) dy +

∫ ∞

−∞
wII(x, y)FI (uI(y, t)) dy, (2.55)

withwEE , wIE � 0 andwEI, wII � 0. Now suppose thatwII ≡ 0, FI(uI ) = uI/τI and τI � τE .
It follows that we can eliminate uI by setting uI (x) ∼ τI

∫∞
−∞wIE (x, y)FE (uE (y, t)) dy, which

leads to a scalar equation for uE of the form (2.47) with effective weight distribution

w(x, y) = wEE (x, y)+
∫ ∞

−∞
wEI(x, y

′)wIE (y
′, y) dy′. (2.56)

It is then possible for w(x, y) to change sign as a function of x, y. (Often w is modeled as a
difference of Gaussians or exponentials—the so-called Mexican hat weight distribution.) The
reduced model can be used to investigate the effects of inhibition on stationary solutions of
neural field equations, see sections 4 and 5. However, in contrast to the full two-population
model, it does not support oscillatory solutions (in the absence of axonal delays, higher order
synapses or some form of adaptation such as synaptic depression).

Some remarks.

(i) There does not currently exist a multi-scale analysis of conductance-based neural networks
that provides a rigorous derivation of neural field equations, although some progress has
been made in this direction [65, 70–72]. One crucial step in the derivation of neural field
equations presented here was the assumption of slowly varying synaptic currents, which
is related to the assumption that there is not significant coherent activity at the level of
individual spikes. This allowed us to treat the output of a neuron (or population of neurons)
as an instantaneous firing rate. A more rigorous derivation would need to incorporate the
mean field analysis of local populations of stochastic spiking neurons into a larger scale
cortical model, and to carry out a systematic form of coarse graining or homogenization in
order to generate a continuum neural field model. Some of these issues will be discussed
in section 6.

(ii) Nevertheless, the heuristic approach does provide a framework for relating parameters of
neural field equations to biophysical parameters such as membrane/synaptic time constants
and axonal delays, and also prescribes how to incorporate additional physiological
processes such as synaptic depression and spike frequency adaptation. Moreover, neural
field models make it possible to explore the dependence of cortical dynamics on
the detailed anatomy of local and long range synaptic connections, as highlighted in
section 5.2.

(iii) Neural field equations support various forms of spatially coherent population activity
[15, 64], including traveling waves (section 3), spatially localized persistent activity states
or bumps (section 4), and spatially periodic patterns (section 5). As highlighted in the
introduction, neural fields have been used to model a wide range of neurobiological
phenomena. One of the major modeling issues is determining how such phenomena
depend on the synaptic weight distributionw, which represents the underlying large-scale
anatomy of cortex. It is usually assumed thatw depends on the Euclidean distance between
interacting cells within the 2D cortical sheet so that w(x, y) = w(|x − y|). However, this
is an oversimplification of the detailed architecture of cortex [73–77], as we discuss in
section 5.2. A related simplification is to take axonal delays to depend on Euclidean
distance according to |x − y|/v, where v is the speed of propagation.

(iv) There are two main approaches to analyzing the spatiotemporal dynamics of neural field
equations. The first method is based on the original work of Amari [12], in which one
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establishes the existence of nonlinear traveling wave and stationary bump solutions by
explicit construction, see sections 3 and 4 and the review [16]. This is possible if one
takes the firing rate function F in voltage-based models to be the Heaviside (2.7). It is
also possible to study the linear stability of such solutions by constructing an associated
Evans function, whose zeros determine the spectrum of the resulting linear operator
[78–80]. The constructive approach of Amari [12] has been particularly useful in providing
explicit insights into how spatiotemporal network dynamics depends on the structure of
the synaptic weight kernel as well as various physiological parameters. Moreover, in
certain cases it is possible to use singular perturbation methods [17, 69] or fixed point
theorems [81, 82] to extend results for neural fields with Heaviside nonlinearities to those
with more realistic sigmoidal nonlinearities, see also [83].

(v) The second method is based on bifurcation theory, following the original work of
Ermentrout and Cowan [19], in which one investigates the emergence of spatially periodic
stationary and oscillatory patterns through a combination of linear stability analysis,
weakly nonlinear analysis, symmetric bifurcation theory, and numerical simulations, see
section 5 and the review [84]. Rigorous functional analytical techniques combined with
numerical bifurcation schemes have also been used to study the existence and (absolute)
stability of stationary bump solutions for a general class of neural field models with
smooth firing rate functions [85, 86].

(vi) In this review we will focus on analytical methods that are applied directly to the integro-
differential equations of neural field theory. We note, however, that several groups have
constructed equivalent PDE models for neural fields with axonal propagation delays,
which take the form of damped inhomogeneous wave equations [21–24, 65]. The basic
idea is to assume a particular form for the synaptic weight distribution and to use Fourier
transforms. Consider, for example, a 2D version of the multi-population integral equation
(2.51). Suppose that �ab(x, y, t) = wab(|x − y|)�(t) and introduce the auxiliary field

�ab(x, t) =
∫

R2
wab(|x − y|)Fb(y, t − |x − y|/vab) dy, (2.57)

where we have set Fb(y, t) = Fb(ub(y, t)). Fourier transforming this equation with

�̂ab(k, ω) =
∫

R2

∫ ∞

−∞
e−i(k·r+ωt)�ab(x, t)dt dx (2.58)

and

wab(r) = w0
ab

2π
e−r/σab, (2.59)

we find that

�̂ab(k, ω) = w0
ab

Aab(ω)

(Aab(ω)2 + k2)3/2
F̂b(k, ω) (2.60)

with Aab(ω) = 1/σab + iω/vab. If one now makes a long-wavelength approximation by
Taylor expanding the denominator of the above equation about k = 0 and rearranging
to give (Aab(ω)

2 + 3k2/2)�̂ab(k, ω) = F̂b(k, ω), one can then apply the inverse Fourier
transform to derive the damped wave equation[(

1

σab
+ 1

vab
∂t

)2

− 3

2
∇2

]
�ab(x, t) = w0

abFb(ub(x, t)). (2.61)

The current ua(x, t) is then related to the field �ab(x, t) according to

ua(x, t) =
∫ t

−∞
�(t − t ′)

∑
b

�ab(x, t ′) dt ′, (2.62)

16



J. Phys. A: Math. Theor. 45 (2012) 033001 Topical Review

which can itself be converted to a PDE by applying the inverse operator L̂t . There have
also been various extensions of the PDE theory including improvements upon the long-
wavelength approximation [87] and incorporation of network inhomogeneities [77]. The
damped wave equation (2.61) and its generalizations have been used extensively to
study EEG rhythms [21–24]. (PDE models have also been used to study single and
multi-bump stationary solutions of scalar neural field equations, in which the time-
independent equations reduce to fourth-order differential equations with a Hamiltonian
structure [28, 88].)

(vii) In this review we focus on applications of non-local neural field equations to dynamical
phenomena that occur on spatial scales that do not extend beyond a few centimeters, which
holds for cortical slices and individual cortical areas such as primary visual cortex. In such
cases axonal propagation delays tend to be relatively small and can be neglected. On the
other hand, models of larger-scale phenomena such as the EEG require the incorporation
of propagation delays. In this case, approximating the non-local neural field equation
by a corresponding brain-wave equation allows the development of efficient numerical
schemes for simulating large-scale cortical activity.

3. Traveling waves

A common in vitro method for studying the propagation of electrical activity in networks
of neurons is to remove a slice of brain tissue and bathe it in a pharmacological medium
that blocks the effects of inhibition. Synchronized discharges can be evoked by a weak
electrical stimulus to a local site on the slice and each discharge propagates away from the
stimulus at a characteristic speed of about 60–90 mm s−1 [2–4, 89]. This is illustrated in
figure 4. The underlying mechanism for the propagation of such waves appears to be synaptic
in origin rather than diffusive, in contrast to the much faster propagation of action potentials
along the axons of individual neurons. In certain cases, local stimulation of a disinhibited slice
can induce spatially localized oscillations in population activity at a frequency 1–10 Hz, such
that during each oscillation cycle the population emits elevated activity that propagates as a
traveling pulse [5, 90] or even a spiral wave (in the case of tangential cortical slices) [18].
A variety of sensory stimuli have been linked to propagating waves in vivo. For example, a
number of studies of vertebrate and invertebrate olfactory bulbs have shown odor stimuli can
elicit oscillations and propagating waves [91, 92]. Similarly, a small visual stimulus can evoke
a propagating wave in visual cortex [93–96], and stimulating a single whisker can trigger a
wave in rat barrel cortex [97]. Evoked waves are not only a neural correlate of sensory stimuli,
but can occur during movement preparation and execution [98]. Finally, spatially localized
oscillations and traveling waves can also be the signature of certain neurological diseases
including epilepsy [1, 99].

Neural field models have played an important role in developing our understanding of
network-based mechanisms underlying propagating activity in normal and pathological brain
states. As in studies of reaction-diffusion systems, it is important to distinguish between wave
propagation in bistable, excitable, and oscillatory neural media. In the first case, there exist
two stable stationary homogeneous states and the neural medium supports the propagation
of traveling fronts. On the other hand, an excitable neural medium has a single stable
homogeneous state and supports the propagation of traveling pulses. Finally, an oscillatory
neural medium is one in which the background state of all neurons is oscillatory—wave
propagation is then characterized by a spatially uniform gradient in the phase of the oscillations
[100]. (An excitable medium can also act like an oscillatory medium if there exists a spatially
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(a)

(b)

Figure 4. Propagating wave of activity in a brain slice preparation in which inhibition has
been blocked (reprinted with permission from [3]). (a) Schematic of a slice removed from the
somatosensory cortex of the rat. The cortex is a thin (sub-millimeter) layered sheet of neurons, see
section 5.2. A slice approximately 500 μm thickness is obtained by cutting vertically through the
cortical layers. (b) A multi-electrode array placed into layers II/III of the slice records extracellularly
the propagation of a wave. (c) Pseudocolor plot of propagating activity.

localized population of pacemaker cells.) We will mainly focus on waves in non-oscillatory
neural media. We begin by showing how Amari’s constructive method can be used to analyze
the existence (section 3.1) and stability (section 3.2) of solitary traveling fronts in a 1D scalar
neural field. (Since there is strong vertical coupling between layers of a cortical column, it is
possible to treat a thin vertical cortical slice as an effective 1D medium.) In order to relate the
models to experiments on disinhibited cortical slices, we assume that the weight distribution
is purely excitatory. This is also motivated by the observation that epileptic seizures are often
associated with greatly enhanced levels of recurrent excitation [1]. In section 3.3 we extend
the analysis to the case of traveling pulses, which requires the inclusion of some form of local
negative feedback mechanism such as synaptic depression or spike frequency adaptation. We
also show how singular perturbation methods can be used to analyze the existence of pulses
for smooth firing rate functions [17]. We then consider an application of adaptive neural
fields to modeling the propagation of visual perception waves (section 3.4). In section 3.5 we
review two approaches to analyzing wave propagation failure in inhomogeneous neural media,
one based on homogenization theory [20, 101] and the other on interfacial dynamics [102].
Finally, in section 3.6 we briefly describe a possible mechanism for generating spiral waves
in oscillatory neural media [62, 103, 104].

3.1. Traveling fronts in a scalar neural field

We begin by using Amari’s constructive method [12] to analyze the existence of traveling
front solutions of the scalar neural field equation (2.47). Similar analyses are found in
[17, 79, 105]. We assume a Heaviside rate function (2.7) and an excitatory weight distribution
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Figure 5. Schematic illustration of 1D traveling wave solutions U (ξ ), ξ = x − ct with wavespeed
c. (a) Traveling wavefront. (b) Traveling pulse of width 
. Dashed horizontal line indicates the
threshold value κ .

of the formw(x, y) = w(x−y)withw(x) � 0 andw(−x) = w(x). We also assume thatw(x)
is a monotonically decreasing function of x for x � 0. A common choice is the exponential
weight distribution

w(x) = 1

2σ
e−|x|/σ , (3.1)

where σ determines the range of synaptic connections. The latter tends to range from 100 μm
to 1 mm. The resulting neural field equation is

∂u(x, t)

∂t
= − u(x, t)+

∫ ∞

−∞
w(x − x′)F(u(x′, t)) dx′, (3.2)

with F(u) = H(u − κ). We have fixed the units of time by setting τ = 1. If τ is interpreted as
a membrane time constant then τ ∼ 10 ms. In order to construct a traveling front solution of
(3.2), we introduce the traveling wave coordinate ξ = x − ct, where c denotes the wavespeed,
and set u(x, t) = U (ξ ) with limξ→−∞ U (ξ ) = U+ > 0 and limξ→∞ U (ξ ) = 0 such that
U (ξ ) only crosses the threshold κ once, see figure 5. Here U+ = ∫∞

−∞w(y)dy is a spatially
uniform fixed point solution of (3.2). Since equation (3.2) is equivariant with respect to uniform
translations, we are free to take the threshold crossing point to be at the origin, U (0) = κ , so
that U (ξ ) < κ for ξ > 0 and U (ξ ) > κ for ξ < 0. Substituting this traveling front solution
into equation (3.2) then gives

−cU ′(ξ )+ U (ξ ) =
∫ 0

−∞
w(ξ − ξ ′) dξ ′ =

∫ ∞

ξ

w(x) dx ≡ W (ξ ), (3.3)

where U ′(ξ ) = dU/dξ . Multiplying both sides of the above equation by e−ξ/c and integrating
with respect to ξ leads to the solution

U (ξ ) = eξ/c
[
κ − 1

c

∫ ξ

0
e−y/cW (y) dy

]
. (3.4)

Finally, requiring the solution to remain bounded as ξ → ∞ (ξ → −∞) for c > 0 (for c < 0)
implies that κ must satisfy the condition

κ = 1

|c|
∫ ∞

0
e−y/|c|W (sign(c)y) dy. (3.5)

Thus, one of the useful aspects of the constructive method is that it allows us to derive an
explicit expression for the wavespeed as a function of physiological parameters such as firing
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threshold and range of synaptic connections. In the case of the exponential weight distribution
(3.1), the relationship between wavespeed c and threshold κ is

c = σ

2κ
[1 − 2κ] (for κ < 0.5), c = σ

2

1 − 2κ

1 − κ (for 0.5 < κ < 1). (3.6)

This establishes the existence of a unique front solution for fixed κ , which travels to the right
(c > 0) when κ < 0.5 and travels to the left (c < 0) when κ > 0.5. As we will show in
section 3.2, the traveling front is stable.

Given the existence of a traveling front solution for a Heaviside rate function, it is possible
to extend the analysis to a smooth sigmoid nonlinearity using a continuation method [82]. We
briefly summarize the main result. Consider the scalar neural field equation (3.2) with F given
by the sigmoid function (2.6), and W (x) non-negative and symmetric with normalization∫∞
−∞ W (x)dx = 1. Suppose that the function F̃(u) = −u + F(u) has precisely three zeros at

u = U±,U0 with U− < U0 < U+ and F̃ ′(U±) < 0. It can then be shown that (modulo uniform
translations) there exists a unique traveling front solution u(x, t) = U (ξ ), ξ = x − ct, with

−cU ′(ξ )+ U (ξ ) =
∫ ∞

−∞
w(ξ − ξ ′)F(U (ξ ′)) dξ ′, (3.7)

and U (ξ )→ U± as ξ → ∓∞ [82]. Moreover, the speed of the wave satisfies

c = �∫∞
−∞ U ′(ξ )2F ′(U (ξ )) dξ

, (3.8)

where F ′(U ) = dF/dU and

� =
∫ U+

U−
F̃(U ) dU. (3.9)

Since the denominator of equation (3.8) is positive definite, the sign of c is determined by the
sign of the coefficient �. In particular, if the threshold κ = 0.5 and the gain of the sigmoid
η > 4, see equation (2.6), then there exists a pair of stable homogeneous fixed points with
U− = −U+, which in turn implies that � = 0 and the front solution is stationary. Note that
this analysis has been extended to a more general form of nonlocal equations by Chen [106]

3.2. Wave stability and Evans functions

Suppose that the scalar neural field equation (3.2) has a traveling wave solution u(x, t) =
U (ξ ), ξ = x − ct with c > 0. Following Coombes and Owen [79], it is convenient to rewrite
the neural field equation in the integral form

u(x, t) =
∫ ∞

−∞

∫ ∞

0
w(y)�(s)F(u(x − y, t − s)) ds dy, (3.10)

with �(t) = e−tH(t). For this representation, the front solution satisfies

U (ξ ) =
∫ ∞

−∞

∫ ∞

0
w(y)�(s)F(U (ξ − y + cs) ds dy. (3.11)

In order to determine the stability of the front solutions, we transform to traveling wave
coordinates by setting u(x, t) = U (ξ , t) = U (ξ )+ ϕ(ξ, t), and Taylor expand to first order in
ϕ. This leads to the linear integral equation

ϕ(ξ, t) =
∫ ∞

−∞

∫ ∞

0
w(y)�(s)F ′(U (ξ − y + cs))ϕ(ξ − y + cs, t − s) ds dy. (3.12)

We now seek solutions of equation (3.12) of the form ϕ(ξ, t) = ϕ(ξ )eλt , λ ∈ C, which leads
to the eigenvalue equation ϕ = L(λ)ϕ. That is,

ϕ(ξ ) =
∫ ∞

−∞

∫ ∞

ξ−y
w(y)�((s + y − ξ )/c) e−λ(s+y−ξ )/cF ′(U (s))ϕ(s)

ds

c
dy, (3.13)
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where we have performed the change of variables cs + ξ − y → s. The linear stability of the
traveling front can then be determined in terms of the spectrum σ (L) of L.

It is first useful to recall some basic definitions regarding the spectrum of a linear operator
[107]. Suppose that the eigenfunctions ϕ(ξ ) belong to a Banach space B (complete, normed
vector space). In practice, we will simply require that ϕ(ξ ) is a bounded smooth function
on R that decays exponentially at ξ → ±∞. Introduce the so-called inverse or resolvent
operator R(λ) = [L(λ)− I]−1, where I denotes the identity operator. We can then decompose
the spectrum σ (L) into the following disjoint sets. λ is an element of the point or discrete
spectrum if R(λ) does not exist; λ is an element of the continuous spectrum if R(λ) exists, is
defined on a dense subset of B, but is not bounded; λ is an element of the residual spectrum
if R(λ) exists but its domain is not dense in B. We refer to elements of the discrete spectrum
as eigenvalues and the union of the continuous and residual spectra as the essential spectrum.
Given the spectrum of the linear operator defined by equation (3.13), the traveling wave is said
to be linearly stable if [108]

max{Re(λ) : λ ∈ σ (L), λ �= 0} � −K (3.14)

for some K > 0, and λ = 0 is a simple eigenvalue of λ. The existence of at least one zero
eigenvalue is a consequence of translation invariance. Indeed, differentiating equation (3.11)
with respect to ξ shows that ϕ(ξ ) = U ′(ξ ) is an eigenfunction solution of equation (3.13)
with λ = 0. In the case of PDEs, it is known that the discrete spectrum of the operator
obtained by linearizing about a traveling wave solution may be associated with the zeros of a
complex analytic function known as the Evans function. Evans [109] originally developed the
formalism within the context of the stability of solitary pulses in diffusive Hodgkin–Huxley
type equations describing action potential propagation in nerve axons. Since then the Evans
function construction has been extended to a wide range of PDEs, see the review [108]. It
has also recently been applied to neural field equations [78–80, 110–112] and more general
nonlocal problems [113]. Moreover, for neural fields with Heaviside firing rate functions,
the Evans function can be calculated explicitly. This was first carried out by Zhang [78]
who applied the method of variation of parameters to the linearized version of the integro-
differential equation (3.2). Here we will follow closely the more direct integral formulation of
Coombes and Owen [79].

Setting F(U ) = H(U − κ) in equation (3.12) and using the identity

H ′(U (ξ )− κ) = δ(U (ξ )− κ) = δ(ξ )

|U ′(0)| , (3.15)

gives

ϕ(ξ ) = ϕ(0)

c|U ′(0)|
∫ ∞

−∞
w(y)�((y − ξ )/c) e−λ(y−ξ )/c dy. (3.16)

In order to obtain a self-consistent solution at ξ = 0, we require that

ϕ(0) = ϕ(0)

c|U ′(0)|
∫ ∞

0
w(y)�(y/c) e−λy/c dy, (3.17)

We have used the fact that �(y) = 0 for y < 0, which is a consequence of causality. Hence, a
nontrivial solution exists provided that E (λ) = 0, where

E (λ) = 1 − 1

c|U ′(0)|
∫ ∞

0
w(y)�(y/c) e−λy/c dy. (3.18)

Equation (3.18) can be identified with the Evans function for the traveling front solution of the
scalar neural field equation (3.10). It is real-valued if λ is real. Furthermore, (i) the complex
number λ is an eigenvalue of the operator L if and only if E (λ) = 0, and (ii) the algebraic
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multiplicity of an eigenvalue is equal to the order of the zero of Evan’s function [78–80]. We
briefly indicate the proof of (i) for �(t) = e−tH(t). Equation (3.16) becomes

ϕ(ξ ) = ϕ(0)

c|U ′(0)| e(λ+1)ξ/c
∫ ∞

ξ

w(y) e−(λ+1)y/c dy,

= ϕ(0)

[
1 − 1

c|U ′(0)|
∫ ξ

0
w(y) e−(λ+1)y/c dy

]
e(λ+1)ξ/c

which in the limit ξ → ∞ gives

lim
ξ→∞

ϕ(ξ ) = ϕ(0)E (λ) lim
ξ→∞

e(λ+1)ξ/c. (3.19)

Assuming that Reλ > −1 (which turns out to be to the right of the essential spectrum), then
ϕ(ξ ) will be unbounded as ξ → ∞ unless E (λ) = 0. That is, if E (λ) = 0 then ϕ(ξ ) is
normalizable, the resolvent operator is not invertible and λ is an eigenvalue.

It is also straightforward to show that E (0) = 0, which we expect from translation
invariance. First, setting F(U ) = H(U −κ) in equation (3.11) and differentiating with respect
to ξ shows that

U ′(ξ ) = −1

c

∫ ∞

−∞
w(y)�((y − ξ )/c) dy. (3.20)

Thus, defining

H(λ) =
∫ ∞

0
w(y)�(y/c)e−λy/c dy (3.21)

we see that c|U ′(0)| = H(0) and, hence,

E (λ) = 1 − H(λ)
H(0) . (3.22)

It immediately follows that E (0) = 0.
In order to determine the essential spectrum, consider the inhomogeneous equation

ϕ(ξ )− ϕ(0)

c|U ′(0)|
∫ ∞

−∞
w(y)�((y − ξ )/c) e−λ(y−ξ )/c dy = h(ξ ) (3.23)

for some normalizable smooth function h on R. Assuming that λ does not belong to the discrete
spectrum, E (λ) �= 0, we can expresses the constant ϕ(0) in terms of h(0) by setting ξ = 0 in
equation (3.23): ϕ(0) = h(0)/E (λ). Thus,

ϕ(ξ ) = h(ξ )+ 1

E (λ)
h(0)

c|U ′(0)|
∫ ∞

−∞
w(y)�((y − ξ )/c) e−λ(y−ξ )/c dy. (3.24)

Fourier transforming this equation using the convolution theorem gives

ϕ̂(k) = ĥ(k)+ 1

E (λ)
h(0)

c|U ′(0)| ω̂(k)�̂(kc + iλ) (3.25)

where

ϕ̂(k) =
∫ ∞

−∞
ϕ(y) eiky dy (3.26)

etc. Now suppose that for a given value of k there existsλ = λ(k) for which [�̂(kc+iλ(k))]−1 =
0. It follows that the right-hand side of equation (3.25) blows up if λ = λ(k), that is, the
dispersion curve belongs to the essential spectrum.

For the sake of illustration, let us calculate the zeros of the Evans function in the case
of the exponential weight function (3.1). Substituting �(t) = e−t and w(y) = e−|y|/σ /2σ in
equation (3.21) gives

H(λ) = 1

2σ

1

σ−1 + λ/c + 1/c
(3.27)
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so that [79]

E (λ) = λ

c/σ + 1 + λ. (3.28)

It follows that λ = 0 is the only zero of the Evans function and it is a simple root (since E ′(0) >
0). Furthermore, in the particular case �(t) = e−t , we have [�̃(kc + iλ)]−1 = 1 − ikc + λ so
that the essential spectrum is λ(k) = −1 + ikc, that is, a vertical line in the complex plane at
Reλ = −1. It follows that the corresponding traveling front (it it exists) is stable.

The above example illustrates one of the powerful features of the constructive method
based on Heavisides. Not only is it possible to construct exact traveling wave solutions and
derive formulas for the speed of the wave, but one can also explicitly construct the Evans
function that determines wave stability. The method extends to multi-population neural field
models, neural fields with axonal propagation delays, and adaptive neural fields [79]. (Although
taking the high-gain limit of a smooth firing rate function is not very realistic from a biological
perspective, one finds that many of the basic features of traveling waves persist for finite gain.)
In the particular case of axonal delays, it can be shown that delays reduce the speed of a wave
but do not affect its stability properties. For example, given a right moving traveling front
solution of the scalar neural field equation (2.50) with τ = 1 and exponential weights, one
finds that the speed of the wave is [66, 79]

c = σ
1 − 2κ

2κ + σ (1 − 2κ)/v
, (3.29)

where v is the propagation speed along an axon, and the Evans function is

E (λ) = λ

c/σ + (1 − c/v)+ λ. (3.30)

3.3. Traveling pulses in adaptive neural fields

Traveling fronts are not particularly realistic, since populations of cells do not stay in the
excited state forever. Hence, rather than a traveling front, propagating activity in cortex is
usually better described as a traveling pulse. (One example where fronts rather than pulses
occur is wave propagation during binocular rivalry [114–117], see section 3.3.3.) One way to
generate a traveling pulse is to include some form of synaptic inhibition, provided that it is
not too strong [12]. However, even in the absence of synaptic inhibition, most neurons possess
intrinsic negative feedback mechanisms that slowly bring the cell back to resting voltages
after periods of high activity. Possible nonlinear mechanisms include synaptic depression or
spike frequency adaptation as discussed in section 2. However, most analytical studies of
traveling pulses in neural field models have been based on a simpler linear form of adaptation
introduced by Pinto and Ermentrout [17]. (For an analysis of waves in neural fields with
nonlinear adaptation, see for example [61, 64].) The linear adaptation model is given by

∂u(x, t)

∂t
= − u(x, t)+

∫ ∞

−∞
w(x − x′)F(u(x′, t)) dx′ − βq(x, t)

1

ε

∂q(x, t)

∂t
= − q(x, t)+ u(x, t), (3.31)

where ε and β determine the rate and amplitude of linear adaptation. We first show how to
construct a traveling pulse solution of equation (3.31) in the case of a Heaviside rate function
F(u) = H(u − κ), following the particular formulation of [78, 112]. We then indicate how
singular perturbation methods can be used to construct a traveling pulse for smooth F , as
carried out by Pinto and Ermentrout [17]. The introduction of adaptation means that the neural
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Figure 6. Plot of nullclines for space-clamped planar system u̇ = −u+F(u)−βu, ε−1q̇ = −q+u
with F(u) = 1/(1 + e−η(u−κ)). Nullcline q = −u + F(u)]/β for β = 1.0 (β = 2.5) intercepts
straight nullcline q = u at three fixed points (one fixed point) and the corresponding spatially
extended network acts as a bistable (excitable) medium. Other parameters are η = 20, κ = 0.25.

field can act either as an excitable medium or as a bistable medium, see figure 6, depending on
parameter values. In the former case, the neural field supports traveling pulses and in the latter
case traveling fronts. We will focus on the former here. Note, however, that linear (or nonlinear)
adaptation can have a nontrivial effect on the propagation of traveling fronts [105, 118]. This
is due to the occurrence of a symmetry breaking front bifurcation analogous to that found in
reaction diffusion systems [119–122]. That is, a stationary front can undergo a supercritical
pitchfork bifurcation at a critical rate of adaptation, leading to bidirectional front propagation.
As in the case of reaction diffusion systems, the front bifurcation acts as an organizing center
for a variety of nontrivial dynamics including the formation of oscillatory fronts or breathers.
The latter can occur, for example, through a Hopf bifurcation from a stationary front in the
presence of a weak stationary input inhomogeneity [105].

3.3.1. Exact traveling pulse solution. Without loss of generality, let us consider a right-
moving traveling pulse solution of the form (u(x, t), q(x, t)) = (U (x − ct),Q(x − ct)) with
U (±∞),Q(±∞) = 0 and U (−
) = U (0) = κ , see figure 5(b). Here c,
 denote the
speed and width of the wave, respectively. We also assume that U (ξ ) > κ for ξ ∈ (−
, 0)
and U (ξ ) < κ for ξ < −
 and ξ > 0. Substituting this solution into equation (3.31) with
ξ = x − ct then gives

−cU ′(ξ )+ U (ξ )+ βQ(ξ ) =
∫ 0

−

w(ξ − ξ ′) dξ ′

−cQ′(ξ )+ ε[Q(ξ )− U (ξ )] = 0. (3.32)

It is useful to rewrite equation (3.32) in the matrix form(
1 β

−ε ε

)(
U
Q

)
− c∂ξ

(
U
Q

)
= [W (ξ )− W (ξ +
)]

(
1
0

)
. (3.33)

with W (ξ ) = ∫∞
ξ
w(x) dx. We proceed by diagonalizing the left-hand side of equation (3.33)

using the right eigenvectors v of the matrix

M =
(

1 β

−ε ε

)
. (3.34)
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These are given by v± = (ε − λ±, ε)T with corresponding eigenvalues

λ± = 1
2 [1 + ε ±

√
(1 + ε)2 − 4ε(1 + β)]. (3.35)

We will assume that ε is sufficiently small so that β < (1 − ε)2/4ε and consequently λ± are
real. (For a discussion of the effects of complex eigenvalues λ± see [104].) Note that v± eλ±ξ/c

are the corresponding null vectors of the linear operator on the left-hand side of equation
(3.33). Performing the transformation(

Ũ
Q̃

)
= T−1

(
U
Q

)
, T = (v+ v−), (3.36)

then gives the pair of equations

− c∂ξŨ + λ+Ũ = η+[W (ξ )− W (ξ +
)]
−c∂ξ Q̃ + λ−Q̃ = η−[W (ξ )− W (ξ +
)] (3.37)

with η± = ∓1/(λ+ − λ−). Integrating the equation for Ũ from −
 to ∞, we have

Ũ (ξ ) = eλ+ξ/c
[
Ũ (−
)e
λ+/c − η+

c

∫ ξ

−

e−λ+ξ ′/c[W (ξ ′)− W (ξ ′ +
)] dξ ′

]
. (3.38)

Finiteness of Ũ in the limit ξ → ∞ requires the term in square brackets to cancel. Hence, we
can eliminate Ũ (−
) to obtain the result

Ũ (ξ ) = η+
c

∫ ∞

0
e−λ+ξ ′/c[W (ξ ′ + ξ )− W (ξ ′ + ξ +
)] dξ ′. (3.39)

Similarly,

Q̃(ξ ) = η−
c

∫ ∞

0
e−λ−ξ ′/c[W (ξ ′ + ξ )− W (ξ ′ + ξ +
)] dξ ′. (3.40)

Performing the inverse transformation U = (ε − λ+)Ũ + (ε − λ−)Q̃ we have

U (ξ ) = 1

c

∫ ∞

0

[
χ+e−λ+ξ ′/c + χ−e−λ−ξ ′/c

]
[W (ξ ′ + ξ )− W (ξ ′ + ξ +
)] dξ ′, (3.41)

with χ± = (ε − λ±)η±. The threshold conditions U (−
) = κ and U (0) = κ then yield a
pair of equations whose solutions determine existence curves relating the speed c and width

 of a pulse to the threshold κ [17, 79, 112].

For the sake of illustration, let w be given by the exponential function (3.1). In the
domain ξ > 0, there is a common factor of e−ξ/σ in the integrand of equation (3.41) so that
U (ξ ) = κe−ξ/σ for ξ > 0 provided that

κ = 1

2

σ (c + εσ )(1 − e−
/σ )
c2 + cσ (1 + ε)+ σ 2ε(1 + β) . (3.42)

(Note that for zero negative feedback (β = 0), equation (3.42) reduces to the formula for
wavespeed of a front in the limit
 → ∞.) On the other hand, when ξ < 0 one has to partition
the integral of equation (3.41) into the separate domains ξ ′ > |ξ |, |ξ | − 
 < ξ ′ < |ξ | and
ξ ′ < |ξ | −
. This then determines the second threshold condition as well as the asymptotic
behavior of U (ξ ) in the limit ξ → −∞:

U (ξ ) = A+ eλ+ξ/c + A− eλ−ξ/c + A0 eσξ . (3.43)

where the amplitudes A± and A0 can be determined from matching conditions at the threshold
crossing points [17, 112]. Note that the leading edge of the pulse is positive, whereas the
trailing edge is negative due to the effects of adaptation. One finds that for sufficiently slow
negative feedback (small ε) and large β there exist two pulse solutions, one narrow and slow
and the other wide and fast. This is illustrated in figure 7. Note that a numerical value of
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Figure 7. Existence of right-moving traveling pulses in the case of the excitatory network (3.31)
with linear adaptation for an exponential weight distribution (3.1). Here σ = 1, ε = 0.01 and
β = 2.5. (a) Plot of pulse width 
 against threshold κ . (b) Plot of wave speed c against threshold
κ . Stable (unstable) branches indicated by black (gray) curves.

c ∼ 1 in dimensionless units (σ = τ = 1) translates into a physical speed of 60–90 mm
s−1 if the membrane time constant τ = 10 ms and the range of synaptic connections is σ =
600–900 μm.

Numerically, the fast solution is found to be stable [17], and this can be confirmed
analytically using an Evans function construction [3, 79, 112]. First, write the neural field
equation (3.31) in the integral form

u(x, t) =
∫ ∞

−∞

∫ ∞

0
w(y)�(s)F(u(x − y, t − s)) dsdy − β

∫ ∞

0
�(s)u(x, t − s) ds, (3.44)

with �(t) = e−tH(t) and �(t) = ∫ t
0 �(s)e

−ε(t−s) ds. Linearizing about the pulse solution by
setting u(x, t) = U (ξ )+ ϕ(ξ )eλt gives

ϕ(ξ ) =
∫ ∞

−∞

∫ ∞

ξ−y
w(y)�((s + y − ξ )/c) e−λ(s+y−ξ )/cF ′(U (s))ϕ(s)

ds

c
dy

−β
∫ ∞

ξ

�((s − ξ )/c) e−λ(s−ξ )/cϕ(s)
ds

c
. (3.45)

Proceeding along similar lines to the analysis of front stability in section 3.2, we set
F(U ) = H(U − κ) and use the identity

H ′(U (ξ )− κ) = δ(U (ξ )− κ) = δ(ξ )

|U ′(0)| + δ(ξ +
)
|U ′(−
)| . (3.46)

This gives

ϕ(ξ )+ β
∫ ∞

ξ

�((s − ξ )/c) e−λ(s−ξ )/cϕ(s)
ds

c

= ϕ(0)

c|U ′(0)|H(λ, ξ )+
ϕ(−
)

c|U ′(−
)|H(λ, ξ +
), (3.47)

where

H(λ, ξ ) =
∫ ∞

ξ

w(y)�((y − ξ )/c) e−λ(y−ξ )/c dy. (3.48)
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Let Ĥ(λ, k) denote the Fourier transform of H(λ, ξ ) and Ĝ(λ, k) denote the Fourier transform
of �(ξ/c) e−ξ/c. Using Fourier transforms and the convolution theorem, equation (3.47) can
then be rewritten as

ϕ(ξ ) = ϕ(0)

c|U ′(0)|B(λ, ξ )+
ϕ(−
)

c|U ′(−
)|B(λ, ξ +
), (3.49)

with B(λ, ξ ) the inverse transform of

B̂(λ, k) = Ĥ(λ, k)
[1 + βĜ(λ,−k)/c]

. (3.50)

Finally, the eigenvalues λ are determined by setting ξ = 0,−
 and solving the resulting
matrix equation f = M(λ)f with f = (ϕ(0), ϕ(−
)) and

M(λ) = 1

c

⎛⎜⎜⎝
B(λ, 0)
|U ′(ξ1)|

B(λ,
)
|U ′(−
)|

B(λ,−
)
|U ′(0)|

B(λ, 0)
|U ′(−
)|

⎞⎟⎟⎠ . (3.51)

It follows that the eigenvalues λ are zeros of the Evans function

E (λ) = Det[1 − M(λ)], (3.52)

where 1 denotes the identity matrix.

3.3.2. Singularly perturbed pulse solution. In the case of slow adaptation (ε � 1), Pinto and
Ermentrout [17] showed how to construct a traveling pulse solution of equation (3.31) for a
smooth firing rate function F by exploiting the existence of traveling front solutions of the
corresponding scalar equation (3.2). The method is analogous to the construction of traveling
pulses in reaction-diffusion systems [13]. The basic idea is to analyze separately the fast and
slow time behavior of solutions to equation (3.31) expressed in traveling wave coordinates:

−c
dU (ξ )

dξ
= −U (ξ )− βQ(ξ )+

∫ ∞

−∞
w(ξ − ξ ′)F(U (ξ ′)) dξ ′, (3.53)

−c
dQ(ξ )

dξ
= ε[−Q(ξ )+ U (ξ )]. (3.54)

We will assume the normalization
∫∞
−∞w(y) dy = 1. In the case of fast time, the slow

adaptation is taken to be constant by setting ε = 0 so that we have the inner layer equations

−c
dU (ξ )

dξ
= −U − βQ0 +

∫ ∞

−∞
w(ξ − ξ ′)F(U (ξ ′)) dξ ′, (3.55)

−c
dQ(ξ )

dξ
= 0. (3.56)

Since Q(ξ ) = Q0 is a constant, the term βQ0 can be absorbed into the threshold of the firing
rate function F by making the shift U (ξ )→ U (ξ )+βQ0. Hence equation (3.55) is equivalent
to the scalar equation (3.7), which supports the propagation of traveling fronts. In the case of
slow time, we introduce the compressed variable ζ = εξ so that

−cε
dU (ζ )

dζ
= −U (ζ )− βQ(ζ )+ 1

ε

∫ ∞

−∞
w([ζ − ζ ′]/ε)F(U (ζ ′)) dζ ′, (3.57)

−c
dQ(ζ )

dζ
= −Q(ζ )+ U (ζ ). (3.58)
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Figure 8. Singular perturbation construction of a traveling pulse in (a) the phase-plane and (b)
traveling wave coordinates. See text for details.

In the limit ε → 0, we have
1

ε
w([ζ − ζ ′]/ε)→ δ(ζ − ζ ′) (3.59)

so that first equation becomes

βQ(ζ ) = −U (ζ )+ F(U (ζ )). (3.60)

Inverting this equation yields two branches U = g±(Q). Hence we obtain a slow time or outer
layer equation on each branch, see figure 8:

dQ

dζ
= 1

c
[Q − g±(Q)]. (3.61)

The construction of the traveling pulse now proceeds by matching inner and outer solutions
[17]. This can be visualized by considering the nullclines of the space-clamped version of
equation (3.31), see figure 8. We assume that the gain of F and the strength β of adaptation
are such that there is only a single fixed point of the space-clamped system.

(I) Starting at the unique fixed point, use the fast inner equations and the existence results
of [82] to construct a leading front solution at Q = Q0 with speed c0 and matching
conditions limξ±∞ U (ξ ) = g±(Q0).

(II) Use the slow outer equations to determine dynamics of Q along upper branch
U = g+(Q).

(III) The solution leaves upper branch at some point Q1. Once again use the fast inner
equations and [82] to construct a trailing front solution with speed c1 and matching
conditions

lim
ξ±∞

U (ξ ) = g∓(Q1).

(IV) Finally, use the slow outer equations to determine the return to the fixed point along the
lower branch.

In order to establish the existence of a traveling pulse solution, it remains to find a value
Q1 for which c1 = −c0 so that the leading and trailing edges of the pulse move at the same
speed and thus the pulse maintains its shape as it propagates. (Since Q0 is known so is c0.)
Adapting the formula for the wave speed obtained in [82], we have

c1 = − �∫∞
−∞ U ′2(ξ )F ′(U (ξ )) dξ

, � =
∫ g+(Q1)

g−(Q1)

[−U − Q1 + F(U )] dU. (3.62)
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Figure 9. Schematic diagram of a neural field model of perceptual switching. Each 1D neural field
corresponds to a different visual percept, which could represent distinct oriented stimuli presented
to the two eyes during binocular rivalry.

Unfortunately, it is not possible to derive a closed form expression for the wave speed.
However, the existence of a matching speed can be established provided that certain additional
assumptions are made regarding the shape of the firing rate function, see [17] for more details.

3.4. Adaptive neural field model of wave propagation during perceptual switching

A number of phenomena in visual perception involve the propagation of a traveling front,
in which a suppressed visual percept replaces a dominant percept within the visual field
of an observer. A classical example is the wave-like propagation of perceptual dominance
during binocular rivalry [114–116]. Binocular rivalry is the phenomenon whereby perception
switches back and forth between different images presented to the two eyes. The resulting
fluctuations in perceptual dominance and suppression provide a basis for non-invasive studies
of the human visual system and the identification of possible neural mechanisms underlying
conscious visual awareness [123, 124].

A simple neural field model for wave propagation during perceptual switching is shown
in figure 9, see [117]. It is assumed that the two competing visual percepts are represented
by the activity in two 1D neural fields. In the case of binocular rivalry, these could represent
networks stimulated by left and right eye inputs, respectively. Recurrent connections within
each 1D network are assumed to be excitatory, whereas connections between the two networks
are inhibitory (cross-inhibition). Slow adaptation is incorporated into the model by taking
the network connections to exhibit synaptic depression. The combination of cross-inhibition
paired with a slow adaptive process forms the basis of most competitive network models
of binocular rivalry [114, 125–129]. However, these studies neglect spatial effects or treat
them computationally. The advantage of a continuum neural field model is that it provides
an analytical framework for studying perceptual wave propagation [117]. Let u(x, t) and
v(x, t) denote the activity of the two networks. The associated neural field equations are a
generalization of (2.49):

∂u(x, t)

∂t
= −u(x, t)+

∫ ∞

−∞
we(x − x′)qu(x

′, t)F(u(x′, t))) dx′

−
∫ ∞

−∞
wi(x − x′)qv(x′, t) f (v(x′, t))) dx′ + Iu(x, t)

τq
∂qu(x, t)

∂t
= 1 − qu(x, t)− βqu(x, t)F(u(x, t)), (3.63)
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Figure 10. Bifurcation diagram showing homogeneous solutions for the neural field u as a
function of the input amplitude I. Solid lines represent stable states, whereas circles represent
the maximum and minimum of perceptual switching oscillations. It can be seen that there are
regions of off/WTA bistability, WTA/fusion bistability, and fusion/rivalry bistability. Parameters
are τq = 500, κ = 0.05, β = 5, ae = 0.4 and ai = −1.

and
∂v(x, t)

∂t
= −v(x, t)+

∫ ∞

−∞
we(x − x′)qv(x′, t)F(v(x′, t))) dx′

−
∫ ∞

−∞
wi(x − x′)qu(x

′, t)F(u(x′, t))) dx′ + Iv(x, t),

τq
∂qv(x, t)

∂t
= 1 − qv(x, t)− βqv(x, t) f (v(x, t)). (3.64)

The distributionwe of recurrent excitatory connections and the distribution of cross-inhibitory
connections are both taken to be Gaussians:

we(r) = ae√
2πσ 2

e

e
− r2

2σ2
e , wi(r) = ai√

2πσ 2
i

e
− r2

2σ2
i . (3.65)

Depressing synapses are incorporated into the model in the form of the presynaptic scaling
factors qu, qv . Finally, Iu, Iv represent the effective strength of the stimuli representing the two
percepts. We will assume that the unperturbed network has Iu = Iv = I with I a constant input.

In order to construct exact traveling front solutions, let F(u) = H(u − κ). It is then
straightforward to show that there exist four homogeneous fixed points (U∗,V ∗,Q∗

u,Q
∗
v )

corresponding to an off-state (U∗ < κ,V ∗ < κ), a fusion state (U∗ > κ,V ∗ > κ), and two
winner-take-all (WTA) states (either U∗ = U+ > κ,V ∗ = V− < κ or U∗ = U− < κ,V ∗ =
V+ > κ), and all are stable. It can also be shown that equations (3.63) and (3.64) support
homogeneous limit cycle oscillations in which there is periodic switching between perceptual
dominance consistent with binocular rivalry, for example [128]. Since all the fixed points are
stable, it follows that such oscillations cannot arise via a standard Hopf bifurcation. Indeed,
there exist bistable regimes where a rivalry state coexists with a fusion state as illustrated in
figure 10. (Such behavior persists in the case of smooth sigmoid firing rate functions, at least
for sufficiently high gain [128].) Suppose that the full system given by equations (3.63) and
(3.64) is initially in a stable WTA state with the v–network dominant, and is then perturbed
away from this state by introducing a propagating front that generates a perceptual dominance
switch. (Such a switch can be induced experimentally by temporarily introducing a spatially
localized increase in the input to one of the networks [114, 116].) Furthermore, suppose that
over a finite spatial domain of interest the time taken for the wave front to propagate is much
smaller than the relaxation time τq of synaptic depression. To a first approximation we can
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then ignore the dynamics of the depression variables and assume that they are constant, that
is, (qu(x, t), qv(x, t)) = (Qu,Qv ) with Qu = 1 and Qv = (1 + β)−1. A similar adiabatic
approximation can also be made if the network is in an oscillatory state, provided that (a) the
duration of wave propagation is short compared to the natural switching period and (b) the
induction of the wave does not occur close to the point at which spontaneous switching occurs.
In this case Qu and Qv will not be given by the WTA fixed point solution, but Qu �= Qv .

Consider a traveling front solution of the form u(x, t) = U (x−ct), v(x, t) = V (x−ct),
where c is the wave speed and ξ = x − ct is a traveling wave coordinate. Furthermore,
(U (ξ ),V (ξ )) → XL as ξ → −∞ and (U (ξ ),V (ξ )) → XR , as ξ → ∞, where
XL = (Quae + I, I − Qvai), XR = (I − Quai,Qvae + I), and U (ξ ) (V (ξ )) is a monotonically
decreasing (increasing) function of ξ . It follows that if c > 0 then the wavefront represents
a solution in which activity invades the supressed u-network and retreats from the dominant
v-network. Given the asymptotic behavior of the solution and the requirements of monotonicity,
it follows that U (ξ ) and V (ξ ) each cross threshold at a single location, which may
be different for the two eyes. Exploiting translation invariance we take U (0) = κ and
V (ξ0) = κ . Substituting the traveling front solution into equations (3.63) and (3.64) gives
(after integration)

U (ξ ) =
∫ ∞

0
e−s

[
Qu

∫ ∞

ξ+cs
we(y) dy − Qv

∫ ξ−ξ0+cs

−∞
wi(y) dy

]
ds + I (3.66)

V (ξ ) =
∫ ∞

0
e−s

[
Qv

∫ ξ−ξ0+cs

−∞
we(y) dy − Qu

∫ ∞

ξ+cs
wi(y) dy

]
ds + I. (3.67)

Finally, imposing the threshold crossing conditions gives the pair of equations

κ =
∫ ∞

0
e−s�ξ0 (cs) ds + I, κ =

∫ ∞

0
e−s�ξ0 (−cs) ds + I, (3.68)

with � and � defined by

�ξ0 (z) = Qu

∫ ∞

z
we(y) dy − Qv

∫ z−ξ0

−∞
wi(y) dy. (3.69)

�ξ0 (z) = Qv

∫ ∞

z
we(y) dy − Qu

∫ z−ξ0

−∞
wi(y) dy. (3.70)

In order to establish the existence of a wave speed c and a threshold crossing point ξ0,
define the functions

F1(c, ξ0) =
∫ ∞

0
e−s�ξ0 (cs) ds, F2(c, ξ0) =

∫ ∞

0
e−s�ξ0 (−cs) ds. (3.71)

Taking the difference of the two threshold conditions (3.68) yields the implicit equation

F (c, ξ0) ≡ F1(c, ξ0)− F2(c, ξ0) = 0. (3.72)

It is straightforward to show that for fixed ξ0,

lim
c→∞F (c, ξ0) > 0, lim

c→−∞F (c, ξ0) < 0.

Hence, the intermediate value theorem guarantees at least one solution c = c(ξ0), which is
differentiable by the implicit function theorem. If Qu = Qv , then F1(0, ξ0) = F2(0, ξ0) and
the only point where F vanishes is at c = 0. On the other hand, if Qv �= Qu then F (0, ξ0) �= 0
for all finite ξ0 so that c(ξ0) �= 0. Given a solution c = c(ξ0) of equation (3.72), the existence
of a traveling wavefront solution reduces to the single threshold condition

κ = F1(c(ξ0), ξ0)+ I. (3.73)
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Figure 11. (a) Plot of wave speed c as a function of the threshold κ . (b) Plot of right-moving
traveling front solution in which a high activity state invades the suppressed u-network whilst
retreating from the dominant v-network. The default parameters are taken to be ai = 1, ae =
0.4, σi = 1, σe = 2, β = 5, κ = 0.05, I = 0.24,Qu = 0.42,Qv = 0.25 and the corresponding
wave speed is c = 1.2.

Numerically solving this equations shows that there exists a unique traveling front solution for
a range of values of the threshold κ and input I, see figure 11. The model wave speed is of the
order c = 1 in dimensionless units, that is, c = σe/2τ where σe is the range of excitation and
τ is the membrane time constant. Taking σe to be of the order 200 μm and τ to be of the order
10 ms gives a wavespeed of 10 mm s−1, which is consistent with psychophysical experiments
on binocular rivalry waves [114, 116].

The above model suggests that slow adaptation plays a crucial role in the generation
of perceptual waves. In the absence of any adaptation (qu = qv ≡ 1), a traveling front
solution does not exist, which is consistent with the observation that if there is no cross-
inhibition (wi ≡ 0) then the system reduces to two independent 1D neural fields with excitatory
connections. In order to construct a front solution that simultaneously invades one network
whilst retreating from the other, a ID excitatory neural field without adaptation would have to
support a pair of counter-propagating front solutions with speeds ±c, which is not possible (see
section 3.1 and [12]). Therefore, some mechanism must be introduced that breaks the exchange
symmetry of the two 1D networks. The above analysis shows that this can be achieved by
including some form of slow adaptation such as synaptic depression.

3.5. Wave propagation failure in inhomogeneous neural fields

Most studies of neural field theory assume that the synaptic weight distribution only depends
upon the distance between interacting populations, that is, w(x, y) = w(|x − y|). This implies
translation symmetry of the underlying integrodifferential equations (in an unbounded or
periodic domain). As we have reviewed in previous sections, excitatory networks then support
the propagation of solitary traveling waves. However, if one looks more closely at the anatomy
of cortex, it is clear that its detailed microstructure is far from homogeneous. For example,
to a first approximation, primary visual cortex (V1) has a periodic-like microstructure on
the millimeter length-scale, reflecting the existence of various stimulus feature maps, see
section 5.2. This has motivated a number of studies concerned with the effects of a periodically
modulated weight distribution on wave propagation in neural fields [74, 101, 102].
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Consider for simplicity the 1D scalar neural field equation (2.47) with periodically
modulated weight distribution

w(x, y) = w(x − y)[1 + ρK(y/ε)], (3.74)

where ρ is the amplitude of the periodic modulation and ε is the period with K(x) = K(x + 1)
for all x. (Note that in section 3.3 we used ε (rather than ε) to denote the slow rate of adaptation
in the adaptive neural field model (3.31).) It will also be assumed that if ρ = 0 (no periodic
modulation), then the resulting homogeneous network supports a traveling front solution of
speed c0 as analyzed in section 3.1. We will review two alternative methods for analyzing the
effects of periodic wave modulation, one based on homogenization theory for small ε [20],
and the other based on analyzing interfacial dynamics [102]. Both approaches make use of the
observation that for sufficiently small ρ, numerical simulations of the inhomogeneous network
show a front-like wave separating high and low activity states. However, the wave does not
propagate with constant speed, but oscillates periodically in an appropriately chosen moving
frame. This pulsating front solution satisfies the periodicity condition u(x, t) = u(x+ε, t +T )
so that we can define the mean speed of the wave to be c = ε/T .

3.5.1. Homogenization theory. Suppose that the period ε of weight modulations is much
smaller than the range of synaptic interactions ε � σ . (We fix the length scales by setting
σ = 1.) Substituting equation (3.74) into (2.47) and integrating by parts gives
∂u(x, t)

∂t
= − u(x, t)+

∫ ∞

−∞
w(x − x′)F(u(x′, t)) dx′

+ ε
∫ ∞

−∞
A(x′/ε)

[
w′(x − x′)F(u(x′, t))− w(x − x′)

∂F(u(x′, t))
∂x′

]
dx′. (3.75)

Here A′(x) = ρK(x) with A only having to be defined up to an arbitrary constant. Motivated
by the existence of pulsating front solutions, we perform the change of variables ξ = x −φ(t)
and τ = t. Equation (3.75) becomes
∂u

∂τ
= −u(ξ , τ )+

∫ ∞

−∞
w(ξ − ξ ′)F(u(ξ ′, τ )) dξ ′ + φ′ ∂u(ξ , τ )

∂ξ

+ ε

∫ ∞

−∞
A

(
ξ ′ + φ
ε

)[
w′(ξ − ξ ′)F(u(ξ ′, τ ))− w(ξ − ξ ′)

∂F(u(ξ ′, τ ))
∂ξ ′

]
dξ ′.

(3.76)

Next perform the perturbation expansions

u(ξ , τ ) = U (ξ )+ εu1(ξ , τ )+ ε2u2(ξ , τ )+ . . . , (3.77)

φ′(τ ) = c0 + εφ′
1(τ ), (3.78)

where U (ξ ) is the unique traveling wave solution of the corresponding homogeneous
equation (3.7) with unperturbed wavespeed c = c0. The first-order term u1 satisfies the
inhomogeneous linear equation

−∂u1(ξ , τ )

∂τ
+ Lu1(ξ , τ ) = −φ′

1(τ )U
′(ξ )+ h1(ξ , φ/ε), (3.79)

where

Lu(ξ ) = c0
du(ξ )

dξ
− u(ξ )+

∫ ∞

−∞
w(ξ − ξ ′)F ′(U (ξ ′))u(ξ ′) dξ ′ (3.80)

and

h1 =
∫ ∞

−∞
A

(
ξ ′ + φ
ε

)[
−w′(ξ − ξ ′)F(U (ξ ′))+ w(ξ − ξ ′)

dF(U (ξ ′))
dξ ′

]
dξ ′. (3.81)
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The linear operator L has a one-dimensional null-space spanned by U ′. The existence of
U ′ as a null-vector follows immediately from differentiating both sides of equation (3.7) with
respect to ξ , whereas its uniqueness can be shown using properties of positive linear operators
[82]. Therefore, a bounded solution of equation (3.79) with respect to ξ and τ will only exist
if the right-hand side of equation (3.79) is orthogonal to all elements of the null-space of the
adjoint operator L∗. The latter is defined with respect to the inner product∫ ∞

−∞
u(ξ )Lv(ξ ) dξ =

∫ ∞

−∞
[L∗u(ξ )]v(ξ ) dξ, (3.82)

where u(ξ ) and v(ξ ) are arbitrary integrable functions. Hence,

L∗u(ξ ) = −c
du(ξ )

dξ
− u(ξ )+ F ′(U (ξ ))

∫ ∞

−∞
w(ξ − ξ ′)u(ξ ′) dξ ′. (3.83)

It can be proven that L∗ also has a one-dimensional null-space [82], that is, it is spanned by
some function V (ξ ). Equation (3.79) thus has a bounded solution if and only if

B0φ
′
1(τ ) =

∫ ∞

−∞
V (ξ )h1(ξ , φ/ε) dξ, (3.84)

where

B0 =
∫ ∞

−∞
V (ξ )U ′(ξ ) dξ . (3.85)

Note that B0 is strictly positive since V and U ′ can be chosen to have the same sign [82].
Substituting for h1 using equations (3.81) and (3.78) and performing an integration by parts
leads to a differential equation for the phase φ:

dφ

dτ
= c + ε�1

(
φ

ε

)
, (3.86)

where

�1

(
φ

ε

)
= 1

B0

∫ ∞

−∞

∫ ∞

−∞
w(ξ − ξ ′)A

(
ξ ′ + φ
ε

)
×
[
V ′(ξ )F(U (ξ ′))+ V (ξ )

dF(U (ξ ′))
dξ ′

]
dξ ′ dξ . (3.87)

The phase equation (3.86) is analogous to the one derived by Keener for a reaction-diffusion
model of calcium waves [130]. It implies that there are two distinct types of behavior. If the
right-hand side of equation (3.86) is strictly positive then there exists a pulsating front of the
approximate form U (x − φ(t)) and the average speed of propagation is c = ε/T with

T =
∫ ε

0

dφ

c + ε�1
(
φ

ε

) . (3.88)

On the other hand, if the right-hand side of equation (3.86) vanishes for some φ then there is
wave propagation failure.

In the case of a Heaviside firing rate function F(u) = H(u − κ), it is possible to derive
an explicit expression for the wavespeed c [74]. The solution for the unperturbed wavefront
U (ξ ) was derived in section 3.1, so it is only necessary to determine the solution V (ξ ) of the
adjoint equation (3.83), which becomes

cV ′(ξ )+ V (ξ ) = − δ(ξ )

U ′(0)

∫ ∞

−∞
w(ξ ′)V (ξ ′) dξ ′. (3.89)

This can be integrated to give

V (ξ ) = −�(ξ ) e−ξ/c. (3.90)
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Given the solutions for U (ξ ) and V (ξ ), it can then be shown that (3.87) reduces to the form

B0�1

(
φ

ε

)
= W (0)A

(
φ

ε

)
+
∫ ∞

0
A

(
φ − ξ
ε

)[
W (ξ )

c
− w(ξ )

]
dξ, (3.91)

where

W (ξ ) =
∫ ∞

0
e−y/c0w(y + ξ ) dy ≡ −cU ′(ξ ), (3.92)

and

B0 = 1

c0

∫ ∞

0
e−ξ/c0W (ξ ) dξ . (3.93)

Keeping only the lowest order contribution to �1, equation (3.88) reduces to

T =
∫ ε

0

dφ

c0 + ε�(c0)A
(
φ

ε

) (3.94)

with �(c0) = W (0)/B0. For the sake of illustration, suppose that the periodic modulation
functions K and A are pure sinusoids. Setting A(x) = ρ sin(2πx)/(2π) in equation (3.94), we
find that

T = ε√
c2

0 − ε2ρ2�(c0)2
(3.95)

and, hence,

c =
√

c2
0 − ε2ρ2�(c0)2/(2π)2. (3.96)

This establishes that a sinusoidally varying heterogeneous neural medium only supports a
propagating wave if the velocity c0 of the (unique) solution of the corresponding homogeneous
medium satisfies the inequality

c0 � ερ�(c0). (3.97)

For the particular example of an exponential distribution (3.1) with σ = 1, we have
c0 = (1 − 2κ)/(2κ) and �(c0) = 1 + c0 so that

c = c0

√
1 − γ0ρ2ε2, γ0 = 1

2π(2κ − 1)
. (3.98)

3.5.2. Interfacial dynamics. The homogenization method provides a reasonable estimate for
the mean wavespeed and the critical amplitude ρ for wave propagation failure, provided that
the spatial period ε � 1. As shown by Coombes and Laing [102] in the case of a Heaviside
firing rate function, a more accurate estimate for the wavespeed for larger values of ε can
be obtained by analyzing the dynamics of the interface between high and low activity states,
provided that the amplitude of periodic modulations is not too large [102]. The basic idea is
to change to a co-moving frame of the unperturbed system, u = u(ξ , t) with ξ = x − c0t such
that equation (2.47) becomes

−c0uξ + ut = −u +
∫ ∞

−∞
w(ξ + c0t, y)F(u(y − c0t, t) dy, (3.99)

with w given by equation (3.74) and F(u) = H(u − κ). The moving interface (level set) is
then defined according to the threshold condition

u(ξ0(t), t) = κ. (3.100)
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Differentiating with respect to t then determines the velocity of the interface in the co-moving
frame according to

dξ0

dt
= − ut (ξ0(t), t)

uξ (ξ0(t), t)
. (3.101)

As in the previous homogenization method, suppose that for ρ = 0 there exists a traveling front
solution U (ξ ) of the homogeneous equation (3.7) with speed c0. Now make the approximation
uξ (ξ0(t), t) = U ′(0), which is based on the assumption that for small amplitudes ρ, the slope
of the traveling front varies sufficiently slowly. Setting ξ = ξ0(t) in equation (3.99) and using
equation (3.3), it is then straightforward to show that [102]

dξ0

dt
= ρc0

∫∞
0 w(y)K(ξ0 + c0t − y)

κ − ∫∞
0 w(y) dy

. (3.102)

In order to match up with the previous method, let K(x) = sin(2πx/ε) and w(x) = e−|x|/2.
Then c0 = (1 − 2κ)/(2κ) and [102]

dξ0

dt
= c0ργ (ε) sin

[
2π

ε
(ξ0(t)+ c0t)+ φ0(ε)

]
, (3.103)

with

γ (ε) = 1

2κ − 1

1√
1 + (2π/ε)2

, tanφ0(ε) = 2π

ε
. (3.104)

The final step is to look for a T -periodic solution of equation (3.103) such that
ξ0(t) = ξ0(t + T ). Setting x0 = ξ0 + c0t with x0 ∈ [0, ε] and integrating gives∫ x0

0

dx

1 + ργ sin(2πx/σ + φ) = c0t. (3.105)

This may be evaluated using a half angle substitution

c0t = ε

π

1√
1 − ρ2γ 2

tan−1 z√
1 − ρ2γ 2

∣∣∣∣∣
z0(t)+ργ

z0(0)+ργ
, (3.106)

where z0(t) = tan[(2πx0(t)/ε + φ)/2] and x0(0) = 0. A self-consistent pulsating front
solution is then obtained by imposing the condition ε = x0(T ), which then determines the
effective speed c = ε/T to be

c = c0

√
1 − ρ2γ (ε)2. (3.107)

Note that on Taylor expanding γ (ε) to first order in ε, equation (3.107) recovers the
corresponding result (3.98) obtained using homogenization theory. However, the expression
derived using interfacial dynamics is more accurate when the period ε increases, provided that
the amplitude ρ does not become too large.

Both of the above methods can be extended to the case of periodically modulated traveling
pulses (pulsating pulses), see [101] for the homogenization case, in which there are two
threshold crossing points. However, one simplifying assumption of both approaches is that
in the presence of periodically modulated weights additional threshold crossing points do not
occur. Numerical solutions of a neural field equation with linear adaptation have shown that
in the case of large amplitude modulations, a pulsating pulse can develop multiple threshold
crossing points [101]. That is, the traveling wave represents the envelope of a multibump
solution, in which individual bumps are nonpropagating and transient, see figure 12. The
appearance (disappearance) of bumps at the leading (trailing) edge of the pulse generates the
coherent propagation of the pulse. Wave propagation failure occurs when activity is insufficient
to maintain bumps at the leading edge. It would be interesting to extend the homogenization
and interfacial methods to account for multiple threshold crossings, as well as other types of
inhomogeneities at various spatial scales, some of which could be in the form of quenched
disorder [131].
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Figure 12. Pulsating pulse solutions in a 1D excitatory neural field with linear adaptation
and Heaviside firing rate function, see equation (3.31). The threshold κ = 0.2, strength of
adaptation β = 2.0, and adaptation rate constant is ε = 0.04. The weight distribution is given by
w(x, y) = ρw(x − y) sin(2πx/ε) with 2πε = 0.3 and w(x) an exponential weight function. (a)
Single bump solution for ρ = 0.3. The interior of the pulse consists of non-propagating, transient
ripples. (b) Multi-bump solution for ρ = 0.8. The solitary pulse corresponds to the envelope
of a multiple bump solution, in which individual bumps are non-propagating and transient. The
disappearance of bumps at one end and the emergence of new bumps at the other end generates
the propagation of activity [101].

3.6. Spatially structured oscillations and spiral waves

Spatially localized neural population oscillations arise both in vivo and in vitro and may be
observed experimentally using multi-electrode arrays or voltage-sensitive dye imaging [5].
For example, when neocortical or hippocampal in vitro slices are treated with an inhibitory
neurotransmitter antagonist such as bicuculline, effectively eliminating inhibition, a localized
current stimulus evokes population activity. Such activity may take the form of a spatially
localized group of neurons whose population activity oscillates around 1–10 Hz [1, 90, 104];
during each oscillation cycle the population may emit elevated activity that propagates as a
traveling pulse [5, 90] or a spiral wave [18, 132]. Spiral waves provide a mechanism for spatially
organizing extensive episodes of periodic activity, effectively reducing the dimensionality of
the dynamics [132]. A number of organizing mechanisms for such spatiotemporal activity
have been suggested [5, 100]. First, a spatially localized pacemaker oscillator could excite
successive neighbors in an excitable network. (One possible network mechanism for generating
a pacemaker oscillator in an excitable neural medium would be via an instability of a spatially
localized breather in the presence of input inhomogeneities [112, 133], see section 4.3.3.)
Alternatively, gradual phase delays could propagate in space across an oscillatory neural
medium, see below. It follows that activity that propagates away from a focused region of
high frequency oscillations may either travel faster than the characteristic time-scale set by
the oscillating region, according to dynamics of an excitable medium, or at a speed set by the
period of the oscillating core if the rest of the medium is oscillatory as well. Conceivably, this
may establish a dynamical systems explanation for the wide range in speed at which seizures
spread across the cortex, which can be anywhere from 0.05 mm s−1 to 10 cm s−1 [1].

Here we briefly highlight a network mechanism for generating spiral waves in an
oscillatory neural medium. Troy and Shusterman [103, 104] have shown how a neural field
model with strong linear adaptation, see equation (3.31), can act as an oscillatory network that
supports target patterns and spiral waves consistent with experimental studies of tangential
cortical slices [18]. (For the analysis of spiral waves in the corresponding excitable regime,
see [134].) However, since the linear form of adaptation used in these studies is not directly
related to physiological models of adaptation, it is difficult to ascertain whether or not the
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Figure 13. Limit cycle oscillations in the space-clamped system (3.109) for a piecewise linear firing
rate function (2.8) with threshold κ = 0.01, and gain γ = 4. (a) Bifurcation diagram showing
fixed points u of the system as a function of β for τq = 80. (b) Corresponding phase-plane plot of
q versus u (gray curve) for β = 4, showing that the system supports a stable limit cycle [61].

strength of adaptation required is biologically reasonable. This motivated a more recent study
of spiral waves in a 2D neural medium involving a nonlinear, physiologically based form of
adaptation, namely, synaptic depression [62]. The latter model takes the form

∂u(r, t)
∂t

= −u(r, t)+
∫
w(|r − r′|)q(r′, t)F(u(r′, t)) dr′

∂q(r, t)
∂t

= 1 − q(r, t)
τq

− βq(r, t)F(u(r, t)). (3.108)

It can be shown that the space-clamped model

u̇(t) = −u(t)+ q(t)F(u(t)), q̇(t) = 1 − q(t)

τq
− βq(t)F(u(t)), (3.109)

supports limit cycle oscillations provided that the firing rate function has finite gain. For
example, in the case of the piecewise linear firing rate function (2.8), oscillations arise via a
subcritical Hopf bifurcation of a high activity fixed point, see figure 13. One then finds that
the full network model (3.108) supports a spatially localized oscillating core that periodically
emits traveling pulses [62]. Such dynamics can be induced by taking an initial condition of
the form

(u(r, 0), q(r, 0)) = (χe−(x2+y2 )/ζ 2
, 1), (3.110)

where χ and ζ parameterize the amplitude and spatial constant of the initial state. An example
of a pulse-emitting core is shown in figure 14, which oscillates at a frequency of roughly 3 Hz.
Pulses are emitted each cycle, and travel at a speed of roughly 30 cm s−1, which is determined
by the period of the oscillations; the latter is set by the time constant of synaptic depression.
The initial emission of spreading activity appears as a traveling front which propagates from
the region activated by the input current into the surrounding region of zero activity; it travels
at the same speed as the subsequent target waves. The front converts each region of the network
into an oscillatory state that is phase-shifted relative to the core, resulting in the appearance of
a radially symmetric target pattern. Spiral waves can also be induced by breaking the rotational
symmetry of pulse emitter solutions [62]. More specifically, if the target pattern produced by
the emitter has the top and bottom halves of its domain phase shifted, then the dynamics
evolves into two counter-rotating spirals on the left and right halves of the domain. Closer
inspection of one of these spirals reveals that it has a fixed center about which activity rotates
indefinitely as shown in figure 15.
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Figure 14. Target patterns in a 2D neural field with synaptic depression induced by an initial
condition stimulus specified by equation (3.110) at t = 0, where χ = 1 and ζ = 25. Initially, an
activated state spreads radially outward, across the entire medium as a traveling front. Then, the
localized oscillating core of activity emits a target wave with each oscillation cycle. Eventually,
these target waves fill the domain. Each target wave can be considered as a phase shift in space
of the oscillation throughout the medium; they travel with the same speed as the initial front.
Parameters are τq = 80, β = 4, σ = 4 and κ = 0.01 [62].
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Figure 15. Spiral wave generated by shifting the phase of the top and bottom halves of the target
pattern shown in figure 14. The period of the spiral wave oscillation is roughly the same as the
period of the oscillation in the space-clamped system. All patches of neurons are oscillating at the
same frequency, but phase-shifted as coordinates are rotated about the central phase singularity
[62].
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4. Persistent spatially localized activity states (bumps)

In section 3 we considered traveling wave solutions of excitatory neural field equations. This
was partly motivated by experimental studies of traveling waves in disinhibited cortical slices,
as well as the fact that epileptic seizures are often associated with greatly enhanced levels
of recurrent excitation. Under normal operating conditions, cortical circuits have significant
levels of synaptic inhibition, which tends to preclude the propagation of excitable traveling
waves. (Oscillatory phase waves can still occur, however [100].) One new class of solution that
emerges in the presence of nonlocal synaptic inhibition (lateral inhibition) is a stationary pulse
solution, also known as an activity bump. Such bumps are typically coexistent with a stable
low activity state (bistability) so that an initial stimulus is needed in order to transition from
the low activity state to the bump. However, the bump persists after removal of the stimulus,
so that the bump represents a persistent spatially localized activity state [88].

One of the reasons why persistent activity bumps are of interest is that they are thought to
arise in cortical circuits performing certain spatial working memory tasks. Working memory
involves cortical ‘memory neurons’ that establish a representation of a stimulus that persists
after the stimulus is removed. A typical experiment is a delayed response task, in which
a primate is required to retain information regarding the location of a sensory cue across
a delay period between the stimulus and behavioral response. Physiological recordings in
prefrontal cortex have shown that spatially localized groups of neurons fire during the recall
task and then stop firing once the task has finished [8]. The stimulus response of a cell is
characterized by a smooth tuning curve that is peaked at a preferred spatial cue and varies
from cell to cell. At the network level the memory of cue location is stored as an activity bump.
Persistent activity bumps occur in a number of other systems that encode directional or spatial
information, including head direction cells in thalamus and basal ganglia [7] and place cells
in the hippocampus [135].

In the following we review some of the analytical methods that have been used to study
persistent localized activity states in neural fields. (A very different mechanism for generating
a spatially localized persistent state is via a Turing instability on a compact domain, which will
be discussed in section 5.) We begin in section 4.1 by describing Amari’s original construction
of exact bump solution for a 1D scalar neural field equation with Heaviside firing rate function
[12]. We show how stable bumps can occur in the case of a so-called Mexican hat weight
function representing short-range excitation and long-range lateral inhibition. The stability of
the bump depends on whether or not perturbations of the bump boundary (threshold crossing
points) grow or decay. In section 4.2, we extend the analysis to the case of radially symmetric
2D bumps. Stability is now determined by the effects of perturbations on the circular bump
boundary, which can be analyzed using Fourier methods and properties of Bessel functions
[133, 136]. We also briefly describe some of the more complex spatiotemporal dynamics that
can arise via instabilities of 2D bumps, including multibump solutions, rotating waves and
breathing pulses. In section 4.3 we discuss various studies concerned with how the location of
an activity bump is affected by external stimuli, which is important because bump location is
thought to encode information about the stimulus.

4.1. Exact bump solutions in a 1D neural field with lateral inhibition

Existence of a 1D bump. Let us return to the scalar neural field equation (3.31) with Heaviside
rate function F(u) = H(u − κ). This equation was first analyzed in detail by Amari [12],
who showed that the network can support a stable stationary bump solution when the weight
distribution w(x) is given by a so-called Mexican hat function with the following properties:
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(i) w(x) > 0 for x ∈ [0, x0) with w(x0) = 0
(ii) w(x) < 0 for x ∈ (x0,∞)

(iii) w(x) is decreasing on [0, x0]
(iv) w(x) has a unique minimum on R

+ at x = x1 with x1 > x0 and w(x) strictly increasing
on (x1,∞).

A typical choice of function that satisfies these properties is the so-called Mexican hat
function, which is given by a difference-of-Gaussians or a difference of exponentials. The
latter takes the form

w(|x − x′|) = e−|x−x′ | − A e−|x−x′ |/σ . (4.1)

The Mexican weight function is based on the assumption that there is short-range excitation
and longer-range inhibition. Whether or not a Mexican hat function is realistic from the
biological perspective depends on which classes of neurons are being taken into account by
the neural field model. For example, in visual cortex it is known that excitatory pyramidal
cells make both local synaptic contacts as well as longer-range horizontal connections, see
section 5.2. However, the latter innervate both excitatory and local inhibitory neurons so they
could have a net inhibitory effect, thus providing a possible source of long-range inhibition;
whether long-range connections generate net excitation or net inhibition also depends on
stimulus conditions [137].

Consider an equilibrium solution u(x, t) = U (x) satisfying

U (x) =
∫ ∞

−∞
w(x − x′)H[U (x′)− κ] dx′. (4.2)

Let R[U] = {x|U (x) > κ} be the region over which the field is excited (superthreshold).
Equation (4.2) can then be rewritten as

U (x) =
∫

R[U]
w(x − x′) dx′. (4.3)

Exploiting the fact that any solution can be arbitrarily translated so that it is centered at the
origin, we define a stationary pulse solution of width 
 to be one that is excited over the
interval (−
,
). Let

W (x) =
∫ x

0
w(y) dy, Wm = max

x>0
W (x), W∞ = lim

x→∞W (x) (4.4)

such that W (0) = 0 and W (−x) = −W (x). For a bump of width 
, equation (4.3) reduces to
the form

U (x) = W (x +
)− W (x −
). (4.5)

Since U (
) = κ , we obtain the following necessary condition for the existence of a bump:

W (2
) = κ. (4.6)

(In order to complete the proof of existence, it is necessary to check that there are no other
threshold crossing points. This can be achieved in the case of a Mexican hat weight distribution
[12], and is straightforward to verify numerically.) It can also be shown that a bump is stable
provided the condition W ′(2
) < 0 is satisfied, see below. The existence and stability of
activity bumps for a given κ can thus be determined graphically as illustrated in figure 16(b).
For a certain range of values of κ > 0 one finds bistability between a stable bump and a rest
state for which R[U] = ∅.
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Figure 16. Construction of a solitary pulse in the Amari model. (a) The Mexican hat weight
distribution w. (b) Integral W (x) of w(x). Horizontal line shows the threshold value κ whose
intersections with W (2
) determine the allowed stationary pulse solutions. (c) Unstable pulse
(dashed grey curve) acts as a separatrix between the stable pulse and the rest state. (d) Unstable
pulse acts as a separatrix between a wavefront and the rest state.

Stability of a 1D bump. The linear stability of a bump can be determined by setting
u(x, t) = U (x) + p(x) eλt and expanding to first order in p [69, 79, 133, 138]. This leads
to the eigenvalue equation

(λ+ 1)p(x) =
∫ ∞

−∞
w(x − x′)δ(U (x′)− κ)p(x′) dx′. (4.7)

Using the identity

δ(U (x)− κ) =
(
δ(x −
)
|U ′(
)| + δ(x +
)

|U ′(−
)|
)
, (4.8)

and setting

|U ′(
)| = |U ′(−
)| ≡ γ−1 = w(0)− w(2
), (4.9)

we have the eigenvalue equation

(λ+ 1)p(x) = Lp(x) ≡ γ (w(x −
)p(
)+ w(x +
)p(−
)) . (4.10)

Following Guo and Chow [138], we now restrict x to the interval x ∈ [−
,
], so that L
becomes a compact linear operator acting on the space C[−
,
] of continuous, integrable
functions over [−
,
] (with an appropriately defined norm). The linear problem thus reduces
to finding the spectrum of L. Since L is compact, it can be proven that the eigenvalues of
L only have zero as an accumulation point [107], implying that λ = −1 constitutes the
essential spectrum. The discrete spectrum is obtained by setting x = ±
 in the eigenvalue
equation (4.10) to give the pair of equations

(λ+ 1)p+ = γ (w(0)p+ + w(2
)p−) (4.11)
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(λ+ 1)p− = γ (w(−2
)p+ + w(0)p−), (4.12)

where p± = p(±
). This has the solutions p− = ±p+ with corresponding eigenvalues

λ± = −1 + γ (w(0)± w(2
)). (4.13)

Finally, using the fact that γ−1 = w(0) − w(2
) we deduce that λ− = 0 (reflecting
the translation invariance of the system) and λ+ = γw(2
). Thus the bump is stable if
w(2
) = W ′(2
) < 0.

Note that the discrete spectrum is determined completely in terms of the perturbations
p± = p(±
). This explains why it is also possible to analyze the stability of the bumps
by restricting attention to the effects of perturbations at the boundaries of the activity bump
as originally formulated by Amari [12]. In particular, if u(x, t) = U (x) + εp(x, t) = 0 at
x = x ±
+ εa±(t) with ε � 1, then

0 = U (±
+ εa±(t))+ εp(±
+ εa±(t), t)
= U (±
)+ εU ′(±
)a±(t)+ εp(±
, t)+ O(ε2),

that is,

a±(t) = ±γ p(±
, t)
since U (±
) = 0 and U ′(±
) = ∓γ−1. It follows that p− = p+ generates a uniform
expansion of the bump (a− = −a+) and p− = −p+ generates a shift in the center of the bump
(a− = a+).

There have been various extensions of Amari’s original analysis of 1D bumps. Kishimoto
and Amari [81] proved the existence of a solitary pulse for a smooth sigmoidal nonlinearity
F rather than a Heaviside using a fixed point theorem. Pinto and Ermentrout used singular
perturbation theory (see section 3.3.2) to construct a pulse solution for smooth F and slow
linear adaptation [69]. More recently, Faugeras et al [85, 86] have used a combination of local
bifurcation theory, degree theory and multiparameter continuation schemes to study the local
and global structure of stationary solutions to neural field equations with smooth F . Other
extensions include weight distributions that are not of the lateral inhibition type (for which
multiple bump states can arise) [28, 88], spiking rather than rate-based models [139, 140],
weakly interacting bumps [105], and bumps in adaptive neural fields [61, 64, 141]. In the latter
case, adaptation can induce a bump instability leading to the formation of a traveling pulse.

Bumps in piecewise smooth neural fields. Considerable care must be taken when analyzing
the stability of bumps in Heaviside neural fields with a nonlinear form of adaptation such
as synaptic depression or spike frequency adaptation [63]. For example, suppose that we
set F(u) = H(u − κ) in equation (2.49). This results in a piecewise-smooth neural field
equation due to the fact that there is an exposed Heaviside function in the dynamics of the
depression variable. A stationary bump solution (U (x),Q(x)) with associated excited region
R[U] = (−
,
) satisfies the pair of equations

U (x) =
∫ 


−

Q(x′)w(x − x′) dx′,

Q(x) = 1 − τqβ

1 + τqβ
H(U (x)− κ).

Clearly the local stability of such a solution cannot be determined by linearizing the Heaviside
version of equation (2.49) due to the discontinuity in Q(x), see figure 17(a). Formally
speaking, one could take F(u) to be a smooth sigmoid, carry out the linearization about

43



J. Phys. A: Math. Theor. 45 (2012) 033001 Topical Review

0 0.01 0.02 0.03
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Δ

κ = 0.7

κ = 0.1

x

U(x)

Q(x)

β

Q+

Q-

(a) (b)

Figure 17. 1D bump in a Heaviside neural field with synaptic depression and Mexican hat weight
function (4.1). (a) Example of a bump profile showing discontinuity in depression variable with
Q+ = 1 and Q− = (1 + τqβ)

−1. (b) Existence curves relating bump width 
 to amplitude of
synaptic depression β for different values of κ . Black (gray) portions of curves indicate bumps that
are numerically stable (unstable). Other parameter values are A = 0.6, σ = 4, τq = 20 (b).

the bump solution and construct an associated Evans function. The Evans function could
then be evaluated analytically by taking the high-gain limit of the sigmoid. However, such a
limit is singular and incorrectly predicts that the whole upper branch of each existence curve
shown in figure 17 is stable. The breakdown in linear stability analysis can also be seen by
considering an arbitrarily small perturbation of the bump that shifts the location of the bump
boundary. That is, suppose u(x, t) = U (x) + εψ(x, t) and q(x, t) = Q(x) + εϕ(x, t) such
that u(
 + εa+(t), t) = κ = u(−
 + εa−(t), t) with a± ≈ ±ψ(±
, t)/|U ′(
)|. A small
shift in the location of the bump boundary means that in an infinitesimal neighborhood of the
bump boundary the synaptic depression variable will start to switch its steady-state value from
Q+ = 1 to Q− = (1 + αβ)−1 or vice versa according to equation (2.49). That is, ϕ(x, t) will
undergoO(1/ε) changes over a time-scale determined by τq. However, this doesn’t necessarily
imply that the bump solution is unstable, since the region over which ϕ(x, t) = O(1/ε) may
shrink to zero.

The above observation motivates the introduction of the nonlocal auxiliary field
�(x, t) [63],

�(x, t) =
∫ 
+εa+(t)

−
+εa−(t)
w(x − x′)ϕ(x′, t) dx′, (4.14)

which will remain O(1) provided that ϕ(x, t) is O(1/ε) over an an interval of O(ε). Suppose
that we now restrict the class of perturbations ψ(x, t) such that ψ(±
, t) do not change sign
for any t. We can then derive a system of linear equations for the fields ψ(x, t) and �(x, t)
by substituting the solutions u(x, t) = U (x) + εψ(x, t) and q(x, t) = Q(x) + εϕ(x, t) into
equation (2.49) and expanding to first order in ε. Setting ψ(x, t) = ψ(x) eλt and �(x, t) =
�(x) eλt with λ real (so that ψ(±
, t) do not change sign) and solving for�(x) then leads to
the eigenvalue equation [63]

(λ+ 1)ψ(x) = γw(x +
)ψ(−
)G(ψ(−
))
(

1 − βH(ψ(−
))
λ+ τ−1

q + β

)

+ γw(x −
)ψ(
)G(ψ(
))
(

1 − βH(ψ(
))

λ+ τ−1
q + β

)
(4.15)
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with

G(ψ) =
{

1 if ψ > 0
(1 + τqβ)

−1 if ψ < 0,
γ−1 = |U ′(±
)|. (4.16)

We can now determine the (real) discrete spectrum by setting x = ±
 and specifying the
signs of ψ(±
). We thus have three distinct cases as illustrated in figure 18: (i) ψ(±
) > 0
(expansions), (ii) ψ(±
) < 0 (contractions) and (iii) ψ(±
) having opposite signs (shifts).
The corresponding eigenvalue solutions as a function of the strength of synaptic depression β
are shown in figure 19. For a wide range of parameter values, the nonzero eigenvalue branch
associated with shift perturbations crosses zero first, and thus induces a bump instability. (There
is also a zero eigenvalue due to translation symmetry.) This can be confirmed numerically,
whereby increasing β destabilizes the bump leading to a traveling wave solution [63]. Note
that since our analysis is restricted to real eigenvalues, we can only derive sufficient conditions
for instability (rather than stability) of the bump. However, complex eigenvalues do not appear
to contribute to instabilities, at least for the given neural field model with synaptic depression.

4.2. Exact bump solutions in a 2D neural field with lateral inhibition

There have been relatively few studies regarding the existence and stability of bumps in 2D
neural fields. Laing and Troy [88] introduced PDE methods to study symmetry-breaking of
rotationally symmetric bumps and the formation of multiple bump solutions. However, such
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PDE methods can only be applied to specific forms of weight distribution. In particular, they
break down if w has compact support. In terms of the original integrodifferential equations,
Taylor [142] and Werner and Richter [143] classified some of the disk and annulus shaped
solutions for Heaviside rate functions, and analyzed their stability with respect to radial
perturbations. However, as shown by Folias and Bressloff [133, 136] and Owen et al [144], in
order to determine correctly the linear stability of radially symmetric solutions, it is necessary
to take into account all possible perturbations of the circular boundary. The resulting spectral
problem can be solved using Fourier methods. (An analysis of 2D bumps also appears in a
book by Amari, but unfortunately the book has never been translated from the Japanese [247].)

Existence of a 2D bump. The starting point of the analysis of 2D bumps is the scalar neural
field

∂u(r, t)
∂t

= −u(r, t)+
∫

R2
w(|r − r′|)H(u(r′, t)− κ) dr′. (4.17)

Consider a circularly symmetric bump solution of radius 
 such that u(r, t) = U (r) with
U (
) = κ , U (r) ≷ κ for r ≶ 
 and U (r) → 0 as r → ∞. Imposing such constraints on a
stationary solution of equation (4.17) gives

U (r) =
∫ 2π

0

∫ 


0
w(|r − r′|)r′ dr′ dφ′. (4.18)

The double integral in (4.18) can be calculated using the Fourier transforms and Bessel function
identities [133]. First, express w(r) as a 2D Fourier transform using polar coordinates

w(r) = 1

2π

∫
R2

ei(r·k)ŵ(k) dk = 1

2π

∫ ∞

0

(∫ 2π

0
eirρ cos(θ−φ)ŵ(ρ) dθ

)
ρ dρ,

where ŵ denotes the Fourier transform of w and k = (ρ, θ ). Using the integral representation

1

2π

∫ 2π

0
eirρ cos(θ−φ) dθ = J0(ρr),

where J0 is the Bessel function of the first kind, we express w in terms of its Hankel transform
of order zero,

w(r) =
∫ ∞

0
ŵ(ρ)J0(ρr)ρ dρ, (4.19)

which, when substituted into equation (4.18), gives

U (r) =
∫ 2π

0

∫ 


0

(∫ ∞

0
ŵ(ρ)J0(ρ|r − r′|)ρ dρ

)
r′ dr′ dφ′.

Reversing the order of integration and using the addition theorem

J0(ρ

√
r2 + r′2 − 2rr′ cosφ′) =

∞∑
m=0

εmJm(ρr)Jm(ρr′) cos mφ′, (4.20)

where ε0 = 1 and εn = 2 for n � 1, we thus have

U (r) = 2π

∫ ∞

0
ŵ(ρ)J0(ρr)J1(ρ
) dρ. (4.21)

We have used the identity J1(ρ
)
 = ρ
∫ 


0 J0(ρr′)r′ dr′.
For the sake of illustration consider a Mexican hat weight distribution given by a

combination of modified Bessel functions of the second kind

w(r) = 2

3π
(K0(r)− K0(2r)− A(K0(r/σ )− K0(2r/σ ))). (4.22)
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Figure 20. Two-dimensional bumps. (a) Plots relating bump radius 
 to threshold κ for Mexican
hat function (4.22). Black (gray) curves indicate stable (unstable) branches. Weight parameters are
A = 0.3, σ = 4. (b) Bump profile when κ = 0.06 (indicated by dashed horizontal line).

Such a weight function is qualitatively similar to a difference of exponential weight functions
w(r) = (2π)−1(e−r − A e−r/σ ). Moreover, following previous studies of two-dimensional
neural field models, equation (4.17) can be transformed into a fourth order PDE, which is
computationally less expensive to solve numerically [62, 88, 133, 134, 144]. Using the fact
that the corresponding Hankel transform of K0(sr) is H(ρ, s) = (ρ2 + s2)−1, we have

ŵ(ρ) = 2

3π
(H(ρ, 1)− H(ρ, 2)− A(H(ρ, 1/σ )− H(ρ, 2/σ ))). (4.23)

Thus, the integral (4.21) can be evaluated explicitly by substituting (4.23) into (4.21), and
using the identity∫ ∞

0

1

ρ2 + s2
J0(ρr)J1(ρ
)dρ ≡ I(
, r, s) =

⎧⎪⎨⎪⎩
1

s
I1(s
)K0(sr), r > 
,

1

s2

− 1

s
I0(sr)K1(s
), r < 
,

where Iν is the modified Bessel function of the first kind of order ν. Thus, the stationary bump
U (r) has the form

U (r) = 4


3
(I(
, r, 1)− I(
, r, 2)− A(I(
, r, 1/σ )− I(
, r, 2/σ ))) . (4.24)

The bump radius may then be computed by finding the roots 
 of the equation κ = U (
)
with

U (
) = 4


3

(
I1(
)K0(
)− 1

2
I1(2
)K0(2
)

− A(σ I1(
/σ )K0(
/σ )− σ

2
I1(2
/σ )K0(2
/σ ))

)
. (4.25)

(Note that the threshold condition is a necessary but not sufficient condition for proving
existence of a 2D bump. One also has to check that there are no other threshold crossing
points; this can be established for a purely excitatory neural field with monotonically decreasing
weight function [133].) In the case of a Mexican hat weight distribution, there is typically a
maximum of two bump solutions as illustrated in figure 20 for w given by equation (4.22).
The narrower bump is always unstable as found in 1D. However, the stable upper branch can
develop instabilities as the threshold is decreased leading to the formation of multiple bump
solutions that break the rotational symmetry [88, 144], see below.
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Stability of a 2D bump. In order to determine linear stability of a bump solution U (r),
substitute u(r, t) = U (r) + p(r) eλt into equation (4.17) and expand to first order in p using
equation (4.18). This gives the eigenvalue equation

(λ+ 1)p(r) =
∫
w(|r − r′|)δ(U (r′)− κ))p(r′) dr′

= 1

|U ′(
)|
∫ ∞

0

∫ 2π

0
w(|r − r′|)δ(r′ − a)p(r′) dθ ′r′ dr′

= 


|U ′(
)|
∫ 2π

0
w(|r − a′|)p(a, φ′) dφ′, (4.26)

where a′ = (a, φ′). We can now proceed along similar lines to the 1D case by reformulating the
problem in terms of finding the spectrum of a compact linear operator acting on continuous,
bounded functions ψ(r, φ) defined on the disk of radius r � 
. One class of solution to
equation (4.27) consists of functions p(r) that vanish on the boundary, ψ(a, φ) = 0 for
all φ, such that λ = −1. This belongs to the essential spectrum, which does not contribute
to any instabilities. The discrete spectrum is determined by setting r = a ≡ (
, φ) in
equation (4.26):

(λ+ 1)p(
, φ) = 


|U ′(
)|
∫ 2π

0
w

(
2
 sin

(
φ − φ′

2

))
p(
, φ′) dφ′, (4.27)

where we have simplified the argument of w(r) using

|a − a′| =
√

2
2 − 2
2 cos(φ − φ′) = 2
 sin

(
φ − φ′

2

)
.

Equation (4.27) can be solved in terms of Fourier eigenmodes, that is, p(
, φ) = Pn(φ) =
cneinφ + cne−inφ with corresponding eigenvalue λn satisfying

λn = −1 + 


|U ′(
)|
∫ 2π

0
w(2
 sin(φ/2)) e−inφ dφ. (4.28)

Note that λn is real since (after rescaling φ)

Im{λn} = − 2


|U ′(
)|
∫ π

0
w(2
 sin(φ)) sin(2nφ) dφ = 0,

i.e. the integrand is odd-symmetric about π/2. Hence,

λn = Re{λn} = −1 + 


|U ′(
)|
∫ 2π

0
w(2
 sin(φ/2)) cos(nφ) dφ, (4.29)

with the integrand even-symmetric about π/2. The Fourier eigenmodes Pn(φ) can be related
to perturbations of the bump boundary. That is, if u(r, t) = U (r) + εp(r, t) = 0 at
r ≡ (r, φ) = (
 + εa(φ, t), φ), where εa(φ, t) with ε � 1 denotes a small perturbation
of the circular bump boundary at polar coordinate (
, φ) at time t, then

κ = u(
+ εa(φ, t), φ, t) = U (
+ εa(φ, t))+ εp(
+ εa(φ, t), φ, t),
≈ U (
)+ εU ′(
)a(φ, t)+ εp(
, φ, t).

Since U (
) = κ , it follows that

a(φ, t) ≈ p(
, φ, t)

|U ′(
)| .
Thus, one can decompose time-dependent perturbations of the circular boundary in terms of
the Fourier modes [cn einφ + cn e−inφ] eλt . Some examples of low-order perturbations of the
bump boundary shown in figure 21. It can be seen that the nth order boundary perturbation has
Dn symmetry, meaning the resulting solution has the n reflectional and rotational symmetries
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Figure 21. Low-order perturbations of a radially symmetric 2D bump exhibiting Dn symmetry.

of the dihedral group Dn. The perturbations also have a simple geometric interpretation. For
example n = 0 corresponds to a uniform expansion or contraction of the bump, whereas n = 1
corresponds to a uniform shift of the bump.

Since the n = 1 mode represents pure shifts of the bump solution, we expect λ1 = 0 from
translation symmetry. In order to verify this, we evaluate the integral appearing in equation
(4.29) using Bessel functions, along similar lines to the evaluation of U (r), equation (4.21).
That is,∫ 2π

0
w(|a − a′|) cos(nφ′) dφ′ =

∫ 2π

0

(∫ ∞

0
ŵ(ρ)J0(ρ|a − a′|)ρdρ

)
cosφ′ dφ′

= 2π
∫ ∞

0
ŵ(ρ)Jm(ρ
)Jm(ρ
)ρ dρ, (4.30)

after reversing the order of integration and using the addition theorem (4.20). Moreover,
differentiating equation (4.21) with respect to r gives

U ′(
) = −2π

∫ ∞

0
ŵ(ρ)J1(
ρ)J1(
ρ)ρ dρ. (4.31)

Hence, the eigenvalue (4.29) can be rewritten as

λn = −1 +
∫∞

0 ŵ(ρ)Jn(ρr)Jn(ρ
)ρ dρ∫∞
0 ŵ(ρ)J1(ρr)J1(ρ
)ρ dρ

. (4.32)

It immediately follows that λ1 = 0. Hence, the 2D bump is linearly stable if λn < 0 for all
n �= 1. In the particular case of an excitatory network (corresponding to setting A = 0 in
equation (4.22)), such that w(r) � 0 for all r � 0 , we have∫ 2π

0
w(2
 sin(φ/2)) cos(nφ) dφ �

∫ 2π

0
w(2
 sin(φ/2))| cos(nφ)| dφ

�
∫ 2π

0
w(2
 sin(φ/2)) dφ,

so that λn � λ0 for all n. Since λ1 = 0, it follows that λ0 � 0 and, hence, an excitatory neural
field cannot support stable radially symmetric bumps. In general, it is not possible to obtain
analytical expressions for the eigenvalues. However, it is straightforward to evaluate the integral
expressions numerically, and one typically finds that the low-order modes dominate. Using the
Mexican hat function (4.22), Owen et al [144] have shown how the upper branch of rotationally
symmetric bumps (see figure 20) can become unstable as the threshold is decreased toward zero,
leading to the formation of a stationary multibump solution that breaks continuous rotational
symmetry. The discrete rotational symmetry Dn of the resulting multibump solution reflects
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the order n of the dominant eigenvalue λn at bifurcation. Interestingly, if linear adaptation is
included in the neural field model, then these non-rotationally symmetric solutions can undergo
a secondary instability leading to the formation of a rotating wave [88, 144]. Sufficiently strong
adaptation can also destabilize a bump leading to a traveling spot.

4.3. Stimulus-driven bumps

In many applications of neural field models, the spatial location of the peak of an activity bump
encodes information about a sensory stimulus or an item in working memory or positional
information, as in the head direction or oculomotor systems [9, 145]. Hence, it is important
to understand how the location of a bump is affected by external stimuli. In this section we
consider various studies regarding the effects of external inputs on the location and stability
of bumps.

Locking to a moving stimulus. Consider a scalar neural field with a time-dependent input of
the form I(x, t):

∂u(x, t)

∂t
= −u(x, t)+

∫ ∞

−∞
w(x − x′)F(u(x′, t)) dx′ + I(x, t), (4.33)

wherew(x) is a Mexican hat function. First, suppose that the input is small and slowly varying
so we can write I(x, t) = δη(x, δt) for a small parameter δ. Furthermore, assume that if δ = 0
then the network supports a stable bump solution U (x) centered at x = 0. A simple perturbative
argument can be used to determine how the bump responds when 0 < δ � 1 [15]. That is,
introduce the slow time variable τ = δt and set u(x, t) = U (x + φ(τ )) + δu1(x, τ ) where
u1 is orthogonal to U ′(x). Substituting into equation (4.33), Taylor expanding to first order
in δ and using the fact that U (x) satisfies U (x) = ∫∞

−∞w(x − x′)F(U (x′) dx′, we obtain the
inhomogeneous equation

Lu1 ≡ −u1 +
∫ ∞

−∞
w(x − x′)F ′(U (x′ + φ))u1(x

′, τ )

= U ′(x + φ(τ ))dφ
dτ

− η(x, τ ). (4.34)

Since the function u1(x) decays to zero as x → ±∞, we will assume that L acts on the space
L2(R) and introduce the generalized inner product

〈u|v〉 =
∫ ∞

−∞
F ′(U (x))u(x)v(x) dx (4.35)

for all u, v ∈ L2(R). With respect to this space, L is self-adjoint, since w(x) is assumed to be
an even function of x, and has a 1D null space spanned by U ′(x + φ). Hence, taking the inner
product of both sides of equation (4.34) with respect to U ′(x + φ) and using the Fredholm
alternative theorem shows that there only exists a bounded solution for u1 if

dφ

dτ
=
∫

F ′(U (y + φ))U ′(y + φ)I(y, τ ) dy∫
F ′(U (y + φ))U ′(y + φ)2 dy

≡ F (φ, τ ). (4.36)

It follows that the phase φ, which determines the location of the peak of the bump will move
so as to make F vanish. Since F ′ > 0 everywhere and U ′2 > 0 for all finite y, the denominator
of F is positive definite. Therefore, vanishing of F is equivalent to the condition∫

dF(U (y + φ))
dy

I(y, τ ) dy = 0.

For a symmetric weight distribution, the bump solution U (x) is symmetric about its peak at
x = 0. This implies that F(U (y+φ)) is symmetric about y = −φ, and dF/dy is anti-symmetric
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about y = −φ. In the simple case of a stationary Gaussian input centered about x = x0, we
see that the above integral vanishes if the bump moves until its peak is located at φ = −x0.
It also follows that the bump can track the Gaussian input if it moves sufficiently slowly. In
the special case of a Gaussian stimulus moving with constant speed v, I(x, t) = I(x − vt),
stimulus locking can be analyzed by looking for traveling pulse solutions in the moving frame
ξ = x − vt. This particular problem has been addressed both for scalar neural fields with
Mexican hat weight distributions [146] and for purely excitatory neural fields with linear
adaptation [112, 147], see below.

Neural field model for head-direction. Head direction cells in the brains of freely moving rats
represent the instantaneous head direction of the animal in the horizontal plane irrespective
of the animal’s location [7]. The internal representation of head direction maintained by these
cells is updated continually according to the head movement of the animal, even in total
darkness. A simple model for head-direction was introduced by Zhang [29] in the form of a
scalar neural field on a circular domain with time-dependent weights (see also [148]). The
basic equation takes the form

∂u

∂t
= −u(x, t)+

∫ 2π

0
W (x − y; t)F(u(x, t)) dy, (4.37)

with

W (x; t) = w(x)+ γ (t)w′(x). (4.38)

Here w′(x) is the derivative of the weight function and γ (t) represents the effective input to
the system that causes head-direction shift. Suppose that there exists a stable bump solution
U (x) centered at x = 0 when γ (t) = 0. Since

U (x) =
∫ 2π

0
w(x − y)F(U (y)) dy,

it immediately follows that equation (4.37) has the solution

u(x, t) = U

(
x +

∫ t

0
γ (s) ds

)
. (4.39)

Thus, the location or phase X (t) of the activity peak moves with the integrated signal

X (t) = −
∫ t

0
γ (s) ds. (4.40)

The instantaneous angular velocity is −γ (t). We see that the bump only shifts whilst the
signal is on (due to the head direction changing), and the activity bump maintains the current
head direction once the signal is switched off. For example, a brief negative input will shift
the bump counterclockwise, while a brief positive input will shift it clockwise. However, we
expect the stimulus-locked bump to become unstable if the angular velocity γ (t) becomes
too large. One limitation of Zhang’s model is that it makes use of instantaneous changes in
synaptic strength, which is not biologically very plausible. This has led to a modified version
of the model involving two coupled ring networks that receive differential velocity signals
[149]. Interactions within a ring and between rings are taken to be rotationally invariant but
asymmetric due to the introduction of constant phase offsets. When the inputs to the two rings
are the same, a stable stationary bump can be supported in both rings. However, a head velocity
signal breaks the symmetry between the inputs resulting in movement of the activity bumps
that integrates the velocity signal.

Finally note that there are two basic components shared by any neural field model of the
head-direction system. First, the network supports a continuous attractor, in the sense that the
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peak of an activity bump can be located anywhere on the circle; indeed, the location of the
peak encodes the head direction. An immediate consequence of this is that in the absence of an
input, the resulting bump solution is marginally stable, since arbitrarily small fluctuations can
shift its center or peak around the circle. The problem of noise is an issue in all applications of
continuous attractor networks [145], see below. The second component of the head-direction
models is a neural integrator, since the location of the bump is based on integrating the
input signal γ (t). A number of other neural systems involve a neural integrator, including the
oculomotor control system in the goldfish [150].

Stimulus-induced breathers. So far we have focused on activity bumps that persist in the
absence of external stimuli due to the combined action of local recurrent excitation and lateral
inhibition. We now describe some interesting instabilities that arise in the case of non-persistent
bumps. For the sake of illustration, consider a 2D excitatory neural field with linear adaptation
and an external input I:
∂u(r, t)
∂t

= −u(r, t)+
∫

R2
w(|r − r′|)H(u(r′, t)− κ) dr′ − βq(r, t)+ I(r)

1

ε

∂q(r, t)
∂t

= −q(r, t)+ u(r, t). (4.41)

Suppose that the inhomogeneous input is a radially symmetric Gaussian centered about the
origin, I(r) = I0 e−r2/σ 2

s . We know from section 3.2, that in the absence of an input, the resulting
excitatory network supports traveling waves rather than stationary bumps. On the other hand,
for sufficiently strong input amplitude I0, the network supports a radially symmetric bump
centered about the input. Such a bump is not persistent, since if the input is removed then
the bump disappears as well. The basic problem we want to address is what happens to the
stability of the bump as the input amplitude is slowly decreased.

The analysis of the existence and stability of radially symmetric 2D bumps proceeds as
in section 4.2 with minor changes. First, the threshold condition for the existence of a bump
becomes (see equation (4.21))

κ = U (
) = 2π

∫ ∞

0
ŵ(ρ)J0(ρ
)J1(ρ
) dρ + I(
). (4.42)

Second, the linear stability of the bump is determined by the pair of eigenvalues λ = λ±
n

associated with the Fourier modes [cn einφ + cn e−inφ] eλt , where [133]

λ±
n = 1

2

[−�n ±
√
�2

n − 4ε(1 + β)(1 − �n)
]
, (4.43)

�n = 1 + ε − �n(1 + β), �n = μn(
)

|U ′(
)|(1 + β) , (4.44)

and

μn(
) = 


∫ 2π

0
w(2a sin(φ/2)) cos(nφ) dφ. (4.45)

It follows that stability of a radially symmetric bump require�n > 0 and �n < 1 for all n � 0.
Given the form of �n, this reduces to the following stability conditions:

ε > β : �n < 1 for all n � 0

ε < β : �n <
1 + ε
1 + β for all n � 0. (4.46)

If the first condition is violated as some parameter is varied then there is a saddle-node
bifurcation, whereas a breakdown of the second condition signals a Hopf bifurcation. In the
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Figure 22. Sequence of snapshots of a 2D breather acting as a periodic pulse-emitter in the case
of a 2D excitatory neural field with linear adaptation and exponential weight function. Parameters
are β = 4, κ = 0.2, ε = 0.1 and I0 = 0.2. Lighter colors indicate higher activity [133].

latter case the bump instability leads to the formation of a breather. In section 4.2, we showed
that for an excitatory network, μn � μ0 for all n � 0, so that we expect any instability to
involve the growth of radially symmetric perturbations and, hence, the resulting breather will
be radially symmetric. On the other hand, if there is a Mexican hat weight distribution then
non-radially symmetric breather and rotating waves can occur [136]. One way to induce a
Hopf instability of a bump is to reduce the amplitude I0 of the Gaussian input; this modifies
both the pulse-width 
 and the slope of the bump at threshold, |U ′(
)|. Interestingly, as
the input amplitude is further reduced, the breather can undergo a secondary instability such
that it now acts as an oscillating core that emits circular target waves. An example of such
a periodic wave emitter is shown in figure 22. Thus, a spatially localized stationary input
provides a mechanism for the formation of a network pacemaker oscillator. The mechanism
differs from that discussed in section 3.5, where the whole network acted as an oscillatory
medium. Note that in the case of 1D breathers, Folias [151] has recently carried out a weakly
nonlinear analysis of a stationary pulse undergoing a stimulus-induced Hopf bifurcation in a
neural field model with Mexican hat weight function and a Heaviside nonlinearity. He shows
that there are two spatial modes, that can undergo a Hopf bifurcation, producing a periodic
orbit that either expands/contracts (breather) or moves side-to-side (slosher). Moreover, by
calculating the critical third order coefficient of the associated normal form, he determines
when the bifurcation switches from super- to subcritical. Given the normal form, it should be
possible to extend this analysis to the case of weakly interacting breathers, extending previous
work on weakly interacting bumps [152].

A stimulus-induced bump in an excitatory network with linear adaptation can also follow
a moving stimulus. This problem has been studied in 1D using both the constructive method
for Heaviside nonlinearities [112] and singular perturbation methods for smooth F [147]. We
discuss the former approach here. Since the network supports natural traveling waves in the
absence of inputs, we now expect stimulus-locking to occur for a band of stimulus velocities
v around the natural velocity vs of stable pulses. Moreover, in light of the above analysis of
stationary inputs, we expect another band of stimulus-locked waves to exist for sufficiently
small v, provided that the stimulus amplitude is sufficiently large to maintain a stationary bump
when v = 0. This is indeed found to be the case, as illustrated in figure 23 for a Heaviside
firing rate function. Moreover, one finds that waves in the low velocity tongue can undergo a
Hopf instability resulting in either a traveling breather or a pulse emitter. These results can be
established by looking for a traveling pulse solution in the moving frame of the input [112].
That is, set u(x, t) = U (ξ ) and q(x, t) = Q(ξ ), ξ = x − vt, such that U (ξ )→ 0 as ξ → ±∞.
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Figure 23. Stimulus-locked traveling pulses in an excitatory 1D neural field with linear adaptation
and exponential weight function. Gaussian stimulus has velocity v, amplitude I0 and widthσs = 1.0.
Other parameters are threshold κ = 0.3, rate constant ε = 0.03, and amplitude of adaptation
β = 2.5. Center: Regions of existence of stimulus-locked traveling pulses in the (v, I0)-plane for
a 1D excitatory neural field with linear adaptation. The left and right regions form tongues that
issue from the unstable vu and stable vs natural traveling pulses of the homogeneous network,
respectively. The Hopf curve within the left-hand tongue is shown in gray. Stationary pulses
correspond to the intersection of the tongue and the line v = 0. Top row: graphs of the zero sets
of the real (dark curves) and imaginary (light curves) parts of the Evans function determining the
stability of a stimulus-locked bump for I0 = 2.0 and a sequence of stimulus speeds v; intersection
points indicate eigenvalues. The vertical shaded region indicates the essential spectrum. This
sequence of plots indicates that two Hopf bifurcation points occur, thus defining the boundary of
the stable region within the left tongue. Bottom row: corresponding sequence of spacetime plots,
illustrating the transition from breather, to stimulus-locked pulse, to pulse-emitter as v increases
through the left-hand and right-hand branches of the Hopf curve [112].
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Furthermore, assume that U (ξ ) crosses threshold at the two points ξ1, ξ2 such that U (ξ ) > κ
for ξ ∈ (ξ1, ξ2) and U (ξ ) < κ for ξ /∈ [ξ1, ξ2]. It follows that

− cU ′(ξ )+ U (ξ )+ βQ(ξ ) =
∫ ξ2

ξ1

w(ξ − ξ ′) dξ ′ + I(ξ )

−cQ′(ξ )+ ε[Q(ξ )− U (ξ )] = 0. (4.47)

The existence of traveling pulse solutions can then be determined by solving this pair of
equations using variation-of-parameters along similar lines to section 3.3.1. However, in
contrast to the case of a traveling pulse in a homogeneous neural field, we cannot arbitrarily
shift coordinates so that one of the threshold crossing points is at the origin. Thus two conditions
are needed in order to determine the two threshold crossing points ξ1, ξ2 with
 = ξ2 − ξ2 the
width of the pulse. On the other hand, the speed of the pulse is already specified to be the speed
v of the input. Wave stability can also be determined by constructing the associated Evans
function. Now stability requires that there exists a positive number K such that Re λ < −K for
all zeros of the Evans function, that is, there no longer exists a zero eigenvalue arising from
translation symmetry.

Robustness to noise and bistability. In our discussion of stimulus-driven bumps, we focused
on how an external input can control the spatial location of a bump. In applications to working
memory, it is necessary that the bump persists once the stimulus is removed. Moreover, there
has to be some mechanism for initiating/removing a bump so that new memories can be stored.
It is typically assumed that the network exhibits bistability, in which a stable homogeneous
resting state coexists with a marginally stable bump. Marginal stability reflects the arbitrariness
of bump location in the absence of inputs due to translation symmetry. Clearly, a transition
from the resting state to a bump can be initiated by an excitatory stimulus of the form
considered in section 4.3. In principle, a transition back to the resting state could be induced
by a global inhibitory stimulus. An interesting alternative mechanism was proposed by Gutkin
et al [153] (see also [139]). They carried out computer simulations of a lateral inhibition
network consisting of conductance-based models of single neurons. They showed that a bump
only persisted if the neurons fired asynchronously, so that one way to destroy the bump was
to use an excitatory stimulus to induce transient synchrony.

Marginal stability of a persistent bump implies that arbitrarily small fluctuations can shift
its location, so that over time noise can wash out the information encoded by the bump. One
mechanism for enhancing the robustness of bumps to noise is to introduce bistability at the
cellular level [27, 154, 155]. The basic model of Camperi and Wang [27] takes the form of an
activity-based neural field equation on a ring:

∂

∂t
ν(x, t) = −K(ν(x, t))+ F

(∫ 2π

0
w(x − y)ν(y, t) dy + Iext(x, t)

)
, (4.48)

where the linear decay term is replaced by a cubic nonlinearity

K(ν) = c + ν − aν2 + bν3. (4.49)

The parameters are chosen so that the single neuron model ν̇ = −K(ν) + F(Iext) exhibits
bistability when F is given by a linear threshold function, F(I) = IH(I). That is, there
are three fixed point solutions ν∗ = K−1 ◦ F(Iext), two of which are stable. The spatially
extended network with lateral inhibition then exhibits bistability between a resting state and
a marginally stable bump solution. Although this model does generate bumps that are much
more robust to external noise, the bistable regime is rather sensitive to the range of parameters
[154]. Recently, a biologically plausible mechanism for generating cellular bistability has been
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proposed, based on intracellular calcium Ca2+ [155]. The local function K(ν) is now taken
to be monotonic whereas the firing rate F is multiplied by a factor (1 + [Ca2+]/C0) where
[Ca2+] denotes intracellular calcium concentration within the cytosol of the neuron. The latter
evolves dynamically via IP3-modulated Ca2+-induced Ca2+ release from intracellular stores
combined with the action of ionic pumps and Ca2+ influx from synaptic activity as determined
by F . The calcium subsystem provides the source of cellular bistability.

5. Neural pattern formation

So far we have considered the spatiotemporal dynamics of neural fields based upon constructing
explicit solutions (or their approximations) in the fully nonlinear regime. An alternative
approach is to investigate the emergence of spatially periodic stationary and oscillatory patterns
through a combination of linear stability theory, weakly nonlinear analysis, and numerical
simulations. In cases where the period of the pattern matches the size of the domain, this also
provides a mechanism for the formation of persistent bumps. Turing originally considered
the problem of how animal coat patterns develop, suggesting that chemical markers in the
skin comprise a system of diffusion-coupled chemical reactions among substances called
morphogens [156]. He showed that in a two-component reaction-diffusion system, a state
of uniform chemical concentration can undergo a diffusion-driven instability leading to the
formation of a spatially inhomogeneous state. Ever since the pioneering work of Turing on
morphogenesis [156], there has been a great deal of interest in spontaneous pattern formation
in physical and biological systems [157, 158]. In the neural context, Wilson and Cowan [11]
proposed a non-local version of Turing’s diffusion-driven mechanism, based on competition
between short-range excitation and longer-range inhibition. Here interactions are mediated,
not by molecular diffusion, but by long-range axonal connections. Since then, this neural
version of the Turing instability has been applied to a number of problems concerning cortical
dynamics. Examples in visual neuroscience include the ring model of orientation tuning
[25, 26, 159], cortical models of geometric visual hallucinations [19, 74, 160] and
developmental models of cortical maps [60]. (The latter involves pattern forming instabilities
in the space of synaptic weights rather than neuronal activity states.) In most cases there exists
some underlying symmetry in the model that plays a crucial role in the selection and stability
of the resulting patterns.

In this section we review theoretical approaches to studying spontaneous pattern formation
in neural field models. Throughout we emphasize the important role that symmetries play.
In section 5.1 we consider the basic neural mechanism for Turing-like pattern formation
developed by Wilson, Cowan and Ermentrout [11, 19]. We then focus our discussion on
activity-based patterns generated in primary visual cortex (V1), which is the first cortical region
to process visual information from the eyes. We begin by constructing a neural field model of
V1 that takes into account the functional architecture of V1, in particular, its hypercolumnar
structure (section 5.2). We then analyze pattern formation in a ring model of orientation tuning
within a single hypercolumn (section 5.3), and then extend this to a coupled hypercolumn
model of V1 (section 5.4) [74]. We end by relating cortical pattern formation to a theory of
geometric visual hallucinations (section 5.5).

5.1. Turing mechanism for cortical pattern formation

Let us return to a 2D version of the scalar neural field equation (3.2):

∂u(r, t)
∂t

= −u(r, t)+
∫

R2
w(r, r′)F(u(r′, t))dr′, (5.1)

56



J. Phys. A: Math. Theor. 45 (2012) 033001 Topical Review

with F given by a smooth sigmoid function (2.6). For the moment, we assume w(r, r′) =
w(|r − r′|) so that it is invariant with respect to the Euclidean group E(2) of rigid body
transformations in the plane. That is,

γ · w(r, r′) = w(γ−1 · r, γ−1 · r′) = w(r, r′)

for all γ ∈ E(2). The Euclidean group is composed of the (semi-direct) product of O(2), the
group of planar rotations r → Rϕr and reflections (x, y) → (x,−y), with R

2, the group of
planar translations r → r + s. Here

Rϕ =
(

cosϕ − sinϕ
sinϕ cosϕ

)
, ϕ ∈ [0, 2π). (5.2)

Most large-scale models of cortex assume Euclidean symmetric weights [15], but see section
5.2. Suppose that there exists a uniform fixed point solution u0 so that

u0 = ŵ0F(u0), ŵ0 =
∫

R2
w(r) dr. (5.3)

Linearizing equation (3.2) about the fixed point solution by writing u(r, t) = u0 + p(r)eλt

then leads to the eigenvalue equation

λp(r) = μ

∫
R2
w(|r − r′|)p(r′) dr′, (5.4)

where μ = F ′(u0) represents the gain of the firing rate function in the rest state u0. Thus
changes in μ, which is treated as a bifurcation parameter, reflect changes in the level of
excitability of the network. The linear operator on the right-hand side has a continuous
spectrum generated by the solutions p(r) = eik·r, which leads to the dispersion relation

λ = λ(k) ≡ −1 + μŵ(k), (5.5)

with ŵ(k) the Fourier transform of w(r) and k = |k|. It is now straightforward to determine
conditions under which the homogeneous state u0 loses stability leading to the formation of
spatially periodic patterns. The standard mechanism for such an instability, which is the neural
analog of the Turing instability in reaction-diffusion equations, is a combination of short-range
excitation and long-range inhibition, that is, a Mexican hat function. Consider for example the
difference-of-Gaussians (see figure 24(a)):

w(|r|) = e−r2/2 − A e−r2/2σ 2
, (5.6)

the Fourier transform of which is

ŵ(k) = 1

2
e− 1

4 k2 − Aσ 2

2
e− 1

4 σ
2k2
. (5.7)

Since ŵ(k) is a bounded function of k, it follows that for sufficiently small μ, Re λ < 0 for
all k, and the fixed point k is stable. However, as μ increases, the dispersion curve λ(k) passes
through zero at the critical value μc = ŵ(kc)

−1 signaling the growth of spatially periodic
patterns with wavenumber kc, where ŵ(kc) = maxk{ŵ(k)}, see figure 24(b).

Close to the bifurcation point these patterns can be represented as linear combinations of
plane waves

b(r) =
∑

n

(cn eikn·r + c∗
n e−ikn·r), (5.8)

where the sum is over all wave vectors with |kn| = kc. Rotation symmetry implies that
the space of such modes is infinite-dimensional. That is, all plane-waves with wavevectors
on the critical circle |k| = kc are allowed. However, one of the simplifying features of
many Turing-like patterns found in nature is that they tend to form a regular tiling of the
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Figure 24. Neural basis of the Turing mechanism. (a) Mexican hat interaction function showing
short-range excitation and long-range inhibition. (b) Dispersion curves λ(k) = −1 + μŵ(k)
for Mexican hat function. If the excitability μ of the cortex is increased, the dispersion curve
is shifted upward leading to a Turing instability at a critical parameter μc = ŵ(kc)

−1 where
ŵ(kc) = [maxk{ŵ(k)}]. For μc < μ < ∞ the homogeneous fixed point is unstable.

cortical plane, that is, they are doubly-periodic with respect to some regular planar lattice
(square, rhomboid or hexagonal). This is a common property of pattern forming instabilities
in systems with Euclidean symmetry that are operating in the weakly nonlinear regime [157].
In the neural context, Euclidean symmetry reflects the invariance of synaptic interactions with
respect to rotations, translations and reflections in the cortical plane. The emerging patterns
spontaneously break Euclidean symmetry down to the discrete symmetry group of the lattice,
and this allows techniques from bifurcation theory to be used to analyze the selection and
stability of the patterns. The global position and orientation of the patterns are still arbitrary,
however, reflecting the hidden Euclidean symmetry.

Hence, suppose that we restrict the space of solutions (5.8) to that of doubly-periodic
functions corresponding to regular tilings of the plane. That is, p(r + �) = p(r) for all � ∈ L
where L is a regular square, rhomboid or hexagonal lattice. The sum over n is now finite with
N = 2 (square, rhomboid) or N = 3 (hexagonal) and, depending on the boundary conditions,
various patterns of stripes or spots can be obtained as solutions. Amplitude equations for the
coefficients cn can then be obtained using perturbation methods [84]. However, their basic
structure can be determined from the underlying rotation and translation symmetries of the
network model. In the case of a square or rhombic lattice, we can take k1 = kc(1, 0) and
k2 = kc(cosϕ, sinϕ) such that (to cubic order)

dcn

dt
= cn

[
μ− μc − �0|cn|2 − 2�ϕ

∑
m�=n

|cm|2
]
, n = 1, 2, (5.9)

where �ϕ depends on the angle ϕ. In the case of a hexagonal lattice we can take
kn = kc(cosϕn, sinϕn) with ϕ1 = 0, ϕ2 = 2π/3, ϕ3 = 4π/3 such that

dcn

dt
= cn[μ− μc − �0|cn|2 − ηc∗

n−1c∗
n+1] − 2�ϕ2 cn

(|cn−1|2 + |c2
n+1|
)
, (5.10)

where n = 1, 2, 3 (mod 3). These ordinary differential equations can then be analyzed to
determine which particular types of pattern are selected and to calculate their stability
[19, 20, 84]. The results can be summarized in a bifurcation diagram as illustrated in
figure 31(a) for the hexagonal lattice with h > 0 and 2�ϕ2 > �0.
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Oscillatory patterns. In the above analysis, we incorporated both excitation and inhibition
into a one-population neural field model. However, as outlined in section 2.5, this is an
approximation of a more realistic two-population model in which excitatory and inhibitory
neurons are modeled separately. In the case of stationary patterns, the one-population model
captures the basic pattern forming instability. However, the two-population model supports a
wider range of dynamics and, in particular, can undergo a Turing–Hopf instability leading to
the formation of oscillatory patterns [84, 160, 161]. Oscillatory patterns can also occur in a
one-population model with adaptation or axonal/dendritic delays. For example, suppose that
the temporal kernel �(t) in the integral version of the scalar neural field equation (3.10) is
given by the Green’s function of a semi-infinite dendritic cable, equation (2.22):

�(t) = G(0, ξ0, t) = 1√
πDt

e−t/τm e−ξ 2
0 /4DtH(t), (5.11)

where we have set λ2/τm = D. For the sake of illustration, all synaptic connections are
assumed to be at a fixed location ξ0 along the dendritic cable. Linearizing equation (3.10)
about a homogeneous fixed point solution u0 by writing u(x, t) = u0 + u1eλt+ikx yields the
eigenvalue equation

1 = μŵ(k)G(λ), (5.12)

where G(z) is the Laplace transform of �(t):

G(z) =
∫ ∞

0
e−zt�(t) dt = 1√

ε + z
e−ξ0

√
ε+z, (5.13)

with ε = τ−1
m and D = 1. In order to determine conditions for a Turing–Hopf bifurcation, set

λ = iω in the eigenvalue equation and equate real and imaginary parts using the fact that the
Fourier transform ŵ(k) of the weight distribution is real. Writing G(iω) = C(ω)+ iS(ω), we
obtain the pair of equations

1 = μŵ(k)C(ω), 0 = μŵ(k)S(ω) (5.14)

with

C(ω) = 1√
ε2 + ω2

e−A(ω)ξ0 [A(ω) cos (B(ω)ξ0)− B(ω) sin (B(ω)ξ0)] (5.15)

S(ω) = 1√
ε2 + ω2

e−A(ω)ξ0 [A(ω) sin(B(ω)ξ0)+ B(ω) cos(B(ω)ξ0)], (5.16)

and
√
ε + iω = A(ω)+ iB(ω) where

A(ω) =
√

[
√
ε2 + ω2 + ε]/2, B(ω) =

√
[
√
ε2 + ω2 − ε]/2. (5.17)

The equation S(ω) = 0 has an infinite set of roots. However, we are only interested in the root
ωc that generates the largest value of |C(ω)|. The root corresponding to the largest positive
value of C(ω) is ω = 0 with C(0) = e−εξ0/

√
ε. On the other hand, the root corresponding to

the largest negative value of C(ω) (denoted by ω0) has to be determined graphically. Finally,
define

ŵ(k+) = max
k

{ŵ(k)} > 0, ŵ(k−) = min
k

{ŵ(k)} < 0.

It follows that if ŵ(k+)C(0) > ŵ(k−)C(ω0) and k+ �= 0 then there is a standard Turing
instability at μc = [ŵ(k+)C(0)]−1 with critical wavenumber kc = k+. On the other hand,
if ŵ(k+)C(0) < ŵ(k−)C(ω0) and k− �= 0, then there is a Turing–Hopf instability at
μc = [ŵ(k−)C(ω0)]−1 with critical wavenumber kc = k− and temporal frequency ω0. It
is clear that the Mexican hat function shown in figure 24 cannot support oscillatory patterns,
since k− = 0. However, an inverted Mexican hat function representing short-range inhibition
and long-range excitation can. See [47] for a fuller discussion of the effects of dendritic
processing on neural network dynamics.
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Figure 25. (a) Visual pathways from the retina through the lateral geniculate nucleus (LGN) of the
thalamus to the primary visual cortex (V1). (b) Schematic illustration of the complex logarithmic
mapping from retina to V1. Foveal region in retina is indicated by grey disc. Regions AR and BR in
the visual field are mapped to regions A and B in cortex.

5.2. Neural field model of primary visual cortex (V1)

In standard treatments of cortical pattern formation, the synaptic weights are assumed to depend
only on the Euclidean distance between points in cortex, that is, w(r, r′) = w(|r − r′|).
However, a closer look at the detailed structure of cortical circuits shows that such
an assumption is an oversimplification. We illustrate this by considering the functional
architecture of the best known cortical area, primary visual cortex (V1), which is the first
cortical region to process visual information from the eyes. This is then used to construct a
more detailed neural field model of V1.

5.2.1. Functional architecture of V1. V1 is the first cortical area to receive visual information
from the retina (see figure 25). The output from the retina is conveyed by ganglion cells whose
axons form the optic nerve. The optic nerve conducts the output spike trains of the retinal
ganglion cells to the lateral geniculate nucleus (LGN) of the thalamus, which acts as a relay
station between retina and primary visual cortex (V1). Prior to arriving at the LGN, some
ganglion cell axons cross the midline at the optic chiasm. This allows the left and right
sides of the visual fields from both eyes to be represented on the right and left sides of the
brain, respectively. Note that signals from the left and right eyes are segregated in the LGN
and in input layers of V1. This means that the corresponding LGN and cortical neurons are
monocular, in the sense that they only respond to stimuli presented to one of the eyes but not
the other (ocular dominance).

Retinotopic map. One of the striking features of the visual system is that the visual world
is mapped onto the cortical surface in a topographic manner. This means that neighboring
points in a visual image evoke activity in neighboring regions of visual cortex. Moreover,
one finds that the central region of the visual field has a larger representation in V1 than the
periphery, partly due to a non-uniform distribution of retinal ganglion cells. The retinotopic
map is defined as the coordinate transformation from points in the visual world to locations on
the cortical surface. In order to describe this map, we first need to specify visual and cortical
coordinate systems. Since objects located a fixed distance from one eye lie on a sphere, we can
introduce spherical coordinates with the ‘north pole’ of the sphere located at the fixation point,
the image point that focuses onto the fovea or center of the retina. In this system of coordinates,
the latitude angle is called the eccentricity ε and the longitudinal angle measured from the
horizontal meridian is called the azimuth ϕ. In most experiments the image is on a flat screen
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Figure 26. (a) Schematic illustration of an orientation tuning curve of a V1 neuron. Average firing
rate is plotted as a function of the orientation of a bar stimulus that is moved back and forth within
the receptive field (RF) of the neuron. The peak of the orientation tuning curve corresponds to the
orientation preference of the cell. (b) Iso-orientation (light) and ocular dominance (dark) contours
in a region of primate V1. A cortical hypercolumn consists of two orientation singularities or
pinwheels per ocular dominance column. Reproduced with permission from figure 5A of [168].

such that, if we ignore the curvature of the sphere, the pair (ε, ϕ) approximately coincides with
polar coordinates on the screen. One can also represent points on the screen using Cartesian
coordinates (X,Y ). In primary visual cortex the visual world is split in half with the region
−90o � ϕ � 90o represented on the left side of the brain, and the reflection of this region
represented on the right side brain. Note that the eccentricity ε and Cartesian coordinates
(X,Y ) are all based on measuring distance on the screen. However, it is customary to divide
these distances by the distance from the eye to the screen so that they are specified in terms of
angles. The structure of the retinotopic map is illustrated in figure 25(b). One finds that away
from the fovea concentric circles are approximately mapped to vertical lines and radial lines to
horizontal lines. More precisely, for eccentricities greater than 1o, the retinotopic map can be
approximated by a complex logarithm [162]. That is, introducing the complex representations
Z = (ε/ε0)e−iπϕ/180o

and z = x + iy, where (x, y) are Cartesian cortical coordinates, then
z = λ log Z.

Feature maps. Superimposed upon the retinotopic map are additional maps reflecting the
fact that neurons respond preferentially to stimuli with particular features [60]. Neurons in
the retina, LGN and primary visual cortex respond to light stimuli in restricted regions of
the visual field called their classical receptive fields (RFs). Patterns of illumination outside
the RF of a given neuron cannot generate a response directly, although they can significantly
modulate responses to stimuli within the RF via long-range cortical interactions (see below).
The RF is divided into distinct ON and OFF regions. In an ON (OFF) region illumination that
is higher (lower) than the background light intensity enhances firing. The spatial arrangement
of these regions determines the selectivity of the neuron to different stimuli. For example,
one finds that the RFs of most V1 cells are elongated so that the cells respond preferentially
to stimuli with certain preferred orientations (see figure 26). Similarly, the width of the ON
and OFF regions within the RF determines the optimal spacing of alternating light and dark
bars to elicit a response, that is, the cell’s spatial frequency preference. In recent years much
information has accumulated about the spatial distribution of orientation selective cells in V1
[164]. One finds that orientation preferences rotate smoothly over the surface of V1, so that
approximately every 300 μm the same preference reappears, i.e. the distribution is π–periodic
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in the orientation preference angle. One also finds that cells with similar feature preferences
tend to arrange themselves in vertical columns so that to a first approximation the layered
structure of cortex can be ignored. A more complete picture of the two-dimensional distribution
of both orientation preference and ocular dominance in layers 2/3 has been obtained using
optical imaging techniques [163, 165, 166]. The basic experimental procedure involves shining
light directly on to the surface of the cortex. The degree of light absorption within each patch
of cortex depends on the local level of activity. Thus, when an oriented image is presented
across a large part of the visual field, the regions of cortex that are particularly sensitive to that
stimulus will be differentiated. The topography revealed by these methods has a number of
characteristic features [167], see figure 26(b): (i) orientation preference changes continuously
as a function of cortical location, except at singularities or pinwheels. (ii) There exist linear
zones, approximately 750 × 750 μm2 in area (in primates), bounded by pinwheels, within
which iso-orientation regions form parallel slabs. (iii) Linear zones tend to cross the borders
of ocular dominance stripes at right angles; pinwheels tend to align with the centers of ocular
dominance stripes. These experimental findings suggest that there is an underlying periodicity
in the microstructure of V1 with a period of approximately 1 mm (in cats and primates). The
fundamental domain of this approximate periodic (or quasiperiodic) tiling of the cortical plane
is the hypercolumn [168–170], which contains two sets of orientation preferences θ ∈ [0, π )
per eye, organized around a pair of singularities, see figure 26(b).

Long-range horizontal connections. Given the existence of a regularly repeating set of feature
preference maps, how does such a periodic structure manifest itself anatomically? Two cortical
circuits have been fairly well characterized: there is a local circuit operating at sub-millimeter
dimensions in which cells make connections with most of their neighbors in a roughly
isotropic fashion. It has been suggested that such circuitry provides a substrate for the recurrent
amplification and sharpening of the tuned response of cells to local visual stimuli [25, 26],
see section 5.3. The other circuit operates between hypercolumns, connecting cells separated
by several millimetres of cortical tissue. The axons of these connections make terminal arbors
only every 0.7 mm or so along their tracks [171, 172], such that local populations of cells
are reciprocally connected in a patchy fashion to other cell populations. Optical imaging
combined with labeling techniques has generated considerable information concerning the
pattern of these connections in superficial layers of V1 [173–175]. In particular, one finds
that the patchy horizontal connections tend to link cells with similar feature preferences.
Moreover, in certain animals such as tree shrew and cat there is a pronounced anisotropy in
the distribution of patchy connections, with differing iso-orientation patches preferentially
connecting to neighboring patches in such a way as to form continuous contours following
the topography of the retinotopic map [175]. This is illustrated schematically figure 27. That
is, the major axis of the horizontal connections tends to run parallel to the visuotopic axis of
the connected cells’ common orientation preference. There is also a clear anisotropy in the
patchy connections of primates [176, 177]. However, in these cases most of the anisotropy
can be accounted for by the fact that V1 is expanded in the direction orthogonal to ocular
dominance columns [177]. Nevertheless, it is possible that when this expansion is factored
out, there remains a weak anisotropy correlated with orientation selectivity. Moreover, patchy
feedback connections from higher-order visual areas in primates are strongly anisotropic [177].
Stimulation of a hypercolumn via lateral connections modulates rather than initiates spiking
activity [178], suggesting that the long-range interactions provide local cortical processes with
contextual information about the global nature of stimuli. As a consequence horizontal and
feedback connections have been invoked to explain a wide variety of context-dependent visual
processing phenomena [177, 179].
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Figure 27. Schematic illustration of anisotropic horizontal connections. Orientation selective cells
within a hypercolumn tend to connect to all neighbors in a roughly isotropic fashion. On the other
hand, longer range horizontal connections link cells between hypercolumns with similar orientation
preferences along a particular visuotopic axis.

5.2.2. Planar model of V1. One of the immediate implications of the existence of regularly
repeating feature maps and patchy horizontal (or feedback) connections is that we can no
longer treat the weight distribution w in the neural field equation (5.1) as Euclidean invariant.
That is, we have to consider a more general weight distribution of the form

w(r, r′) = w(|r − r′|)+ ρw
(F (r),F (r′)), (5.18)

where F (r) denotes a cortical feature map, w
 represents the dependence of excitatory
horizontal connections on the feature preferences of the presynaptic and postsynaptic neuron
populations, and ρ is a positive coupling parameter. Since horizontal connections modulate
rather than drive a neuron’s response to a visual stimulus, we can treat ρ as a small parameter.
The local connections span a single hypercolumn, whereas the patchy horizontal connections
link cells with similar feature preferences in distinct hypercolumns.

In the absence of long-range connections (ρ = 0), the resulting weight distribution is
invariant under the action of the Euclidean group. However, the long-range connections break
Euclidean symmetry due to correlations with the feature map F (r). A certain degree of
symmetry still remains under the approximation that the feature map is periodic. For example,
figure 26(b) suggests partitioning V1 into a set of hypercolumns organized around a lattice of
orientation pinwheels. Therefore, suppose we treat the distribution of pinwheels as a regular
planar lattice L. The resulting weight distribution for ρ �= 0 is then doubly periodic with
respect to L:

w(r + �, r′ + �) = w(r, r′) (5.19)

for all � ∈ L. Additional symmetries may also exist depending on the particular form of w
.
There are number of distinct ways in which w
 may depend on the underlying feature map
F . The first reflects the ‘patchiness’ of the horizontal connections that link cells with similar
feature preferences. In the case of a periodic feature map, this may be implemented by taking
[75–77]

w
(F (r),F (r′)) =
∑
�∈L

J�
(r − r′ − �), (5.20)
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where 
(r) is some localized unimodal function that is maximal when r = 0, thus ensuring
that presynaptic and postsynaptic cells with similar feature preferences are connected. The
width of 
 determines the size of the patches and J�, � �= 0 is a monotonically decreasing
function of �. In this particular example, the patchy horizontal connections break continuous
rotation symmetry down to the discrete rotation symmetry of the lattice. On the other hand,
continuous translation symmetry (homogeneity) still holds, since w
 only depends on the
relative separation r − r′ in cortex. However, if the anisotropy of horizontal connections is
taken into account (figure 27), then continuous translation symmetry is broken as well. That is,
the direction of anisotropy is correlated with the orientation preference map and thus rotates
periodically across cortex [175]. Anisotropy can be incorporated into the model by modifying
the weight distribution w
 along the following lines [20, 180]:

w
(F (r),F (r′)) =
∑
�∈L

J�AF (r′)(�)
(r − r′ − �), (5.21)

with

AF (r)(�) = 1

4η(r)
(H[η(r)− | arg � − θ (r)|] + H[η(r)− | arg � − θ (r)− π |]), (5.22)

where θ (r) denotes the orientation preference map. The second term takes account of the
fact that θ ∈ [0, π ) whereas arg � ∈ [0, 2π). The parameter η(r) determines the degree of
anisotropy, that is the angular spread of the horizontal connections around the axis joining
cells with similar orientation preferences. The degree of anisotropy is also likely to depend
on position r relative to pinwheels, since populations of cells around pinwheels have zero
average orientation preference so that we expect the corresponding distribution of weights
to be isotropic, in contrast to cells in the linear zones of the orientation preference map, see
figure 26.

We conclude that at the submillimeter length scale, there is an approximately periodic
modulation of the synaptic connections. We have already explored one implication of this in
a simple model of traveling waves, see section 3.3, namely that it can cause wave propagation
failure [20, 101, 102]. Another consequence of such an inhomogeneity is that it can lead to
the pinning of a spatially periodic pattern to the underlying lattice of pinwheels [75, 76].

5.2.3. Coupled hypercolumn model of V1. Treating the distribution of pinwheels as a regular
lattice does not take into account the considerable degree of disorder in the distribution of
feature preferences across cortex. One way to avoid such complexity is to collapse each
hypercolumn into a single point (through some form of spatial coarse-graining) and to treat
V1 as a continuum of hypercolumns [20, 181]. Thus cortical position r is replaced by the
pair {r,F} with r ∈ R

2 now labeling the hypercolumn at (coarse-grained) position r and F
labeling the feature preferences of neurons within the hypercolumn. Let u(r,F , t) denote the
activity of a neuronal population at (r,F ), and suppose that u evolves according to the neural
field equation

∂u(r,F , t)
∂t

= − u(r,F , t)+
∫

R2

∫
w(r,F |r′,F ′)F(u(r′,F ′, t))DF ′dr′ (5.23)

with DF ′ an appropriately defined measure on feature space. We decompose w into local
and long-range parts by assuming that the local connections mediate interactions within
a hypercolumn whereas the patchy horizontal connections mediate interactions between
hypercolumns:

w(r,F |r′,F ′) = δ(r − r′)w(F ,F ′)+ ρJ(|r − r′|)AF ′ (r − r′)w
(F ,F ′), (5.24)
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where w(F ,F ′) and w
(F ,F ′) represent the dependence of the local and long-range
interactions on the feature preferences of the pre- and post-synaptic cell populations, and
J(r) with J(0) = 0 is a positive function that determines the variation in the strength of the
long-range interactions with cortical distance. We have also included the anisotropy factor
AF of equation (5.22). The advantage of collapsing each hypercolumn to a single point in the
cortical plane is that a simpler representation of the internal structure of a hypercolumn can
be developed that captures the essential tuning properties of the cells as well as incorporating
the modulatory effects of long-range connections.

For the sake of illustration, suppose that we identify F in equations (5.23) and (5.24) with
the orientation preference θ ∈ [0, π ) of cells within a hypercolumn. The weight distribution
(5.24) is taken to have the form [20]

w(r, θ |r′, θ ′) = δ(r − r′)w(θ − θ ′)+ ρJ(|r − r′|)P(arg(r − r′)− θ )w
(θ − θ ′) (5.25)

with

P(ψ) = 1

4η
[H(η − |ψ |)+ H(η − |ψ − π)|]. (5.26)

(Note that the direction arg(r − r′) can be taken to be correlated with either θ or θ ′, since
w
 is a sharply peaked function.) The functions w(θ ) and w
(θ ) are assumed to be even,
π -periodic functions of θ , with corresponding Fourier expansions

w(θ ) = w0 + 2
∑
n�1

wn cos 2nθ

w
(θ ) = w
0 + 2
∑
n�1

w
n cos 2nθ. (5.27)

The distribution w
(θ ) is taken to be a positive, narrowly tuned distribution with w
(θ ) = 0
for all |θ | > θc and θc � π/2; the long-range connections thus link cells with similar
orientation preferences. Equation (5.23) then describes a continuum of coupled ring networks,
each of which corresponds to a version of the so-called ring model of orientation tuning
[25, 26, 159].

If there is no orientation-dependent anisotropy then the weight distribution (5.25) is
invariant with respect to the symmetry group E(2) × O(2) where O(2) is the group of
rotations and reflections on the ring S1 and E(2) is the Euclidean group acting on R

2. The
associated group action is

ζ · (r, θ ) = (ζr, θ ), ζ ∈ E(2)

ξ · (r, θ ) = (r, θ + ξ ) (5.28)

κ · (r, θ ) = (r,−θ ).
Invariance of the weight distribution can be expressed as

γ · w(r, θ |r′, θ ) = w(γ−1 · (r, θ )|γ−1 · (r′, θ ′)) = w(r, θ |r′, θ ′)

for all γ ∈ � where � = E(2) × O(2). Anisotropy reduces the symmetry group � to E(2)
with the following shift-twist action on R

2 × S1 [74, 181]:

s · (r, θ ) = (r + s, θ )

ξ · (r, θ ) = (Rξr, θ + ξ ) (5.29)

κ · (r, θ ) = (Rκr,−θ ),
where Rξ denotes the planar rotation through an angle ξ and Rκ denotes the reflection
(x1, x2) �→ (x1,−x2). It can be seen that the discrete rotation operation comprises a translation
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or shift of the orientation preference label θ to θ + ξ , together with a rotation or twist of the
position vector r by the angle ξ .

It is instructive to establish explicitly the invariance of anisotropic long-range connections
under shift-twist symmetry. Let us define

whoz(r, θ |r′, θ ′) = J(|r − r′|)P(arg(r − r′)− θ )w
(θ − θ ′). (5.30)

Translation invariance of whoz follows immediately from the spatial homogeneity of the
interactions, which implies that

whoz(r − s, θ |r′ − s, θ ′) = whoz(r, θ |r′, θ ′).
Invariance with respect to a rotation by ξ follows from

whoz(R−ξr, θ − ξ |R−ξr′, θ ′ − ξ )
= J(|R−ξ (r − r′)|)P(arg[R−ξ (r − r′)] − θ + ξ )w
(θ − ξ − θ ′ + ξ )
= J(|r − r′|)P(arg(r − r′)− θ )w
(θ − θ ′)
= whoz(r, θ |r′, θ ′).

We have used the conditions |Rξr| = |r| and arg(R−ξr) = arg(r) − ξ . Finally, invariance
under a reflection κ about the x-axis holds since

whoz(κr,−θ |κr′,−θ ′) = J(|κ(r − r′)|)P(arg[κ(r − r′)] + θ )w
(−θ + θ ′)
= J(|r − r′|)P(− arg(r − r′)+ θ )w
(θ − θ ′)
= whoz(r, θ |r′, θ ′).

We have used the conditions arg(κr) = − arg(r), w
(−θ ) = w
(θ ), and P(−ψ) = P(ψ).
The fact that the weight distribution is invariant with respect to this shift-twist action has
important consequences for the global dynamics of V1 in the presence of anisotropic horizontal
connections.

5.3. Pattern formation in the ring model of a single hypercolumn

The analysis of pattern formation in the coupled hypercolumn model (5.23) differs considerably
from the standard planar model of section 5.1. The first step is to consider a Turing instability
of a single hypercolumn in the absence of long-range horizontal connections by setting ρ = 0.
This is of interest in its own right, since the resulting pattern consists of a stationary activity
bump on a compact domain. In the case of the ring model of a hypercolumn, the compact
domain is the circle S1 and the bump represents a spontaneously formed orientation tuning
curve. If a weak orientation-dependent stimulus is also presented to the network, then this
fixes the location of the peak of the bump. The Turing instability thus provides a mechanism
for amplifying a weak oriented stimulus [25, 26, 159]. For the sake of illustration, we will
focus on orientation tuning and the ring model of a hypercolumn. However, it is also possible
to incorporate additional feature preferences into a hypercolumnar model with appropriate
symmetries. Two examples are a spherical network model of orientation and spatial frequency
tuning with O(3) symmetry [118], and a model of texture processing where the associated
network has a non-Euclidean hyperbolic geometry [182]. Finally, note that one could also
analyze orientation tuning curves (bumps) on a circular domain by restricting the weights to
low-order harmonics and constructing an exact solution [141].

Ring model of orientation tuning. Suppose that we represent a hypercolumn by the following
one-population ring model:

∂u(θ, t)

∂t
= −u(θ, t)+

∫ π

0

dθ ′

π
w(θ − θ ′)F(u(θ ′, t))+ h(θ, t), (5.31)
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Figure 28. (a) Spectrum wn of local weight distribution with a maximum at n = 1 (tuning mode)
and a maximum at n = 0 (bulk mode). (b) Sharp orientation tuning curve in a single hypercolumn.
Local recurrent excitation and inhibition amplifies a weakly modulated input from the LGN. Dotted
line is the base-line output without orientation tuning.

where u(θ, t) denotes the activity at time t of a local population of cells with orientation
preference θ ∈ [0, π ), w(θ − θ ′) is the strength of synaptic weights between cells with
orientation preference θ ′ and θ , and h(θ, t) is an external input expressed as a function of
θ . The weight distribution has the Fourier expansion (5.27). In the case of a constant input
h(θ, t) = h0 there exists at least one equilibrium solution of equation (5.31), which satisfies
u0 = w0F(u0)+h0 withw0 = ∫ π0 w(θ )dθ/π . If h0 is sufficiently small relative to the threshold
κ of the neurons then the equilibrium is unique and stable. The stability of the fixed point can
be determined by setting u(θ, t) = u0 + u(θ )eλt and linearizing about u0. This leads to the
eigenvalue equation

λu(θ ) = −u(θ )+ μ
∫ π

0
w(θ − θ ′)u(θ ′)

dθ ′

π
, (5.32)

where μ = F ′(u0). The linear operator on the right-hand side of equation (5.32) has a discrete
spectrum (since it is a compact operator) with eigenvalues

λn = −1 + μwn, n ∈ Z (5.33)

and corresponding eigenfunctions a(θ ) = zn e2inθ + z∗
n e−2inθ , where zn is a complex amplitude

with complex conjugate z∗
n. It follows that for sufficiently small μ, corresponding to a low

activity state, λn < 0 for all n and the fixed point is stable. However, as μ is increased beyond
a critical value μc the fixed point becomes unstable due to excitation of the eigenfunctions
associated with the largest Fourier component of w(θ ), see equation (5.27). We refer to such
eigenfunctions as excited modes.

Two examples of discrete Fourier spectra are shown in figure 28(a). In the first case
w1 = maxm{wm} so that μc = 1/w1 and the excited modes are of the form

u(θ ) = Z e2iθ + Z∗ e−2iθ = |Z| cos(2[θ − θ0]) (5.34)

with complex amplitude Z = |Z|e−2iθ0 . Since these modes have a single maximum around the
ring, the network supports an activity profile consisting of a tuning curve centered about the
point θ0. The location of this peak is arbitrary and depends only on random initial conditions,
reflecting the O(2) symmetry of the weight distribution w. Such a symmetry is said to be
spontaneously broken by the action of the pattern forming instability. Since the dominant
component is w1, the distribution w(θ ) is excitatory (inhibitory) for neurons with sufficiently
similar (dissimilar) orientation preferences. (This is analogous to the Mexican hat function.)
The inclusion of an additional small amplitude input
h(θ ) ∼ cos[2(θ−�)] explicitly breaks
O(2) symmetry, and locks the peak of the tuning curve to the stimulus orientation, that is,
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θ0 = �. As one moves further away from the point of instability, the amplitude of the tuning
curve increases and sharpening occurs due to the nonlinear effects of the firing rate function
(2.6). This is illustrated in figure 28(b), where the input and output (normalized) firing rate
of the excitatory population of a single hypercolumn are shown. Thus the local intracortical
connections within a hypercolumn serve both to amplify and sharpen a weakly oriented input
signal from the LGN [25, 26]. On the other hand, if the local level of inhibition is reduced such
thatwn is a monotonically decreasing function of |n| (see figure 28(a)), then the homogeneous
fixed point undergoes a bulk instability at μc = 1/w0, resulting in a broadening of the tuning
curve. This is consistent with experimental data demonstrating a loss of stable orientation
tuning in cats with blocking of intracortical inhibition [183].

Amplitude equation and O(2) symmetry. So far we used linear theory to show how a
hypercolumn can undergo a pattern forming instability through the spontaneous breaking of
O(2) symmetry, leading to the growth of an orientation tuning curve. However, as the activity
profile increases in amplitude the linear approximation breaks down and nonlinear theory is
necessary in order to investigate whether or not a stable pattern ultimately forms. Sufficiently
close to the bifurcation point μ = μc where the homogeneous state becomes unstable, we can
treat μ−μc = ε
μ as a small parameter and carry out a perturbation expansion in powers of
ε. The dominant temporal behavior just beyond bifurcation is the slow growth of the excited
mode at a rate eε
μt . This motivates the introduction of a slow time-scale τ = εt. Finally,
assuming that the input is only weakly orientation-dependent (and possibly slowly varying),
we write h(θ, t) = h0 + ε3/2
h(θ, τ ). Weakly nonlinear analysis then generates a dynamical
equation for the amplitude of the pattern that can be used to investigate stability as well as the
effects of a weakly biased external input [15, 84]. That is, writing the amplitude of the excited
mode (5.34) as Z = ε1/2z(τ ) we find that (after rescaling)

dz

dτ
= z(
μ−�|z|2)+ h1(τ ), (5.35)

where h1 = ∫ π0 e−2iθ
h(θ, τ ) dθ/π and

� = −3F ′′′(u0)− 2F ′′(u0)
2

[
w2

1 − μcw2
+ 2w0

1 − μcw0

]
. (5.36)

In the case of a uniform external input (
h = 0), the phase of z is arbitrary (reflecting a
marginal state) whereas the amplitude is given by |z| = √|μ− μc|/�. It is clear that a stable
marginal state will bifurcate from the homogeneous state if and only if � < 0. One finds that
the bifurcation is indeed supercritical when the firing rate function F is a sigmoid. Now suppose
that there is a weakly biased, slowly rotating input of the form 
h(θ, τ ) = C cos(2[θ − ωτ ])
with frequency ω. Then,
h = Ce−2iωτ . Writing z = v e−2i(φ+ωτ ) (with the phase φ defined in
a rotating frame) we obtain the pair of equations

v̇ = v(
μ−�v2)+ C cos 2φ, φ̇ = −ω − C

2v
sin(2φ). (5.37)

Thus, provided that ω is sufficiently small, equation (5.37) will have a stable fixed point
solution in which the peak θ of the pattern is entrained to the signal. Note that when ω = 0
there also exists an unstable solution for which φ = π/2. This corresponds to the so-called
illusory tuning curve analyzed in some depth by Veltz and Faugeras [86].

Considerable information about the basic structure of the amplitude equation can be
deduced from the underlying symmetries of the weight distribution w. Since symmetric
bifurcation theory proves an invaluable tool in analysing the coupled hypercolumn model,
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we introduce some of the basic ideas here. The weight distribution w(θ, θ ′) = w(θ − θ ′) is
invariant with respect to the action of the group O(2) on S1:

γ · w(θ, θ ′) = w(γ−1 · θ, γ−1 · θ ′) = w(θ, θ ′),

with γ ∈ {ξ, κ} such that ξ · θ = θ + ξ (rotations) and κ · θ = −θ (reflections). Consider the
corresponding action of γ on equation (5.31) for zero input h = 0:

∂u(γ−1θ, t)

∂t
= − u(γ−1θ, t)+

∫ π

0
w(γ−1θ, θ ′)F[u(θ ′, t)]

dθ ′

π

= − u(γ−1θ, t)+
∫ π

0
w(θ, γ θ ′)F[u(θ ′, t)]

dθ ′

π

= − u(γ−1θ, t)+
∫ π

0
w(θ, θ ′′)F[u(γ−1θ ′′, t)]

dθ ′′

π

since d[γ−1θ ] = ±dθ and w is O(2) invariant. If we rewrite equation (5.31) as an operator
equation, namely,

F[u] ≡ du

dt
− G[u] = 0, (5.38)

then it follows that γF[u] = F[γ u]. Thus F commutes with γ ∈ O(2) and F is said to be
equivariant with respect to the symmetry group O(2) [184]. The equivariance of the operator F
with respect to the action of O(2) has major implications for the nature of solutions bifurcating
from a uniform resting state u0. Sufficiently close to the bifurcation point these states are
characterized by (finite) linear combinations of eigenfunctions of the linear operator L̂ = D0G
obtained by linearizing equation (5.31) about u0. (Since the linear operator commutes with the
O(2) group action, the eigenfunctions consist of irreducible representations of the group, that
is, the Fourier modes un(θ ) = zn e2inθ + z∗

n e−2inθ .) The original infinite-dimensional equation
(5.31) can then be projected on to this finite-dimensional space leading to a system of ODEs
that constitute the amplitude equation (the so-called center manifold reduction). The major
point to note is that the resulting amplitude equation for these modes is also equivariant with
respect to O(2) but with a different group action. For example, suppose that there is a single
bifurcating mode given by n = 1, see equation (5.34). Under the action of O(2),

u1(θ + ξ ) = z e2iξ e2iθ + z∗ e−2iξ e−2iθ , u1(−θ ) = z e−2iθ + z∗ e2iθ . (5.39)

It follows that the action of O(2) on (z, z∗) is

ξ · (z, z∗) = (z e2iξ , z∗ e−2iξ ), κ · (z, z∗) = (z∗, z). (5.40)

Equivariance of the amplitude equation with respect to these transformations implies that
quadratic and quartic terms are excluded from equation (5.35) and the quintic term is of the
form z|z|4. Once the basic form of the amplitude equation has been obtained, it still remains
to determine the different types of patterns that are selected and their stability. In the case of
the cubic amplitude equation (5.35) for a single eigenmode this is relatively straightforward.
On the other hand, if more than one eigenmode is excited above the bifurcation point (due
to additional degeneracies), then finding solutions is more involved. Again group theoretic
methods can be used to identify the types of solution that are expected to occur.

5.4. Pattern formation in a coupled hypercolumn model

Now suppose that we switch on the horizontal connections by taking ρ > 0 in equation (5.25).
Since ρ is small, we expect any resulting pattern to involve a spatially periodic modulation in

69



J. Phys. A: Math. Theor. 45 (2012) 033001 Topical Review

the tuning curves of the individual hypercolumns. In order to show this, consider the coupled
hypercolumn model

∂u(r, θ, t)
∂t

= −u(r, θ, t)+
∫ π

0
w(θ − θ ′)F(u(r, θ ′, t))

dθ ′

π
(5.41)

+ ρ
∫

R2

∫ π

0
whoz(r, θ |r′, θ ′)F(u(r′, θ ′, t))

dθ ′

π
d2r′,

with whoz given by equation (5.30). Since we are interested in spontaneous pattern formation,
we ignore any external inputs. Following along similar lines to section 5.3, it is simple to
establish that in the case of isotropic weights (η = π/2) the coupled hypercolumn model
(5.41) is equivariant with respect to the E(2)× O(2) group action (5.28) and for anisotropic
weights it is equivariant with respect to the Euclidean shift-twist group action (5.29). We shall
focus on the anisotropic case.

5.4.1. Linear stability analysis. Linearizing equation (5.41) about a uniform equilibrium u0

leads to the eigenvalue equation

λu = L̂u ≡ −u + μ(w ∗ u + ρwhoz ◦ u). (5.42)

The convolution operation ∗ and ◦ are defined according to

w ∗ u(r, θ ) =
∫ π

0
w(θ − θ ′)u(r, θ ′)

dθ ′

π
(5.43)

and

whoz ◦ u(r, θ ) =
∫

R2
J(r − r′, θ )w
 ∗ u(r′, θ ) d2r′, (5.44)

with J(r, θ ) = J(|r|)P(arg(r) − θ ) and P given by equation (5.26). Translation symmetry
implies that in the case of an infinite domain, the eigenfunctions of equation (5.42) can be
expressed in the form

u(r, θ ) = u(θ − ϕ) eik·r + c.c., (5.45)

with k = q(cosϕ, sinϕ) and

λu(θ ) = − u(θ )+ μ[w ∗ u(θ )+ ρĴ(k, θ + ϕ)w
 ∗ u(θ )]. (5.46)

Here Ĵ(k, θ ) is the Fourier transform of J(r, θ ),

Ĵ(k, θ ) =
∫

R2
e−ik·rJ(r, θ ) d2r. (5.47)

Invariance of the full weight distribution under the Euclidean group action (5.29) restricts the
structure of the solutions of the eigenvalue equation (5.46).

(i) The Fourier transform Ĵ(k, θ + ϕ) is independent of the direction ϕ = arg(k). This is
easy to establish as follows:

Ĵ(k, θ + ϕ) =
∫

R2
e−ik·rJ(r, θ + ϕ) d2r

=
∫ ∞

0

∫ π

−π
e−iqr cos(ψ−ϕ)J(r)P(ψ − θ − ϕ) dψr dr

=
∫ ∞

0

∫ π

−π
e−iqr cos(ψ)J(r)P(ψ − θ ) dψr dr

= Ĵ(q, θ ). (5.48)
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Therefore, λ and u(θ ) only depend on the magnitude k = |k| of the wave vector k
and there is an infinite degeneracy due to rotational invariance. Note, however, that the
eigenfunction (5.45) depends on u(θ − ϕ), which reflects the shift-twist action of the
rotation group.

(ii) For each k the associated subspace of eigenfunctions

Vk = {u(θ − ϕ) eik·r + c.c.} (5.49)

decomposes into two invariant subspaces

Vk = V +
k ⊕ V −

k , (5.50)

corresponding to even and odd functions, respectively:

V +
k = {v ∈ Vk : u(−θ ) = u(θ )}, V −

k = {v ∈ Vk : u(−θ ) = −u(θ )}. (5.51)

This is a consequence of reflection invariance, as we now indicate. That is, let κk denote
reflections about the wavevector k so that κkk = k. Then κku(r, θ ) = u(κkr, 2ϕ − θ ) =
u(ϕ− θ )eik·r + c.c. Since κk is a reflection, any space that it acts on decomposes into two
subspaces—one on which it acts as the identity I and one on which it acts as −I. The even
and odd functions correspond to scalar and pseudoscalar representations of the Euclidean
group studied in a more general context by Bosch et al [185].

A further reduction of equation (5.46) can be achieved by expanding the π -periodic
function u(θ ) as a Fourier series with respect to θ , u(θ ) = ∑

n∈Z une2inθ . This then leads to
the matrix eigenvalue equation

λun = (−1 + μwn)un + ρ
∑
m∈Z

Ĵn−m(k)Pn−mw


m um, (5.52)

where a factor of μ has been absorbed into ρ and

Ĵn(k) =
∫ ∞

0

∫ π

−π
e−ikr cos(ψ) e−2inψJ(r) dψ rdr. (5.53)

We have used equation (5.48) together with the Fourier series expansions (5.27) and
P(ψ) = ∑

n∈Z e2inψPn. In the following we will take w
(θ ) = δ(θ ) so that w
n = 1 for
all n. Equation (5.26) implies that

Pn = sin 4nη

4nη
. (5.54)

We now exploit the experimental observation that the long-range horizontal connections
appear to be weak relative to the local connections. Equation (5.52) can then be solved by
expanding as a power series in ρ and using Rayleigh–Schrödinger perturbation theory. In the
limiting case of zero horizontal interactions we recover the eigenvalues of the ring model,
see section 5.3. In particular, suppose that w1 = max{wn, n ∈ Z} > 0. The homogeneous
fixed point is then stable for sufficiently small μ, but becomes marginally stable at the critical
point μc = 1/w1 due to the vanishing of the eigenvalue λ1. In this case both even and odd
modes cos(2φ) and sin(2φ) are marginally stable. Each hypercolumn spontaneously forms an
orientation tuning curve of the form u(r, θ ) = A0 cos(2[θ − θ0(r)]) such that the preferred
orientation θ0(r) is arbitrary at each point r. If we now switch on the lateral connections,
then there is a k–dependent splitting of the degenerate eigenvalue λ1 that also separates out
odd and even solutions. Denoting the characteristic size of such a splitting by δλ = O(ρ),
we impose the condition that δλ � μ
w, where 
w = min{w1 − wm,m �= 1}. This
ensures that the perturbation does not excite states associated with other eigenvalues of the
unperturbed problem. We can then restrict ourselves to calculating perturbative corrections to
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the degenerate eigenvalue λ1 and its associated eigenfunctions. Therefore, introduce the power
series expansions

λ = −1 + μw1 + ρλ(1) + ρ2λ(2) + · · · (5.55)

and

Un = z±1δn,±1 + ρU (1)
n + ρ2U (2)

n + · · · , (5.56)

where δn,m is the Kronecker delta function. Substitute these expansions into the matrix
eigenvalue equation (5.52) and systematically solve the resulting hierarchy of equations to
successive orders in ρ using (degenerate) perturbation theory. This analysis leads to the
following result valid to O(ρ) [74]: λ = λ±(k) for even (+) and odd (−) solutions where

λ±(k) = −1 + μw1 + ρ[Ĵ0(k)± P2Ĵ2(k)] (5.57)

with corresponding eigenfunctions

u+(φ) = cos(2φ)+ ρ
∑

m�0,m�=1

u+
m (k) cos(2mφ) (5.58)

u−(φ) = sin(2φ)+ ρ
∑
m>1

u−
m (k) sin(2mφ) (5.59)

with

u+
0 (k) = P1Ĵ1(k)

w1 − w0
, u±

m (k) = Pm−1Ĵm−1(k)± Pm+1Ĵm+1(k)

w1 − wm
, m > 1. (5.60)

5.4.2. Marginal stability and doubly periodic planforms. Before using equation (5.57) to
determine how the horizontal interactions modify the condition for marginal stability, we need
to specify the form of the weight distribution J(r). From experimental data based on tracer
injections it appears that the patchy lateral connections extend several mm on either side of a
hypercolumn and the field of axon terminals within a patch tends to diminish in size the further
away it is from the injection site [171–174]. The total extent of the connections depends on
the particular species under study. In the continuum hypercolumn model we assume that

J(r) = e−(r−r0 )
2/2ξ 2

�(r − r0), (5.61)

where ξ determines the range and r0 the minimum distance of the (non-local) horizontal
connections. There is growing experimental evidence to suggest that horizontal connections
tend to have an inhibitory effect in the presence of high contrast visual stimuli but an excitatory
effect at low contrasts [179]. In light of this, we take ρ < 0. An important point to note in
the following is that it is possible to generate a pattern forming instability using a purely
inhibitory weight distribution with a gap at the center. Thus it is not necessary to take J(r)
to be the standard Mexican hat function consisting of short-range excitation and longer range
inhibition.

In figure 29 we plot J±(k) = Ĵ0(k)±P2Ĵ2(k) as a function of wavenumber k for the given
weight distribution (5.61) and two values of P2. (a) Strong anisotropy: If η < π/4 then J±(k)
has a unique minimum at k = k± �= 0 and J−(k−) < J+(k+). This is shown in the limit η → 0
for which P2 = 1. If ρ < 0 then the homogeneous state becomes marginally stable at the
modified critical point μ′

c = μc[1 − ρJ−(k−)]. The corresponding marginally stable modes
are of the form

a(r, θ ) =
N∑

j=1

z j eik j .r sin(2[θ − ϕ j])+ c.c., (5.62)
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Figure 29. (a) Plot of functions J−(k) (solid line) and J+(k) (dashed line) in the case P2 = 1
(strong anisotropy) and J(r) defined by (5.61) for ξ = 1 and r0 = 1. The critical wavenumber for
spontaneous pattern formation is k−. The marginally stable eigenmodes are odd functions of θ .
(b) Same as (a) except that P2 = sin 4η/4η with lateral spread of width η = π/3. The marginally
stable eigenmodes are now even functions of θ .

where k j = k−(cosϕ j, sinϕ j) and z j is a complex amplitude. These modes will be recognized
as linear combinations of plane waves modulated by odd (phase-shifted) π -periodic functions
sin[2(θ − ϕ j)]. The infinite degeneracy arising from rotation invariance means that all modes
lying on the circle|k| = k− become marginally stable at the critical point. However, this can
be reduced to a finite set of modes by restricting solutions to be doubly periodic functions,
see section 5.4.2. (b) Weak anisotropy. If η > π/4 then J+(k+) < J−(k−) as illustrated in
figure 29(b) for η = π/3. It follows that the homogeneous state now becomes marginally
stable at the critical point μ′

c = μc[1 − ρJ+(k+)] due to excitation of even modes given by

a(r, θ ) =
N∑

j=1

z j eik j .r cos(2[θ − ϕ j])+ c.c., (5.63)

where k j = k+(cos(ϕ j), sin(ϕ j)).
In the above analysis we assumed that each isolated hypercolumn spontaneously forms

an orientation tuning curve; the long-range horizontal connections than induce correlations
between the tuning curves across the cortex. Now suppose that each hypercolumn undergoes
a bulk instability for which w0 = maxn{wn}. Repeating the above linear stability analysis, we
find that there are only even eigenmodes, which are θ -independent (to leading order), and take
the form

a(r) =
N∑

j=1

[z je
ik j .r + c.c.]. (5.64)

The corresponding eigenvalue equation is

λ = −1 + μw0 + ρĴ0(k)+ O(ρ2). (5.65)

Thus |k j| = k0 where k0 is the minimum of Ĵ0(k). It follows that there are three classes
of eigenmode that can bifurcate from the homogeneous fixed point. These are represented,
respectively, by linear combinations of one of the three classes of roll pattern shown in
figure 30. The n = 0 roll corresponds to modes of the form (5.64), and consists of alternating
regions of high and low cortical activity in which individual hypercolumns do not amplify
any particular orientation: the resulting patterns are said to be non-contoured. The n = 1 rolls
correspond to the odd and even oriented modes of equations (5.62) and (5.63). These are
constructed using a winner-take-all rule in which only the orientation with maximal response
is shown at each point in the cortex (after some coarse-graining). The resulting patterns are said
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n = 0 n = 1, odd n = 1, even

π/kc

Figure 30. Three classes of rolls found in cortical pattern formation.

to be contoured. To lowest order in ρ one finds that the preferred orientation alternates between
parallel and orthogonal directions relative to the stripe boundary in the case of even modes,
whereas the preferred orientation alternates between π/4 and −π/4 relative to the stripe
boundary in the case of odd modes. (One would still obtain stripes of alternating orientations
θ0 and θ0 + π/2 in the case of isotropic horizontal connections. However, the direction of
preferred orientation θ0 relative to the stripe boundaries would now be arbitrary so that the
distinction between even and odd modes would disappear.) The particular class of mode that is
selected depends on the detailed structure of the local and horizontal weights. The n = 0 type
will be selected when the local inhibition within a hypercolumn is sufficiently weak, whereas
the n = 1 type will occur when there is strong local inhibition, with the degree of anisotropy
in the horizontal connections determining whether the patterns are even or odd.

Doubly periodic planforms. Rotation symmetry implies that in the case of non-zero
critical wavenumber kc, the space of marginally stable eigenfunctions is infinite-dimensional,
consisting of all solutions of the form u(θ − ϕ) eikϕ ·r where u(θ ) is either an even or odd
function of θ , kϕ = kc(cosϕ, sinϕ) and 0 � ϕ < 2π . However, following the analysis of
the planar model, we restrict the space of solutions of the original equation (5.41) to that of
doubly-periodic functions. That is, we impose the condition u(r + �, θ ) = u(r, θ ) for every
� ∈ L where L is a regular planar lattice (square, rhombic or hexagonal). Restriction to double
periodicity means that the original Euclidean symmetry group is now restricted to the symmetry
group of the lattice, � = Dn+̇T2, where Dn is the holohedry of the lattice, the subgroup of
O(2) that preserves the lattice, and T2 is the two torus of planar translations modulo the lattice.
Thus, the holohedry of the rhombic lattice is D2, the holohedry of the square lattice is D4 and
the holohedry of the hexagonal lattice is D6. There are only a finite number of shift-twists
and reflections to consider for each lattice (modulo an arbitrary rotation of the whole plane).
Consequently, a finite set of specific eigenfunctions can be identified as candidate planforms,
in the sense that they approximate time-independent solutions of equation (5.41) sufficiently
close to the critical point where the homogeneous state loses stability.

Imposing double periodicity on the marginally stable eigenfunctions restricts the critical
wavevector k to lie on the dual lattice. Linear combinations of eigenfunctions that generate
doubly-periodic solutions corresponding to dual wave vectors of shortest length are then given
by

u(r, θ ) =
N∑

j=1

z ju(θ − ϕ j) eik j ·r + c.c., (5.66)
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Table 1. Left: D2+̇T2 action on rhombic lattice; center: D4+̇T2 action on square lattice; right:
D6+̇T2 action on hexagonal lattice. For u(φ) even, ε = +1; for u(φ) odd, ε = −1. In each case the
generators of Dn are a reflection and a rotation. For the square and hexagonal lattices, the reflection
is κ , the reflection across the x axis where r = (x, y). For the rhombic lattice, the reflection is
κη . The counterclockwise rotation ξ , through angles π2 , π3 , and π , is the rotation generator for the
three lattices.

D2 Action D4 Action D6 Action

1 (z1, z2) 1 (z1, z2) 1 (z1, z2, z3)
ξ (z∗

1, z
∗
2) ξ (z∗

2, z1) ξ (z∗
2, z

∗
3, z

∗
1)

κη ε(z2, z1) ξ 2 (z∗
1, z

∗
2) ξ 2 (z3, z1, z2)

κηξ ε(z∗
2, z

∗
1) ξ

3 (z2, z∗
1) ξ 3 (z∗

1, z
∗
2, z

∗
3)

κ ε(z1, z∗
2) ξ 4 (z2, z3, z1)

κξ ε(z∗
2, z

∗
1) ξ 5 (z∗

3, z
∗
1, z

∗
2)

κξ 2 ε(z∗
1, z2) κ ε(z1, z3, z2)

κξ 3 ε(z2, z1) κξ ε(z∗
2, z

∗
1, z

∗
3)

κξ 2 ε(z3, z2, z1)

κξ 3 ε(z∗
1, z

∗
3, z

∗
2)

κξ 4 ε(z2, z1, z3)

κξ 5 ε(z∗
3, z

∗
2, z

∗
1)

[θ1, θ2] (e−2π iθ1 z1, e−2π iθ2 z2) (e−2π iθ1 z1, e−2π iθ2 z2, e2π i(θ1+θ2 )z3)

where the z j are complex amplitudes. Here N = 2 for the square lattice with k1 = kc and
k2 = Rπ/2kc, where Rξ denotes rotation through an angle ξ . Similarly, N = 3 for the hexagonal
lattice with k1 = kc, k2 = R2π/3kc and k3 = R4π/3kc = −k1 − k2. It follows that the space
of marginally stable eigenfunctions can be identified with the N–dimensional complex vector
space spanned by the vectors (z1, . . . , zN ) ∈ CN with N = 2 for square or rhombic lattices and
N = 3 for hexagonal lattices. It can be shown that these form irreducible representations of
the group � = Dn+̇T2 whose action on CN is induced by the corresponding shift-twist action
(5.29) of � on a(r, θ ). For example, on a hexagonal lattice, a translation a(r, θ ) → a(r− s, θ )
induces the action

γ · (z1, z2, z3) = (z1 e−iξ1 , z2 e−iξ2 , z3 ei(ξ1+ξ2)) (5.67)

with ξ j = k j · s, a rotation a(r, θ ) → a(R−2π/3r, θ − 2π/3) induces the action

γ · (z1, z2, z3) = (z3, z1, z2), (5.68)

and a reflection across the x-axis (assuming kc = qc(1, 0)) induces the action

γ · (z1, z2, z3) = (z1, z3, z2). (5.69)

The full shift-twist action of Dn+̇T2 on CN for the various lattices has been calculated elsewhere
[74, 181] and is given in table 1.

5.4.3. Amplitude equation and Euclidean shift-twist symmetry. The next important
observation is that using weakly nonlinear analysis and perturbation methods, it is possible to
reduce the infinite-dimensional system (5.41) to a finite set of coupled ODEs constituting an
amplitude equation for z,

dz j

dt
= Fj(z), j = 1, . . . ,N. (5.70)

This has been carried out explicitly to cubic order in [20], and leads to the cubic amplitude
equation (after appropriate rescalings)

dzl

dτ
= 
μzl + γ2

N∑
i, j=1

z∗
i z∗

jδki+k j+kl ,0 + 3zl

⎡⎣γ3(0)|zl|2 + 2
∑
j �=l

γ3(ϕ j − ϕl )|z j|2
⎤⎦ , (5.71)
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with γ2 and γ3 given by

γ2 =
∫ π

0
u(θ )u(θ − 2π/3)u(θ + 2π/3)

dθ

π
(5.72)

and

γ3(ϕ) =
∫ π

0
u(θ − ϕ)2u(θ )2

dθ

π
. (5.73)

Note that for odd eigenmodes γ2 ≡ 0 whereas for even eigenmodes γ2 �= 0 so that there is a
quadratic term in the even mode amplitude equation in the case of a hexagonal lattice.

As in the simpler case of the ring model (section 5.3), the basic structure of the amplitude
equation (5.71) including higher order terms can be determined from its equivariance under the
shift-twist action of the symmetry group � = Dn+̇T2. This also allows us to systematically
explore the different classes of equilibrium solutions z = (z1, . . . , zN ) of the amplitude
equation (5.71) and their associated bifurcations. In order to understand how this is carried
out, it is first necessary to review some basic ideas from symmetric bifurcation theory [184].
In the following we consider a general system of ODEs

ż = F(z), (5.74)

where z ∈ V with V = R
n or Cn and F is assumed to be equivariant with respect to some

symmetry group � acting on the vector space V . We also assume that F(0) = 0 so that the
origin is an equilibrium that is invariant under the action of the full symmetry group �.

Isotropy subgroups. The symmetries of any particular equilibrium solution z form a subgroup
called the isotropy subgroup of z defined by

�z = {σ ∈ � : σz = z}. (5.75)

More generally, we say that � is an isotropy subgroup of � if � = �z for some z ∈ V .
Isotropy subgroups are defined up to some conjugacy. A group � is conjugate to a group �̂ if
there exists σ ∈ � such that �̂ = σ−1�σ . The fixed-point subspace of an isotropy subgroup
�, denoted by Fix(�), is the set of points z ∈ V that are invariant under the action of �,

Fix(�) = {z ∈ V : σz = z ∀ σ ∈ �}. (5.76)

Finally, the group orbit through a point z is

�z = {σz : σ ∈ �}. (5.77)

If z is an equilibrium solution of equation (5.74) then so are all other points of the group
orbit (by equivariance). One can now adopt a strategy that restricts the search for solutions
of equation (5.74) to those that are fixed points of a particular isotropy subgroup. In general,
if a dynamical system is equivariant under some symmetry group � and has a solution that
is a fixed point of the full symmetry group then we expect a loss of stability to occur upon
variation of one or more system parameters. Typically such a loss of stability will be associated
with the occurrence of new solution branches with isotropy subgroups � smaller than �. One
says that the solution has spontaneously broken symmetry from � to �. Instead of a unique
solution with the full set of symmetries � a set of symmetrically related solutions (orbits under
� modulo �) each with symmetry group (conjugate to) � is observed.
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Equivariant branching lemma. Suppose that the system of equations (5.74) has a fixed point
of the full symmetry group �. The equivariant branching lemma [184] basically states that
generically there exists a (unique) equilibrium solution bifurcating from the fixed point for
each of the axial subgroups of � under the given group action—a subgroup � ⊂ � is axial
if dim Fix(�) = 1. The heuristic idea underlying this lemma is as follows. Let � be an axial
subgroup and z ∈ Fix(�). Equivariance of F then implies that

σF(z) = F(σz) = F(z) (5.78)

for all σ ∈ �. Thus F(z) ∈ Fix(�) and the system of coupled ODEs (5.74) can be reduced
to a single equation in the fixed point space of �. Such an equation is expected to support a
codimension 1 bifurcation. Thus one can systematically identify the various expected primary
bifurcation branches by constructing the associated axial subgroups and finding their fixed
points.

Example. For the sake of illustration, consider the full symmetry group D3 of an equilateral
triangle acting on the plane. The action is generated by the matrices (in an appropriately chosen
orthonormal basis)

R =
(

1/2 −√
3/2√

3/2 1/2

)
, S =

(
1 0
0 −1

)
. (5.79)

Here R is a rotation by π/3 and S is a reflection about the x-axis. Clearly, R fixes only the
origin, while S fixes any point (x, 0). We deduce that the isotropy subgroups are as follows: (i)
the full symmetry group D3 with single fixed point (0, 0); (ii) the two-element group Z2(S)
generated by S, which fixes the x-axis, and the groups that are conjugate to Z2(S) by the
rotations R and R2; (iii) the identity matrix forms a trivial group in which every point is a fixed
point. The isotropy subgroups form the hierarchy

{I} ⊂ Z2(S) ⊂ D3.

It follows that up to conjugacy the only axial subgroup is Z2(S). Thus we expect the
fixed point (0, 0) to undergo a symmetry breaking bifurcation to an equilibrium that
has reflection symmetry. Such an equilibrium will be given by one of the three points
{(x, 0),R(x, 0),R2(x, 0)} on the group orbit generated by discrete rotations. Which of these
states is selected will depend on initial conditions, that is, the broken rotation symmetry is
hidden. Note that a similar analysis can be carried out for the symmetry group D4 of the
square. Now, however, there are two distinct types of reflection axes: those joining the middle
of opposite edges and those joining opposite vertices. Since these two types of reflections are
not conjugate to each other, there are now two distinct axial subgroups.

Let us return to the amplitude equation (5.71). Since it is equivariant with respect to
the shift-twist action of the group Dn+̇T2, it follows from the equivariant branching lemma
that the primary patterns (planforms) bifurcating from the homogeneous state are expected to
be fixed points of the corresponding axial subgroups. The calculation of these subgroups is
considerably more involved than the above example [20]. Here we simply list the resulting
even and odd planforms in tables 2 and 3.

5.4.4. Selection and stability of patterns. We now discuss solutions of the cubic amplitude
equation (5.71) for each of the basic lattices, supplementing our analysis with additional
information that can be gained using group theoretic arguments.
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Table 2. Even planforms with u(−θ ) = u(θ ). The hexagon solutions (0) and (π ) have the same
isotropy subgroup, but they are not conjugate solutions.

Lattice Name Planform eigenfunction

Square Even square u(θ ) cos x + u
(
θ − π

2

)
cos y

Even roll u(θ ) cos x
Rhombic Even rhombic u(θ ) cos(k1 · �)+ u(θ − η) cos(k2 · �)

Even roll u(θ ) cos(k1 · �)

Hexagonal Even hexagon (0) u(θ ) cos(k1 · �)+ u
(
θ + π

3

)
cos(k2 · �)+ u

(
θ − π

3

)
cos(k3 · �)

Even hexagon (π ) u(θ ) cos(k1 · �)+ u
(
θ + π

3

)
cos(k2 · �)− u

(
θ − π

3

)
cos(k3 · �)

Even roll u(θ ) cos(k1 · �)

Table 3. Odd planforms with u(−θ ) = −u(θ ).

Lattice Name Planform eigenfunction

Square Odd square u(θ ) cos x − u
(
θ − π

2

)
cos y

Odd roll u(θ ) cos x
Rhombic Odd rhombic u(θ ) cos(k1 · �)+ u(θ − η) cos(k2 · �)

Odd roll u(θ ) cos(k1 · �)

Hexagonal Odd hexagon u(θ ) cos(k1 · �)+ u
(
θ + π

3

)
cos(k2 · �)u

(
θ − π

3

)
cos(k3 · �)

Triangle u(θ ) sin(k1 · �)+ u
(
θ + π

3

)
sin(k2 · �)+ u

(
θ − π

3

)
sin(k3 · �)

Patchwork quilt u
(
θ + π

3

)
cos(k2 · �)− u

(
θ − π

3

)
cos(k3 · �)

Odd roll u(θ ) cos(k1 · �)

Square or rhombic lattice. First, consider planforms corresponding to a bimodal structure
of the square or rhombic type (N = 2). Take k1 = kc(1, 0) and k2 = kc(cos(ϕ), sin(ϕ)),
with ϕ = π/2 for the square lattice and 0 < ϕ < π/2, ϕ �= π/3 for a rhombic lattice. The
amplitudes evolve according to a pair of equations of the form

dz1

dτ
= z1[1 − γ3(0)|z1|2 − 2γ3(ϕ)|z2|2], (5.80)

dc2

dτ̂
= z2[1 − γ3(0)|z2|2 − 2γ3(ϕ)|z1|2]. (5.81)

Since γ3(ϕ) > 0, three types of steady state are possible.

(1) The homogeneous state: z1 = z2 = 0.
(2) Rolls: z1 = √

1/γ3(0) eiψ1 , z2 = 0 or z1 = 0, z2 = √
1/γ3(0) eiψ2 .

(3) Squares or rhombics: z j = √
1/[γ3(0)+ 2γ3(ϕ)] eiψ j , j = 1, 2,

for arbitrary phases ψ1, ψ2. A standard linear stability analysis shows that if 2γ3(ϕ) >

γ3(0)then rolls are stable whereas the square or rhombic patterns are unstable. The opposite
holds if 2γ3(θ ) < γ3(0). Note that here stability is defined with respect to perturbations with
the same lattice structure.

Hexagonal lattice. Next consider planforms on a hexagonal lattice with N = 3, ϕ1 = 0,
ϕ2 = 2π/3, ϕ3 = −2π/3. The cubic amplitude equations take the form
dz j

dτ
= z j

[
1 − γ3(0)|z j|2 − 2γ3(2π/3)(|z j+1|2 + |z j−1|2)

]+ γ2z∗
j+1z∗

j−1, (5.82)

where j = 1, 2, 3 mod 3. Unfortunately, equation (5.82) is not sufficient to determine the
selection and stability of the steady-state solutions bifurcating from the homogeneous state.
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Figure 31. Bifurcation diagram showing the variation of the amplitude C with the parameter μ
for patterns on a hexagonal lattice. Solid and dashed curves indicate stable and unstable solutions
respectively. (a) Even patterns: Stable hexagonal patterns are the first to appear (subcritically)
beyond the bifurcation point. Subsequently the stable hexagonal branch exchanges stability with
an unstable branch of roll patterns due to a secondary bifurcation that generates rectangular
patterns RA. Higher-order terms in the amplitude equation are needed to determine its stability.
(b) Odd patterns: either hexagons (H) or triangles (T) are stable (depending on higher-order terms
in the amplitude equation) whereas patchwork quilts (PQ) and rolls (R) are unstable. Secondary
bifurcations (not shown) may arise from higher-order terms.

One has to carry out an unfolding of the amplitude equation that includes higher-order terms
(quartic and quintic) in z, z̄. One can classify the bifurcating solutions by finding the axial
subgroups of the symmetry group of the lattice (up to conjugacy) as explained in the previous
section. Symmetry arguments can also be used to determine the general form of higher-order
contributions to the amplitude equation (5.82), and this leads to the bifurcation diagrams shown
in figure 31 [74, 181]. It turns out that stability depends crucially on the sign of the coefficient
2γ (2π/3) − γ (0), which is assumed to be positive in figure 31. The subcritical bifurcation
to hexagonal patterns in the case of even patterns is a consequence of an additional quadratic
term appearing on the right-hand side of equation (5.82).

5.5. Geometric visual hallucinations

One of the interesting applications of the mechanism of neural pattern formation outlined
above is that it provides an explanation for the occurrence of certain basic types of geometric
visual hallucinations. The idea was originally developed by Ermentrout and Cowan [19] using
neural field equations of the form (5.1) to represent spontaneous population activity in V1.
Under the action of hallucinogenic drugs on the brain stem, they hypothesized that the level of
excitability of V1 (or gain of F) is increased leading to the spontaneous formation of spatially
periodic patterns of activity across V1. In figure 32 we show some examples of regular planar
patterns that are interpreted as alternating regions of low and high cortical activity that cover
the cortical plane in regular stripes, squares, rhomboids or hexagons. The corresponding
images that would be generated by mapping such activity patterns back into visual field
coordinates using the inverse of the retinotopic map shown in figure 25 are sketched in
figure 32. These images bear a striking resemblance to the non-contoured form constants or
basic hallucinations classified by the Chicago neurologist Kluver [186]. However, some of
the form constants are better characterized as lattices of oriented edges rather than alternating
regions of light and dark shading. These contoured images (as well as the non-contoured
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Figure 32. Left: periodic planar patterns representing alternating regions of high and low activity
in V1. Right: corresponding hallucinatory images generated using the inverse retinotopic map.

(II )(I )

Figure 33. First row: (I) hexagonal and (II) square even-contoured V1 planforms. Second row:
corresponding visual field images.

ones) can be reproduced by mapping back into visual field coordinates the contoured (non-
contoured) planforms generated by the coupled hypercolumn model of section 5.4, as detailed
in [74]. Two examples of contoured V1 planforms and their associated visual images are
shown in figure 33.

The success of the coupled hypercolumn model in reproducing the various hallucination
form constants is quite striking. However, certain caution must be exercised since there is a
degree of ambiguity in how the cortical patterns should be interpreted. A working assumption
is that the basic visual hallucinations can be understood without the need to invoke higher-
order processing from extrastriate (higher-order) visual areas. Given this assumption, the
interpretation of non-contoured planforms is relatively straightforward, since to lowest order
in ρ the solutions are θ–independent and can thus be directly treated as activity patterns a(r)
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with r ∈ R
2. At the simplest level, such patterns can be represented as contrasting regions

of high and low activity depending on whether a(r) is above or below threshold. These
regions form square, triangular, or rhombic cells that tile the cortical plane as illustrated in
figure 32. When such patterns are mapped back to the visual field they generate alternating
light and dark contrast images. The case of contoured planforms is more subtle. At a given
location r in V1 we have a sum of two or three sinusoids with different phases and amplitudes
(see tables 2 and 3), which can be written as a(r, φ) = A(r) cos[2θ − 2θ0(r)] (to lowest
order in ρ). The phase θ0(r) determines the peak of the orientation tuning curve at r (see
figure 28(b)). Hence the contoured solutions generally consist of iso-orientation regions or
patches over which θ0(r) is constant but the amplitude A(r) varies. As in the non-contoured
case these patches are either square, triangular, or rhombic in shape. The contoured patterns in
figure 33 are constructed by representing each patch by a locally oriented contour centered at
the point of maximal amplitude A(rmax) within the patch. Thus, a particular choice has been
made in how to sample and interpret the activity patterns. For example, each patch contains
a distribution of hypercolumns within the continuum model framework so that picking out
a single orientation preference corresponds to a discrete sampling of the pattern. Additional
difficulties arise when higher order terms in ρ are included, since it is possible to have more
than one preferred orientation within a patch [181].

A very interesting recent addition to the theory of visual hallucinations has been developed
by Rule et al [187], who present a model for flicker phosphenes, the spontaneous appearance
of geometric patterns in the visual field when a subject is exposed to diffuse flickering
light. The authors’ model suggests that the phenomenon results from the interaction of
cortical lateral inhibition with resonant periodic stimuli. They find that the best temporal
frequency for eliciting phosphenes is a multiple of intrinsic (damped) oscillatory rhythms
in the cortex. Moreover, using a combination of Floquet theory and the theory of pattern
formation highlighted in this review, they determine how the form of the phosphenes changes
with the frequency of stimulation. In particular, they show why low frequency flicker should
produce hexagonal patterns while high frequency produces pinwheels, targets, and spirals.

6. Stochastic neural field theory

Experimentally it has been found that the spike trains of individual cortical neurons in vivo
tend to be very noisy, having interspike interval (ISI) distributions that are close to Poisson
[188]. The main source of intrinsic fluctuations is channel noise arising from the variability in
the opening and closing of a finite number of ion channels. The resulting conductance-based
model of a neuron can be formulated as a stochastic hybrid system, in which a continuous
deterministic dynamics describing the time evolution of the membrane potential is coupled to a
jump Markov process describing channel dynamics [189]. Extrinsic fluctuations in membrane
voltage at the single cell level are predominantly due to synaptic noise. That is, cortical
neurons are bombarded by thousands of synaptic inputs, many of which are not correlated
with a meaningful input and can thus be treated as background synaptic noise [190]. It is
not straightforward to determine how noise at the single cell level translates into noise at the
population or network level. One approach is to formulate the dynamics of a population of
spiking neurons in terms of the evolution of the probability density of membrane potentials—
the so-called population density method [51, 52, 70, 191–197]. Typically, a very simple model
of a spiking neuron is used such as the integrate-and-fire (IF) model [48] and the network
topology is assumed to be either fully connected or sparsely connected. It can then be shown
that under certain conditions, even though individual neurons exhibit Poisson-like statistics,
the neurons fire asynchronously so that the total population activity evolves according to a
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mean-field rate equation with a characteristic activation or gain function. This gain firing rate
function can then be used to construct rate-based models along the lines of sections 2.4 and 2.5.
Formally speaking, the asynchronous state only exists in the thermodynamic limit N → ∞,
where N determines the size of the population. This then suggests a possible source of intrinsic
noise at the network level arises from fluctuations about the asynchronous state due to finite
size effects [198–202].

Recall from section 2 that neural field equations can be derived under two basic
assumptions: (i) the spike trains of individual neurons are decorrelated (asynchronous) so that
the total synaptic input to a neuron is slowly varying and deterministic, and (ii) there exists a
well-defined continuum limit of the resulting network rate equations. So far there has been no
rigorous proof that either of these assumptions hold in large-scale spiking network models of
cortex. In particular, there has been no systematic scaling up of population density methods to
derive continuum neural field models that take proper account of noise-induced fluctuations and
statistical correlations between neurons at multiple spatial and temporal scales. Consequently,
current formulations of stochastic neural field theory tend to be phenomenologically based.
One approach is to consider a Langevin version of the deterministic neural field equations
involving some form of extrinsic spatiotemporal white noise [72, 203], whereas another is to
treat the neural field equations as the thermodynamic limit of an underlying master equation
[204–207]. In the latter case, a diffusion approximation leads to an effective Langevin equation
with multiplicative noise.

In this section we review the population density method for analyzing the stochastic
dynamics of a local population of IF neurons (section 6.1), following along similar lines to
Gerstner and Kistler [48]. We then show in section 6.2 how finite-size effects at the level of
local populations can be incorporated into stochastic versions of the rate-based models derived
in section 2.4. Some applications of stochastic PDE methods to studying noise in spatially
extended neural fields are discussed in section 6.3, and path integral methods are reviewed in
section 6.4. For a recent survey of stochastic methods in neuroscience see [208].

6.1. Population density method and mean field theory

IF neuron models neglect details regarding the spike generation process by reducing the latter
to an all-or-nothing threshold event. That is, whenever the membrane potential crosses a
firing threshold, the neuron fires a spike, typically modeled as a Dirac delta function, and
the membrane potential is reset to some subthreshold value. Although they are less realistic
than conductance-based models, they have provided a very useful platform for exploring
probabilistic models of spiking neurons [48]. In the case of the leaky integrate-and-fire (LIF)
model, the conductance-based model (2.1) simplifies to the form

C
dV

dt
= −V (t)

R
+ I(t) (6.1)

where C,R are the capacitance and resistance of the cell membrane and I(t) represents the sum
of synaptic and external currents. The form of the action potential is not described explicitly.
Spikes are formal events characterized by the ordered sequence of firing times {T m,m ∈ Z}
determined by the threshold crossing conditions

T m = inf{t, t > T m−1|V (t) = κ, V̇ > 0}, (6.2)

where κ is the firing threshold. Immediately after firing, the potential is reset to a value Vr < κ ,

lim
t→T m+

V (t) = Vr. (6.3)

For simplicity we set Vr = 0, CR = τ and absorb C into I(t). In the following we review
the population density method for analyzing stochastically driven IF neurons
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[51, 52, 70, 191–197]. We begin by considering a single IF neuron and then show how
the analysis can be extended to the population level as detailed in chapter 6 of Gerstner and
Kistler [48]. When dealing with stochastic models we will use the standard convention of
distinguishing between a random variable and the particular value it takes by writing the
former as uppercase and the latter as lowercase.

Stochastically driven IF neuron. Suppose that an IF neuron receives a set of N input spike
trains generated by N background neurons. Denote the arrival times of the spikes from the
kth presynaptic neuron by

{
tn
k , n ∈ Z

}
for k = 1, . . . ,N. The membrane potential evolves

according to the equation

dV

dt
= −V

τ
+
∑
n∈Z

N∑
k=1

wk�
(
t − tn

k

)
, (6.4)

together with the reset condition that V (t+) = 0 whenever V (t) = κ . Here �(t) represents a
normalized synaptic kernel and wk is the strength or efficacy of the kth synapse. As a further
simplification, we will set �(t) = δ(t), where δ(t) is a Dirac delta function. Each input spike
from the kth neuron then generates a change in the postsynaptic potential of the form


V (t) = wkh
(
t − tn

k

)
, h(t) = e−t/τH(t),

where H(t) is the Heaviside function. Thus each spike induces a jump of size wk, which
represents the strength of the connection or synapse from the kth presynaptic neuron, and then
decays exponentially. Suppose that the spikes at synapse k are generated by an inhomogeneous
Poisson process with arrival rate νk(t). This means that in each small time interval [t, t +
t]
the probability that a spike arrives on the kth synapse is νk(t)
t, and each spike is uncorrelated
with any other. We will derive a Fokker–Planck equation for the probability density p(v, t) for
V evolving according to the stochastic ODE (6.4), assuming that the neuron last fired at t = 0.

The probability that no spike arrives in a short time interval 
t is

Prob{no spike in [t, t +
t]} = 1 −
∑

k

νk(t)
t. (6.5)

If no spike arrives then the membrane potential changes from V (t) = v′ to V (t + 
t) =
v′ e−
t//τ . On the other hand, if a spike arrives at synapse k, the membrane changes from v′

to v′ e−
t//τ + wk. Therefore, given a value v′ at time t, the probability density of finding a
membrane potential v at time t +
t is

P(v, t +
t|v′, t) =
[

1 −
t
∑

k

νk(t)

]
δ
(
v − v′ e−
t/τ

)
+
t

∑
k

νk(t)δ
(
v − v′ e−
t/τ − wk

)
. (6.6)

Since the input spikes are generated by a Poisson process, it follows that the random variable
V (t) evolves according to a Markov process:

p(v, t +
t) =
∫

P(v, t +
t|v′, t)p(v′, t) dv′. (6.7)

Substituting for P using equation (6.6) shows that

p(v, t +
) =
[

1 −
t
∑

k

νk(t)

]
e
t/τ p(e
t/τ v, t)

+
t
∑

k

νk(t) e
t/τ p(e
t/τ v − wk, t). (6.8)
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Rearranging and taking the limit 
t → 0 leads to the Chapman–Kolmogorov equation

∂ p

∂t
= 1

τ

∂

∂v
[vp(v, t)] +

∑
k

νk(t)[p(v − wk, t)− p(v, t)]. (6.9)

If the jump amplitudes wk in equation (6.9) are sufficiently small, then we can formally
Taylor expand the right-hand side of the master equation as a series in wk corresponding to
the so-called Kramers–Moyall expansion [209, 210]. Neglecting terms of orderw3

k then yields
the Fokker–Planck equation

∂ p

∂t
= − ∂

∂v

[
−v/τ +

∑
k

νk(t)wk

]
p(v, t)+ 1

2

[∑
k

νk(t)w
2
k

]
∂2

∂v2
p(v, t). (6.10)

The Fokker–Planck equation determines the time evolution of the probability density of
a membrane potential evolving according to the equivalent stochastic differential equation
(Langevin equation)

dV = −V (t)

τ
dt + μ(t) dt + σ (t) dW (t). (6.11)

Here μ(t) is the mean background synaptic input

μ(t) =
∑

k

νk(t)wk, (6.12)

where W (t) is a Wiener process

〈dW (t)〉 = 0, 〈dW (t) dW (t)〉 = dt (6.13)

and σ (t) determines the size of the membrane fluctuations,

σ 2(t) =
∑

k

νk(t)w
2
k . (6.14)

In the case of constant rates, the resulting Langevin equation describes the well-known
Ornstein–Uhlenbeck process. Note that in the derivation of the Fokker–Planck equation we
have suppressed higher-order terms of the form

∞∑
n=3

(−1)n

n!
An(t)

∂n

∂un
p(u, t),

with An =∑k νk(t)wn
k . This becomes exact in the so-called diffusion limit wk → 0 such that

μ(t), σ 2(t) are unchanged and An → 0 for n � 3.
In our derivation of the Fokker–Planck equation we neglected the threshold κ . This can

be incorporated as an absorbing boundary condition

p(κ, t) ≡ 0 for all t. (6.15)

We can then look for the solution p = p(v, t|v0, 0) of the Fokker–Planck equation assuming
the initial condition p(v, 0|v0, 0) = δ(v − v0). At any time t > 0, the probability that the
neuron has not reached threshold is

S(v0, t) =
∫ κ

−∞
p(v, t|v0, 0) dv. (6.16)

Let ψ(v0, t)
t be the probability that the neuron fires its next spike between t and t +
t. It
follows that ψ(v0, t)
t = S(v0, t)− S(v0, t +
t) so that in the limit 
t → 0,

ψ(v0, t) = − d

dt

∫ κ

−∞
p(v, t|v0, 0) dv. (6.17)
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The density ψ(v0, t) determines the distribution of first passage times. When this is combined
with the reset condition v0 = 0, we see that it also determines the distribution of interspike
intervals 
n = T n+1 − T n. Unfortunately, no general solution is known for the first passage
time problem of the Ornstein–Uhlenbeck process. However, in the case of constant inputs such
that μ(t) = μ0 and σ (t) = σ0, one can carry out a moment expansion of the first passage time
distribution. In particular, a closed form expression for the mean first passage time (MFPT) T
can be obtained [48, 210]:

T =
∫ ∞

0
tψ(0, t) dt = τ

√
π

∫ (κ−τμ0)/
√
τσ0

−√
τμ0/σ0

ev
2
(1 + erf(v)) dv. (6.18)

Note that various generalizations of equation (6.9) have been used to develop numerical
schemes for tracking the probability density of a population of synaptically coupled spiking
neurons [194, 195], which in the case of simple neuron models, can be considerably more
efficient than classical Monte Carlo simulations that follow the states of each neuron in the
network. On the other hand, as the complexity of the individual neuron model increases,
the gain in efficiency of the population density method decreases, and this has motivated the
development of a moment closure scheme that leads to a Boltzmann-like kinetic theory of IF
networks [70, 197]. However, as recently shown by [196], considerable care must be taken
when carrying out the dimension reduction, since it can lead to an ill-posed problem over
a wide range of physiological parameters. That is, the truncated moment equations may not
support a steady-state solution even though a steady-state probability density exists for the
full system. Another approach is to extend the analysis of a single IF neuron using mean field
theory (see below).

Homogeneous population of IF neurons. Let us first consider a large population of identical
uncoupled IF neurons each being driven by a set of Poisson distributed spike trains. We assume
that the kth synapse of every neuron receives a Poisson spike train with the same instantaneous
rate νk(t), but that the spike trains across the population are statistically independent. The
derivation of the Fokker–Planck equation proceeds along very similar lines to the single
neuron case, and takes the form [48]

∂ p

∂t
= − ∂

∂v

[−v
τ

+ μ(t)+ Iext(t)

]
p(v, t)+ σ 2(t)

2

∂2

∂v2
p(v, t), (6.19)

with μ(t), σ (t) given by equations (6.12) and (6.14) and Iext(t) an external input. However,
there are a number of important differences between the single neuron and population cases.
First, p(v, t) is now interpreted as the probability density of membrane potentials across the
population of neurons. Consequently, the normalization is different. In the case of a single
neuron, the integrated density

∫ κ
−∞ p(v, t)dv � 1 was interpreted as the probability that the

neuron under consideration has not yet fired, which changes over time. On the other hand, if
a neuron in the population fires, it remains part of the population so that we have the constant
normalization

∫ κ
−∞ p(v, t)dv = 1.

The second major difference is that we now have to incorporate the reset condition
explicitly in the evolution of the probability density. First, note that the Fokker–Planck equation
can be rewritten as a continuity equation reflecting conservation of probability:

∂

∂t
p(v, t) = − ∂

∂v
J(v, t) for v �= κ, 0, (6.20)

where

J(v, t) = 1

τ
[−v + μ(t)+ Iext(t)] p(v, t)− σ 2(t)

2

∂

∂v
p(v, t). (6.21)
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In a population of N neurons, the fraction of active neurons is calculated by counting the
number of output spikes n(t; t + 
t) in a small time interval 
t and dividing by N. Further
division by 
t yields the population activity

a(t) = lim

t→0

1


t

n(t, t +
t)

N
= 1

N

N∑
j=1

∑
m

δ(t − T m
j ). (6.22)

The double sum runs over all firing times T m
j of all neurons in the population. The fraction

of neurons that flow across the threshold per unit time should then be equal to the population
averaged activity a(t), that is, a(t) = J(κ, t). Equation (6.21) together with the absorbing
boundary condition

p(κ, t) = 0 (6.23)

implies that
∂

∂v
p(κ, t) = − 2a(t)

σ 2(t)
. (6.24)

Due to the reset condition, the neurons that ‘disappear’ across threshold are reinjected at
the reset potential v = 0, which implies that there is a discontinuity in the flux at zero,
J(0+, t)− J(0−, t) = a(t). Continuity of p,

p(0+, t) = p(0−, t), (6.25)

together with equation (6.21) then shows that there is a discontinuity in the first derivative of
p(v, t) at v = 0:

∂

∂v
p(0+, t)− ∂

∂v
p(0−, t) = − 2a(t)

σ 2(t)
. (6.26)

In summary, one has to solve the Fokker–Planck equation (6.19) together with the boundary
conditions (6.23), (6.24), (6.25) and (6.26).

Now suppose that the background rates νk and external input Iext are time-independent so
that the total mean input

I0 = Iext +
∑

k

νkwk (6.27)

is a constant. The steady-state Fokker–Planck equation implies that the flux

J(v) = (−v/τ + I0)p(v)− σ 2
0

2

∂

∂v
p(v) (6.28)

is constant except at v = 0 where it jumps by an amount a0, which is the steady-state
population activity. Taking J(v) = 0 for v < 0 we can solve equation (6.28) to obtain the
Gaussian distribution

p0(v) = c1

σ0
exp

[
− (v/τ − I0)

2

σ 2
0

]
for v � 0 (6.29)

for some constant c1. However, such a solution cannot be valid for v > 0, since it does
not satisfy the absorbing boundary condition p0(κ) = 0. It turns out that in this domain the
solution is of the form [51, 48]

p0(v) = c2

σ 2
0

exp

[
− (v/τ − I0)

2

σ 2
0

] ∫ κ

v

exp

[
(x/τ − I0)

2

σ 2
0

]
dx, for 0 < v � κ (6.30)

for some constant c2. Equation (6.28) shows that c2 = 2J(v) for 0 < v � κ with J(v) = a0.
Continuity of the solution at u = 0 implies that

c1 = c2

σ0

∫ κ

v

exp

[
(x/τ − I0)

2

σ 2
0

]
dx. (6.31)
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Finally, the constant c2 is determined by the normalization condition for p. On setting
a0 = c2/2κ , one finds a firing rate that is consistent with the MFPT of equation (6.18):

a0 =
[
τ
√
π

∫ (κ−τ I0)/
√
τσ0

−√
τ I0/σ0

ev
2
(1 + erf(v)) dv

]−1

≡ F(I0), (6.32)

where F is the so-called gain function for the population [48, 51, 194].

Asynchronous states in recurrent networks. The above analysis assumed that the neurons
were independent of each other so that the only synaptic inputs were from some stochastic
background. Now suppose that we have a fully connected network such that there is an
additional contribution to the synaptic input into each neuron of the form

Irec(t) = �0

N

N∑
j=1

∑
m

δ(t − T m
j ) = �0a(t), (6.33)

where �0/N is the strength of connection between any pair of neurons within the population,
and we have used the definition (6.22) of the population activity a(t). Suppose that the neuronal
population is in a macroscopic state with constant activity a(t) = a0, which is referred to as
a state of asynchronous firing. (Formally speaking, such an asynchronous state only makes
sense in the thermodynamic limit N → ∞.) The steady-state activity can then be determined
self-consistently from equation (6.32) by setting

I0 = Itext +
[∑

k

νkwk + �0a0

]
, (6.34)

which leads to an effective gain function. One can also determine the stability of the
asynchronous state by considering small perturbations of the steady-state probability
distribution. One finds that in the limit of low noise, the asynchronous state is unstable
and the neurons tend to split up into several synchronized groups that fire alternately. The
overall activity then oscillates several times faster than the individual neurons [51, 192, 211].
One of the interesting properties of the asynchronous state from a computational perspective is
that the population activity can respond rapidly to a step input [48]. The basic intuition behind
this is that in the asynchronous state there will always be a significant fraction of neurons that
are sitting close to the firing threshold so that as soon as a step increase in input current occurs
they can respond immediately. However, the size of the step has to be at least as large as the
noise amplitude σ , since the threshold acts as an absorbing boundary, that is, the density of
neurons vanishes as v → κ .

In the above example noise is added explicitly in the form of stochastic background
activity. It is also possible for a network of deterministic neurons with fixed random connections
to generate its own noise [51, 193, 212, 213]. In particular, suppose that each neuron in the
population of N neurons receives input from C randomly selected neurons in the population
with C � N. The assumption of sparse connectivity means that two neurons share only a
small number of common inputs. Hence, if the presynaptic neurons fire stochastically then
the input spike trains that arrive at distinct postsynaptic neurons can be treated as statistically
independent. Since the presynaptic neurons belong to the same population, it follows that
each neuron’s output should itself be stochastic in the sense that it should have a sufficiently
broad distribution of interspike intervals. This will tend to occur if the neurons operate in a
subthreshold regime, that is, the mean total input is below threshold so that threshold crossings
are fluctuation driven.
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6.2. Stochastic rate-based models

Now suppose that a network of synaptically coupled spiking neurons is partitioned into a set
of P homogeneous populations with Nα = δαN neurons in each population, α = 1, . . . ,P.
Let p denote the population function that maps the single neuron index i = 1, . . . ,N to the
population index α to which neuron i belongs: p(i) = α. Furthermore, suppose the synaptic
interactions between populations are the same for all neuron pairs, so that �i j = �αβ/Nβ for
all i, j such that p(i) = α, p( j) = β. (Relaxing this assumption can lead to additional sources
of stochasticity as explored in [72]; see also the discussion below.) The synaptic current of
equation (2.25) can then be decomposed as

ui(t) =
∫ t

−∞

∑
β

�αβ (t − t ′)
1

Nβ

∑
j;p( j)=β

a j(t
′) dt ′ for all p(i) = α. (6.35)

It follows that after transients have decayed away, ui(t) = Uα(t) with

Uα(t) =
P∑
β=1

∫ t

−∞
�αβ(t − t ′)Aβ (t ′) dt ′, (6.36)

and Aα(t) is the output activity of the αth population:

Aα(t) = 1

Nα

∑
j;p( j)=β

a j(t). (6.37)

If each local network is in an asynchronous state as outlined above, then we can set the
population activity Aα = Fα(Uα )with Fα identified with the population gain function calculated
in section 6.1. The observation that finite-size effects provide an intrinsic source of noise within
a local population then suggests one way to incorporate noise into rate-based models, namely,
to take the relationship between population output activity Aα(t) and effective synaptic current
Uα(t) to be governed by a stochastic process.

The simplest approach is to assume that population activity is a stochastic variable Aα(t)
evolving according to a Langevin equation of the form

τα dAα(t) = [−Aα(t)+ F(Uα(t))] dt + σα dWα(t) (6.38)

with the stochastic current Uα(t) satisfying the integral equation (6.36). Here Wα(t),
α = 1, . . . . ,P denotes a set of P independent Wiener processes with

〈dWα(t)〉 = 0, 〈dWα(t) dWβ (t)〉 = δα,β dt, (6.39)

and σα is the strength of noise in the αth population. In general, the resulting stochastic model
is non-Markovian. However, if we take �αβ(t) = wαβ�(t) with �(t) = τ−1 e−t/τH(t), then
we can convert the latter equation to the form

τdUα(t) =
⎡⎣−Uα(t)+

P∑
β=1

wαβAβ (t)

⎤⎦ dt. (6.40)

It is important to note that the time constant τα cannot be identified directly with membrane
or synaptic time constants. Instead, it determines the relaxation rate of a local population
to the mean-field firing rate. In the limit τα → 0, equations (6.38) and (6.40) reduce to a
voltage-based rate model perturbed by additive noise:

τdUα(t) =
⎡⎣−Uα(t)+

P∑
β=1

wαβF(Uβ (t))

⎤⎦ dt + dW̃α(t). (6.41)
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Here W̃α(t) =∑P
β=1wαβσβWβ (t) so that

〈dW̃α(t)〉 = 0, 〈dW̃α(t) dW̃β (t)〉 =
[∑

γ

wαγwβγ σ
2
γ

]
dt. (6.42)

Thus eliminating the dynamics of the firing rate leads to spatially correlated noise for the
dynamics of Uα . On the other hand, in the limit τ → 0, we obtain a stochastic activity-based
model

τα dAα(t) =
[
−Aα(t)+ F

(∑
β

wαβAα(t)

)]
dt + σα dWα(t). (6.43)

Here the dynamical variable Aα represents the firing rate of a local population rather than the
synaptic drive as in equation (2.33). Finally, note that the reduction to a stochastic population-
based rate model is less straightforward if some form of local adaptation such as synaptic
depression is included (see section 2.4). In the latter case, equation (6.35) becomes

ui(t) =
∫ t

−∞

∑
β

�αβ (t − t ′)
1

Nβ

∑
j;p( j)=β

q ja j for all p(i) = α. (6.44)

In order to write down a population model, it would be necessary to make an additional
mean-field approximation of the form

1

Nβ

∑
j;p( j)=β

q ja j = 1

Nβ

∑
j;p( j)=β

q j
1

Nβ

∑
j;p( j)=β

a j ≡ QβAβ. (6.45)

An alternative approach to incorporating noise into the population firing rate has been
developed in terms of a jump Markov process [204–207, 214]. Such a description is motivated
by the idea that each local population consists of a discrete number of spiking neurons, and that
finite-size effects are a source of intrinsic rather than extrinsic noise [201, 202]. The stochastic
output activity of a local population of N neurons is now expressed as Aα(t) = Nα(t)/(N
t)
where Nα(t) is the number of neurons in the αth population that fired in the time interval
[t − 
t, t], and 
t is the width of a sliding window that counts spikes. Suppose that the
discrete stochastic variables Nα(t) evolve according to a one-step jump Markov process:

Nα(t)→ Nα(t)± 1 : transition rate  ±
α (t), (6.46)

in which ±
α (t) are functions of Nα(t) and Uα(t)with Uα(t) evolving according to the integral

equation (6.36) or its differential version (6.40). Thus, synaptic coupling between populations
occurs via the transition rates. The transition rates are chosen in order to yield a deterministic
rate-based model in the thermodynamic limit N → ∞. One such choice is

 +
α (t) = N
t

τα
F(Uα(t)),  −

α (t) = Nα(t)

τα
. (6.47)

The resulting stochastic process defined by equations (6.46), (6.47) and (6.40) is an example
of a stochastic hybrid system based on a piecewise deterministic process. That is, the transition
rates  ±

α (t) depend on Uα(t), with the latter itself coupled to the associated jump Markov
according to equation (6.40), which is only defined between jumps, during whichUα(t) evolves
deterministically. (Stochastic hybrid systems also arise in applications to genetic networks
[215] and to excitable neuronal membranes [189, 216].) A further simplification is obtained
in the limit τ → 0, since the continuous variables Uα(t) can be eliminated to give a pure
birth–death process for the discrete variables Nα(t). Let P(n, t) = Prob[N(t) = n] denote the
probability that the network of interacting populations has configuration n = (n1, n2, . . . , nP)
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at time t, t > 0, given some initial distribution P(n, 0). The probability distribution then
evolves according to the birth–death master equation
dP(n, t)

dt
=
∑
α

[
(Eα − 1)

(
 −
α (n)P(n, t)

)+ (E−1
α − 1

)(
 +
α (n)P(n, t)

)]
, (6.48)

where  ±
α (n) =  ±

α (t) with Nα(t) = nα and Uα(t) = ∑
β wαβnβ/(N
t), and Eα is

a translation operator: E
±1
α F(n) = F(nα±) for any function F with nα± denoting the

configuration with nα replaced by nα ± 1. Equation (6.48) is supplemented by the boundary
conditions P(n, t) ≡ 0 if nα = Nα+1 or nα = −1 for some α. The birth–death master equation
(6.48) has been the starting point for a number of recent studies of the effects of intrinsic noise
on neural fields, which adapt various methods from the analysis of chemical master equations
including system size expansions and path integral representations [204–206]. However, there
are a number of potential problems with the master equation formulation. First, there is no
unique prescription for choosing transition rates that yield a given rate-based model in the
mean-field limit. Moreover, depending on the choice of how the transition rates scale with the
system size N, the statistical nature of the dynamics can be Gaussian-like [206] or Poisson-like
[204, 205]. Second, the interpretation of Nα(t) as the number of spikes in a sliding window
of width 
t implies that τ � 
t so the physical justification for taking the limit τ → 0
is not clear. Finally, for large N the master equation can be approximated by a Langevin
equation with multiplicative noise (in the sense of Ito), and thus reduces to the previous class
of stochastic neural field model [207].

In the above formulations, it was assumed that the main source of noise arises from
fluctuations about the asynchronous state in a local population of spiking neurons. An
alternative approach is to introduce noise at the single cell level. For example, consider a
stochastic version of a voltage-based model

τdUi(t) =
⎡⎣−Ui(t)+

Nβ∑
j=1

wi jFj(Uj(t))

⎤⎦ dt + σi dWi(t) (6.49)

for p(i) = α. Suppose that the neurons are again partitioned into local populations with
wi j = wαβ/Nβ , Fj = Fβ and σi = σβ for all i, j such that p(i) = α, p( j) = β. It can then
be proven that in the thermodynamic limit, N → ∞ for fixed δα = Nα/N, and provided the
initial condition is drawn independently from the same distribution for all neurons of each
population, the solutions of the full stochastic equation converge toward solutions Uα of the
implicit population equations [217]

τdUα(t) =
[

− Uα(t)+
P∑
β=1

wαβE[Fβ (Uβ (t))]

]
dt + σα dWα(t). (6.50)

Although the implicit equation (6.50) is difficult to solve in general, it turns out that solutions
are Gaussian so that their moments satisfy a closed system of nonlinear ODEs. One advantage
of the given approach is that it utilizes powerful probabilistic methods that provide a rigorous
procedure to go from single neuron to population level dynamics. The analysis can also
be generalized to the case of quenched disorder in the weights between individual neurons
[72, 218]. One possible limitation of the approach, however, is that it rests on the assumption
that the dynamics of individual neurons can be expressed in terms of a rate model, whereas
conversion to a rate model might only be valid at the population level.

6.3. Patterns and waves in stochastic neural fields

In the previous section, we indicated how to incorporate noise into the rate equations
introduced in section 2.4. The next step is to take an appropriate continuum limit in order
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to obtain a corresponding stochastic neural field equation. For simplicity, we will focus
on the simplest rate model given by equations (6.38) and (6.40). The continuum limit of
equation (6.40) proceeds heuristically along similar lines to section 2.5. That is, we set
Uα(t) = U (α
d, t),Aα(t) = A(α
d, t) and wαβ = ρ
 dw(α
d, β
d) where ρ is a
density and
d is an infinitesimal length scale. Taking the limit
d → 0 and absorbing ρ into
w gives

τdU (x, t) =
[
−U (x, t)+

∫
w(x − y)A(y) dy

]
dt. (6.51)

We also assume that the noise strength σα = σ/
√

d and define Wα(t)/

√

d = W (α
d, t).

Taking the limit 
d → 0 with τα = τ̂ for all α gives

τ̂ dA(x, t) = [−A(x, t)+ F(U (x, t))] dt + σ dW (x, t) (6.52)

with

〈dW (x, t)〉 = 0, 〈dW (x, t) dW (y, t)〉 = δ(x − y) dt. (6.53)

In the limit τ̂ → 0, we obtain a stochastic version of the scalar neural field equation (3.2),
namely

τdU (x, t) =
[
−U (x, t)+

∫
w(x − y)F(U (y, t)) dy

]
dt + σ dW̃ (x, t) (6.54)

with

〈dW̃ (x, t)〉 = 0, 〈dW̃ (x, t) dW̃ (y, t)〉 = dt
∫
w(x − z)w(y − z) dz. (6.55)

Similarly, in the limit τ → 0 we have a stochastic version of an activity-based neural field
equation

τ̂dA(x, t) =
[
−A(x, t)+ F

(∫
w(x − y)A(y, t)

)
dy

]
dt + dW (x, t). (6.56)

So far there has been very little work on the dynamics of stochastic neural fields. From
a numerical perspective, any computer simulation would involve rediscretizing space and
then solving a time-discretized version of the resulting stochastic ODE. On the other hand,
in order to investigate analytically the effects of noise on pattern forming instabilities and
traveling waves, it is more useful to work directly with continuum neural fields. One can then
adapt various PDE methods for studying noise in spatially extended systems [219]. We briefly
describe two applications of these methods to a scalar neural field equation, one involving
pattern-forming instabilities and the other front propagation [220].

6.3.1. Pattern forming instabilities. Consider the stochastic neural field equation (6.54),
which is conveniently rewritten in the form

τdV (x, t) =
[

− V (x, t)+ F

(∫
w(x − y)V (y, t) dy

)]
dt + dW (x, t), (6.57)

with U (x, t) = ∫
w(x − y)V (y, t). Following studies of pattern-forming instabilities in PDE

models such as Swift–Hohenberg [221], the effects of noise close to a bifurcation can be
determined by a linear stability analysis of a homogeneous solution v0 of the deterministic
neural field equation, where v0 = F(w0v0), w0 = ∫

w(y) dy. Linearizing equation (6.57)
about v0 gives

τdV (x, t) = [−V (x, t)+ μ
∫
w(x − y)V (y, t) dy]dt + σdW (x, t), (6.58)
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where μ = F ′(w0v0). It is convenient to restrict x to a bounded domain, 0 � x � L and to
introduce the discrete Fourier series

V (x, t) = 1

L

∑
n

eiknxVn(t), W (x, t) = 1

L

∑
n

eiknxWn(t) (6.59)

with kn = 2πn/L and Wn(t) an independent Wiener process such that

〈dWn(t)〉 = 0, 〈dWn(t) dWm(t)〉 = Lδm+n,0 dt. (6.60)

Fourier transforming equation (6.58) then gives

τdVn(t) = [−1 + μwn]Vn(t) dt + σ dWn(t). (6.61)

The corresponding Fokker–Planck equation for the probability density P[v, t], v = {vn, n ∈ Z},
takes the form

∂P

∂t
= −

∑
n

∂

∂vn
[(−1 + μwn)vnP] + Lσ 2

2

∑
n

∂2P

∂vn∂v−n
. (6.62)

The mean Fourier coefficient 〈Vn〉 evolves as

τ
d〈Vn〉

dt
= [−1 + μwn]〈Vn〉, (6.63)

so for sufficiently small μ such that μwn < 1 for all n, the average value of any perturbation
decays to zero, and the finite-time dynamics can be described in terms of zero mean Gaussian
fluctuations about the homogeneous state. (In the large-t limit there can be noise-induced
transitions to other stable attractors of the deterministic system.) However, a noisy precursor
of a pattern-forming instability can be detected by looking at the structure function Sn, which
is the Fourier transform of the spatial correlation function [221]

C(x, t) = 1

L

∫
〈V (y, t)V (x + y, t)〉 dy, (6.64)

that is

Sn = 1

L
〈VnV−n〉. (6.65)

The time evolution of Sn is
dSn

dt
= 1

L

∫
vnv−n

∂P

∂t

∏
m

dvm. (6.66)

Substituting for ∂P/∂t using the Fokker–Planck equation (6.62) and integrating by parts shows
that

dSn

dt
= 2[−1 + μwn]Sn + σ 2. (6.67)

Below the bifurcation point, we have a steady state solution for the structure function given
by (in the limit L → ∞ with Sn → S(k))

S(k) = σ 2

μŵ(k)− 1
(6.68)

with ŵ(k) the Fourier transform of the weight distribution w(x), which is assumed to be an
even function of x. Hence, S(k) has a peak at the critical wavenumber kc where ŵ(k) has its
maximum, and is the critical wavenumber of Turing patterns that form beyond the bifurcation
point μc = 1/ŵ(kc) of the deterministic system.

When the homogeneous state becomes linearly unstable the combination of additive
noise and nonlinearities of the firing rate function can lead to additional effects. This has
recently been found using a stochastic center manifold reduction that generates a stochastic
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amplitude equation in Fourier space [203]. It turns out that in the case of spatially constant
fluctuations, whereby dW (x, t) = dW (t) for all x, the Turing bifurcation point μc is increased
by an amount proportional to the variance σ 2; no such shift occurs for spatially uncorrelated
noise. Another well known mechanism for shifting a bifurcation point is multiplicative noise
of the Stratonovich form [219, 221]. In order to illustrate this, suppose that the additive
noise term on the right-hand side of equation (6.58) is replaced by the multiplicative noise
term σg(V (x, t)) dW (x, t). Fourier transforming the resulting Stratonovich Langevin equation
gives

τdVn(t) = [−1 + μwn]Vn(t) dt + σ
∑

m

gn−m(t) dWm(t). (6.69)

The associated Stratonovich Fokker–Planck equation takes the form [221]

τ
∂P

∂t
= −

∑
l

∂

∂vl
[(−1 + μwl )vnP] + σ 2

2L

∑
l,m,q

∂

∂vl
gl−q

∂

∂vm
gm+qP. (6.70)

Multiplying both sides of this equation by vn and integrating with respect to v leads to the
following evolution equation for the mean:

τ
d〈Vn〉

dt
= [−1 + μwn]〈Vn〉 + σ 2

2L

∑
m,q

〈
∂gn−q

∂vm
gm+q

〉
. (6.71)

In the simple case that g(V ) = V , this reduces to

τ
d〈Vn〉

dt
= [−1 + μwn + σ 2/(2
x)]〈Vn〉. (6.72)

Note that one has to introduce a cut-off in the frequencies, which is equivalent to introducing a
fundamental lattice spacing of
x. (Alternatively, the multiplicative noise can be taken to have
a finite correlation length in space.) In the continuum limit, we obtain the modified bifurcation
condition

μc = 1 − σ 2/(2
x)

ŵ(kc)
. (6.73)

The multiplicative noise thus shifts the bifurcation point to a parameter regime where patterns
do not exist in the deterministic neural field equation. Finally, note that such a shift would
not occur in the case of the Ito form of multiplicative noise; the latter would occur when
carrying out a diffusion approximation of the master equation formulation of stochastic neural
fields [207].

6.3.2. Traveling waves. Another well known result from the study of stochastic PDEs is the
non-trivial effects of multiplicative noise on front propagation in reaction–diffusion systems
[219, 222]. This result carries over to the case of front propagation in a stochastic neural field,
which can be established by combining the front construction carried out in section 3.1 with
the multitime scale analysis of [222]. For the sake of illustration, consider a stochastic neural
field equation with multiplicative noise under the Stratonovich interpretation:

dU =
[
−U (x, t)+

∫ ∞

−∞
w(x − y)F(U (y, t)) dy

]
dt + ε1/2g(U (x, t)) dW (x, t). (6.74)

We assume that dW (x, t) represents an independent Wiener process such that

〈dW (x, t)〉 = 0, 〈dW (x, t) dW (x′, t ′)〉 = 2C([x − x′]/λ)δ(t − t ′) dt dt ′. (6.75)

Here λ is the spatial correlation length of the noise such that C(x/λ) → δ(x) in the limit
λ → 0, and ε determines the strength of the noise, which is assumed to be weak. The
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multiplicative factor g(U ) could arise from some form of Langevin approximation of a neural
master equation, or reflect some form of parametric noise such as threshold noise [223].

The Stratonovich version of multiplicative noise contributes to an effective shift in the
mean speed of a front (assuming that it exists when ε = 0) due to the fact that 〈g(U )η〉 �= 0
even though 〈η〉 = 0. The former average can be calculated using Novikov’s theorem [224]:

ε1/2〈g(U (x, t))η(x, t)〉 = εC(0)〈g′(U )g(U )〉. (6.76)

The above result can be derived by Fourier transforming (6.74) and evaluating averages using
the Fokker–Planck equation in Fourier space. This leads to an equation similar to (6.71),
which on applying the inverse transform gives the desired result. Note that in the limit λ → 0,
C(0) → 1/
x where 
x is a lattice cut-off. The method developed in [222] is to construct
an approximation scheme that separates out the diffusive effects of noise from the mean drift.
The first step is to rewrite the neural field equation (6.74) as

dU (x, t) =
[

h(U (x, t))+
∫ ∞

−∞
w(x − y)F(U (y, t)) dy

]
dt + ε1/2R(U, x, t), (6.77)

where

h(U ) = −U + εC(0)g′(U )g(U ) (6.78)

and

R(U, x, t) = g(U )η(x, t)− ε1/2C(0)g′(U )g(U ). (6.79)

The stochastic process R has zero mean (so does not contribute to the effective drift) and
correlation

〈R(U, x, t)R(U, x′, t ′)〉 = 〈g(U (x, t))η(x, t)g(U (x′, t ′)η(x′, t ′)〉 + O(ε1/2). (6.80)

The next step in the analysis is to assume that the fluctuating term in
equation (6.77) generates two distinct phenomena that occur on different time-scales: a
diffusive-like displacement of the front from its uniformly translating position at long time
scales, and fluctuations in the front profile around its instantaneous position at short time scales
[219, 222]. In particular, following [222], we express the solution U of equation (6.77) as a
combination of a fixed wave profile U0 that is displaced by an amount
(t) from its uniformly
translating mean position ξ = x − cεt, and a time-dependent fluctuation � in the front shape
about the instantaneous position of the front:

U (x, t) = U0(ξ −
(t))+ ε1/2�(ξ −
(t), t). (6.81)

Here cε denotes the mean speed of the front. To a first approximation, the stochastic variable

(t) undergoes Brownian motion with a diffusion coefficient D(ε) = O(ε) (see below),
which represents the effects of slow fluctuations, whereas � represents the effects of fast
fluctuations. Note that expansion (6.81) is not equivalent to a standard small-noise expansion,
since the wave profile U0 implicitly depends on ε. Substituting into equation (6.77) and taking
averages generates to lowest order the following deterministic equation for U0:

−veff(ε)
dU0

dξ
− h(U0(ξ )) =

∫ ∞

−∞
w(ξ − ξ ′)F(U0(ξ

′)) dξ ′. (6.82)

We will assume that there exists a traveling wave solution for U0. In the particular case that
g(U ) = U , such a solution can be constructed explicitly using the methods reviewed in
section 3.1. For example, taking the high-gain limit so that F(U ) = H(U − κ), the effective
velocity is (see also equation (3.6))

veff = σ

2κ
[1 − 2κ(1 − εC(0))], (6.83)
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which implies that multiplicative noise increases the mean speed of front propagation.
Proceeding to the next order and imposing equation (6.82), we find that 
(t) = O(ε1/2)

and

d�(ξ, t) = L̂ ◦�(ξ, t) dt + ε−1/2U ′
0(ξ ) d
(t)+ dR(U0, ξ , t), (6.84)

where L̂ is the non-self-adjoint linear operator

L̂ ◦ A(ξ ) = veff(ε)
dA(ξ )

dξ
+ h′(U0(ξ ))A(ξ )+

∫ ∞

−∞
w(ξ − ξ ′)F ′(U0(ξ

′))A(ξ ′) dξ ′ (6.85)

for any function A(ξ ) ∈ L2(R).
We can now proceed along similar lines to section 3.4.1. The non-self-adjoint linear

operator L̂ has a 1D null space spanned by U ′
0(ξ ), which follows from differentiating equation

(6.82) with respect to ξ . We then have the solvability condition for the existence of a nontrivial
solution of equation (6.85), namely, that the inhomogeneous part is orthogonal to the null
space of the adjoint operator. Taking the latter to be spanned by the function V(ξ ), we have∫ ∞

−∞
V(ξ )[U ′

0(ξ ) d
(t)+ ε1/2 dR(U0, ξ , t)] dξ = 0. (6.86)

Thus, 
(t) satisfies the stochastic ODE

d
(t) = −ε1/2

∫∞
−∞ V(ξ ) dR(U0, ξ , t) dξ∫∞

−∞ V(ξ )U ′
0(ξ ) dξ

. (6.87)

Using the lowest order approximation dR(U0, ξ , t) = g(U0(ξ )) dW (ξ , t), we deduce that (for

(0) = 0)

〈
(t)〉 = 0, 〈
(t)2〉 = 2D(ε)t, (6.88)

where D(ε) is the effective diffusivity

D(ε) = ε〈d
(t) d
(t ′)〉
= ε

∫∞
−∞
∫∞
−∞ V(ξ )V(ξ ′)g(U0(x))g(U0(ξ

′))〈dW (ξ , t) dW (ξ ′, t ′)〉dξdξ ′[ ∫∞
−∞ V(ξ )U ′

0(ξ ) dξ
]2

= ε

∫∞
−∞ V(ξ )2g2(U0(ξ )) dξ[ ∫∞

−∞ V(ξ )U ′
0(ξ ) dξ

]2 . (6.89)

Again, in the case g(U ) = U and F(U ) = H(U −κ), we can explicitly determine the function
V(ξ ) and evaluate the integral expressions for D(ε), see section 3.4.1. In figure 34 we show
results of a numerical simulation, which establishes that both the mean and variance of z(t)
are linear functions of t with slopes corresponding to veff(ε) and D(ε), respectively.

6.4. Path integral representation of stochastic neural fields

Recently, Buice and Cowan [204] have used path integral methods and renormalization group
theory to establish that a stochastic neural field model based on a continuum version of a
birth–death master equation belongs to the universality class of directed percolation, and
consequently exhibits power law behavior suggestive of many measurements of spontaneous
cortical activity in vitro and in vivo [225, 226]. Although the existence of power law behavior is
still controversial [227], the application of path integral methods provides yet another example
of how analytical techniques familiar in the study of PDEs are being adapted to studies of
continuum neural fields. (For reviews on path integral methods for stochastic differential
equations see [228–230].) In this section, we indicate how a stochastic neural field can be
reformulated as a path integral.
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Figure 34. Numerical simulation of wavefront propagation in the stochastic scalar field equation
(6.74) for Heaviside weight function F(U ) = H(U−κ)with κ = 0.35, exponential weight function
w(x) = e−2|x| and multiplicative noise g(U ) = U . Noise strength ε = 0.005 and C(0) = 10. (a)
Snapshot of noisy traveling front. (b) Plot of var(z) (black curve) and mean z̄ (gray curve) as a
function of time t.

Derivation of path integral representation. For simplicity, we consider a scalar neural field
with multiplicative white noise of the Ito form:

dU =
[
−U +

∫ ∞

−∞
w(x − y)F(U (y, t)) dy

]
dt + g(U ) dW (x, t), (6.90)

for 0 � t � T and initial condition U (x, 0) = �(x). Discretizing both space and time with
Ui,m = u(m
d, i
t), Wi,m = 
d−1/2W (m
d, i
t), 
dwmn = w(m
d, n
d) gives

Ui+1,m − Ui,m =
[
−Ui,m +
d

∑
n

wmnF(Ui,n)

]

t +

√

t√

d

g(Ui,m) dWi,m +�mδi,0, (6.91)

with i = 0, 1, . . . ,N, T = N
t and

〈dWi,m〉 = 0, 〈dWi,m dWi′,m′ 〉 = δi,i′δm,m′ . (6.92)

Let U and W denote the vectors with components Ui,m and Wi,m respectively. Formally, the
conditional probability density function for U given a particular realization of the stochastic
process W (and initial condition �) is

P[U|W] =
∏

n

N∏
i=0

δ

(
Ui+1,m − Ui,m +

[
Ui,m −
d

∑
n

wmnF(Ui,n)

]

t

−
√

t√

d

g(Ui,m) dWi,m −�mδi,0

)
. (6.93)

Inserting the Fourier representation of the Dirac delta function,

δ(Ui,m) = 1

2π

∫
e−iŨi,mUi,m dŨi,m, (6.94)

gives

P[U|W] =
∫ ∏

n

N∏
j=0

dŨj,n

2π
e−i

∑
i,m Ũi,m(Ui+1,m−Ui,m+[Ui,m−
d

∑
n wmnF(Ui,n)]
t)

× e
i
∑

i,m Ũi,m

( √

t√

d

g(Ui,m ) dWi,m+�mδi,0

)
. (6.95)
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For a Gaussian white noise process, Wi,n has the probability density function P(Wi,m) =
(2π)−1/2 e−W 2

i,m/2. Hence, setting

P[U] =
∫

P[U|W]
∏
j,n

P(Wj,n) dWj,n

and performing the integration with respect to Wj,n by completing the square, we obtain the
result

P[U] =
∫ ∏

n

N∏
j=0

dŨj,n

2π
e−i

∑
i,m Ũi,m(Ui+1,m−Ui,m+[Ui,m−
d

∑
n wmnF(Ui,n )]
t)

× e
∑

i,m([iŨi,m]2g2(Ui,m )

t

2
d +iŨi,m�mδi,0). (6.96)

Finally, taking the continuum limits 
d → 0, and 
t → 0, N → ∞ for fixed T with
Ui,m → U (x, t) and iŨi,m/
d → Ũ (x, t) gives the following path integral representation of a
stochastic neural field:

P[U] =
∫

DŨ e−S[U,Ũ] (6.97)

with

S[U, Ũ] =
∫

dx
∫ T

0
dt Ũ (x, t)

[
Ut (x, t)+ U (x, t)−

∫
w(x − y)F(U (y, t)) dy

−�(x)δ(t)− 1

2
Ũ (x, t)g2(U (x, t))

]
. (6.98)

Generating functional. Given the probability functional P[U], we can write down path inte-
gral
representations of various moments of the stochastic field U . For example, the mean
field is

〈〈U (x, t)〉〉 =
∫

DUDŨ U (x, t) e−S[U,Ũ], (6.99)

whereas the two-point correlation is

〈〈U (x, t)U (x′, t ′)〉〉 =
∫

DUDŨ U (x, t)U (x′, t ′) e−S[U,Ũ]. (6.100)

Another important characterization of the stochastic neural field is how the mean activity (and
other moments) respond to small external inputs (linear response theory). First, suppose that
we add a small external source term h(x, t) on to the right-hand side of the deterministic
version (g ≡ 0) of the field equation (6.90). Linearizing about the time-dependent solution
U (x, t) of the unperturbed equation (h ≡ 0) leads to an inhomogeneous linear equation for the
perturbed solution ϕ(x, t) = Uh(x, t)− U (x, t):

∂ϕ

∂t
= −ϕ(x, t)+

∫ ∞

−∞
w(x − y)F ′(U (y, t))ϕ(y, t) dy + h(x, t). (6.101)

Introducing the deterministic Green’s function or propagator G0(x, t; x′, t ′) according to the
adjoint equation

−∂G0

∂t ′
= −G0(x, t; x′, t ′)+ F ′(U (x′, t))

∫ ∞

−∞
w(x′ − y)G0(x, t; y, t ′) dy + δ(x − x′)δ(t − t ′),

(6.102)
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with G0(x, t; x′, t ′) = 0 for t � t ′ (causality), we can express the linear response as

ϕ(x, t) =
∫ ∞

−∞
dx′
∫ t

dt ′G0(x, t; x′, t ′)h(x′, t ′). (6.103)

In other words, in terms of functional derivatives
δU (x, t)

δh(x′, t ′)
= G0(x, t; x′, t ′). (6.104)

Now suppose that we add a small source term within the path integral representation (6.97).
This corresponds to adding a term

∫
dx
∫

dt h(x, t)Ũ (x, t) to the action (6.98). The associated
Green’s function for the full stochastic model is defined according to

G(x, t; x′, t ′) ≡ δ〈〈U (x, t)〉〉
δh(x′, t ′)

= 〈〈U (x, t)Ũ (x′, t ′)〉〉 (6.105)

with

lim
t→t ′+

G(x, t; x′, t ′) = δ(x − x′)

andG(x, t; x′, t ′) = 0 for t � t ′. The above analysis motivates the introduction of the generating
functional

Z[J, J̃] =
∫

DUDŨ e−S[U,Ũ] e
∫

dx
∫ T

0 dt[Ũ (x,t)J(x,t)+J̃(x,t)U (x,t)]. (6.106)

Various moments of physical interest can then be obtained by taking functional derivatives
with respect to the ‘current sources’ J, J̃. For example,

〈〈U (x, t)〉〉 = δ

δJ̃(x, t)
Z[J, J̃]

∣∣∣∣
J=J̃=0

(6.107)

〈〈U (x, t)U (x′, t ′)〉〉 = δ

δJ̃(x, t)

δ

δJ̃(x′, t ′)
Z[J, J̃]

∣∣∣∣
J=J̃=0

(6.108)

〈〈U (x, t)Ũ (x′, t ′)〉〉 = δ

δJ̃(x, t)

δ

δJ(x′, t ′)
Z[J, J̃]

∣∣∣∣
J=J̃=0

. (6.109)

Perturbation theory. Suppose for the moment that the firing-rate function is linear,
F(U ) = μU , and consider the so-called free generating functional Z0[J, J̃] obtained from
equation (6.106) by taking the action S → S0 with

S0[U, Ũ] =
∫

dx
∫ T

0
dt Ũ (x, t)

[
U̇ (x, t)+ U (x, t)− μ

∫
w(x − y)U (y, t) dy

]
=
∫

dx
∫

dx′
∫ T

0
dt
∫ T

0
dt ′ Ũ (x, t)G−1

0 (x, t; x′, t ′)U (x′, t ′). (6.110)

Here G−1
0 is the inverse of the propagator G0(x, t; x′, t ′) = G(x − x′, t − t ′) with G(x, t)

satisfying the linear homogeneous equation (for F ′(U ) = μ)

∂G

∂t
= −G(x, t)+ β

∫ ∞

−∞
w(x − y)G(y, t) dy + δ(x)δ(t). (6.111)

The latter can be solved using Fourier transform to give

G(x, t) = H(t)
∫ ∞

−∞
eikxe−(1−μŵ(k))t dk

2π
, (6.112)
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where ŵ(k) is the Fourier transform of the weight distribution w(x) and H(0) = 0 for Ito
calculus. Having expressed the free action S0 in terms of the inverse propagator, the free
functional can be calculated explicitly by completing the square:

Z0[J, J̃] = e
∫

dx
∫

dx′ ∫ T
0 dt

∫ T
0 dt ′[J̃(x,t)G(x−x′,t−t ′)J(x′,t ′)]. (6.113)

Finally, the full generating functional can be expressed in terms of Z0 by decomposing the full
action as S = S0 + SI , where SI is the interacting part of the action that includes the terms
arising from initial conditions, multiplicative noise and nonlinear contributions to the firing
rate function. Then

Z[J, J̃] =
∫

DUDŨ
∞∑

n=0

(−SI[U, Ũ])n

n!
e−S0[U,Ũ] e

∫
dx
∫ T

0 dt[Ũ (x,t)J(x,t)+J̃(x,t)U (x,t)]

=
∞∑

n=0

(−SI[δ/δJ̃, δ/δJ])n

n!
Z0[J, J̃]. (6.114)

Assuming that SI is scaled by a small parameter, equation (6.114) is the starting point for
a diagrammatic perturbation expansion of the moments and propagators based on Wicks
theorem and Feynman graphs [228]. This has been developed in some detail by Buice et al
[204, 205] within the context of a path integral representation of the neural master equation
(6.48), which generalizes previous work on reaction diffusion systems [229, 231, 232]. One
of the specific features assumed by Buice et al is that the zero activity state is an absorbing
state. Consequently, renormalization group methods can be used to show that the associated
stochastic neural field model belongs to the universality class of directed percolation. However,
the existence of an absorbing state is not a general feature of stochastic neural field models
such as equation (6.90), for which g(U ) > 0 for all U .

Weak-noise limit. Another form of perturbation expansion occurs in the weak-noise limit.
Suppose that the multiplicative noise term g(U ) → σg(U ) with σ � 1. (In the case of a
Langevin approximation of the neural master equation (6.48), σ = 1/

√
N, where N is the size

of each local population [206, 207].) Performing the rescalings Ũ → Ũ/σ 2 and J̃ → J̃/σ 2,
the generating functional (6.106) becomes

Z[J, J̃] =
∫

DUDŨ e− 1
σ2 S[U,Ũ]e

1
σ2

∫
dx
∫ T

0 dt[Ũ (x,t)J(x,t)+J̃(x,t)U (x,t)]. (6.115)

In the limit σ → 0, the path integral is dominated by the ‘classical’ solutions u(x, t), ũ(x, t),
which extremize the exponent of the generating functional:

δS[U, Ũ]

δU (x, t)

∣∣∣∣
Ũ=ũ,U=u

= −J̃(x, t),
δS[U, Ũ]

δŨ (x, t)

∣∣∣∣
Ũ=ũ,U=u

= −J(x, t). (6.116)

In the case of zero currents J = J̃ = 0, these equations reduce to
∂u(x, t)

∂t
= δH[u, ũ)

δũ(x, t)
,

∂ ũ(x, t)

∂t
= −δH[u, ũ)

δu(x, t)
, (6.117)

where we have set

S[U, Ũ] =
∫

dx
∫ T

0
dt Ũ (x, t)U̇ (x, t)−

∫ T

0
dt H[U, Ũ] −

∫
dxŨ (x, 0)�(x),

such that

H[U, Ũ] =
∫

dxŨ (x, t)

[
−U (x, t)+

∫
w(x − y)F(U (y, t)) dy + 1

2
Ũ (x, t)g2(U (x, t))

]
.

(6.118)
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Equations (6.117) take the form of a Hamiltonian dynamical system in which u is a ‘coordinate’
variable, ũ is its ‘conjugate momentum’ and H is the Hamiltonian. It immediately follows
from the form of H that one type of classical solution is the mean-field solution ũ(x, t) ≡ 0,
which implies that u(x, t) satisfies the scalar neural field equation (3.2). Interestingly, there
are also non-mean-field classical solutions, ũ(x, t) �= 0, which play an important role in
determining large deviations or rare event statistics in terms of optimal paths [207, 233].
Finally, note that the path integral (6.115) can be used to calculate ‘semi-classical’ corrections
to the deterministic neural field equation in the weak noise limit by carrying out a perturbation
expansion in σ and constructing the corresponding effective action [205, 228]. For example,
the leading order correction to equation (3.2) takes the form
∂ν

∂t
= −ν(x, t)+

∫
w(x − y)F(ν(y, t)) dy

+ σ 2

2

∫
w(x − y)C(y, y, t)F ′′(ν(y, t)) dy + O(σ 4), (6.119)

where C is the O(1) two-point correlation function

C(x, x′, t) = 1

σ 2
〈〈U (x, t)U (x′, t)〉〉 − 〈〈U (x, t)〉〉〈〈U (x′, t)〉〉. (6.120)

It is also possible to derive a corresponding evolution equation for the correlation function C
[228, 205].

7. Discussion

As we have highlighted in this review, neural field theory provides a mathematical framework
for developing large-scale population models of cortical dynamics. In particular, a continuum
description of spatially structured biological neural networks allows many techniques from
PDE theory to be adapted to the neural context. Although neural field models neglect
information at the level of individual spikes, as well as the associated conductance-based
mechanisms for generating such spikes, they have been remarkably successful in describing
a wide range of phenomena at the population level. One of the outstanding challenges is
determining to what extent the various spatially coherent dynamical states supported by neural
fields persist when the discrete-like nature of spiking neurons is taken into account. In certain
cases coherent states have been shown to persist. For example, a 1D network of spiking neurons
can support a stable activity bump, although the bump can destabilize in the case of sufficiently
fast synapses, which is not seen in the corresponding rate model [139, 140]. Spiking networks
also support traveling pulses analogous to those found in rate-based neural field models
with adaptation [234, 235]. Another important issue concerns how to go beyond mean-field
theories so that higher-order statistical correlations between populations of neurons can also
be determined. This in turn raises a number of questions regarding the nature of stochasticity
at the population level (which we touched upon in section 6), the role of statistical correlations
in information processing, and the spatial/temporal scale of such correlations.

Broadly speaking, current applications of neural fields can be divided into three distinct
problem domains. The first, as exemplified by the phenomena of population tuning curves
[26], geometric visual hallucinations [20] and binocular rivalry waves [117], requires
understanding the feature-based anatomy of cortical connections. That is, in order to relate
patterns of cortical activity predicted by neural field models with visual psychophysics and
neurophysiology, it is necessary to consider how the spatial distribution of synaptic connections
correlates with corresponding stimulus-based feature maps; in general such connections will
be heterogeneous. Extensions to other sensory modalities such as audition also need to be

100



J. Phys. A: Math. Theor. 45 (2012) 033001 Topical Review

developed. Another important application domain concerns the use of neural fields in the
forward modeling of brain imaging data based on EEG and functional magnetic imaging
(fMRI), for example. One particularly interesting recent development is the use of brain-wave
equations [21, 65, 22–24] to relate co-registered imaging modalities that combine the spatial
resolution of EEG with the temporal resolution of fMRI [236]. Such forward modeling has to
take into account the large-scale structural connectivity of the brain, the geometry of the folded
three-dimensional cortical sheet, and the coupling between neural activity and blood flow (in
order to determine the so-called fMRI BOLD signal) [237–240]. Moreover, in order to take
proper account of the effects of dendritic filtering on the generation of extracellular electric
fields and the EEG signal [241], it will be necessary to incorporate dendritic structure into
neural field models along the lines outlined in [47]. The third problem domain involves more
abstract neural field representations of dynamic cognitive processes [242, 243]. Here one of
the major challenges is solving the associated inverse problem, that is, finding an appropriate
synaptic weight kernel that generates a given trajectory in cognitive space. Such an inverse
problem tends to be high-dimensional and ill-posed.

The last example suggests yet another interesting future direction of neural field theory,
namely, to build upon the early work of Amari and collaborators on self-organizing neural fields
[244, 245]. The basic idea is to combine the theory of bump formation in a lateral inhibition
network (cortical layer) with competitive Hebbian learning dynamics on the feedforward
weights from an input layer. It is found numerically that starting from a crude topographic
map between the input layer and the cortical layer, the system evolves to a more refined
continuous map that is dynamically stable. In the simpler one-dimensional case, conditions
for the existence and stability of such a map can be derived analytically. Moreover, it can be
shown that under certain circumstances the continuous topographic map undergoes a pattern
forming instability that spontaneously breaks continuous translation symmetry, and the map
becomes partitioned into discretized blocks; it has been suggested that these blocks could be
a precursor for the columnar microstructure of cortex [244, 245]. Given that cortical columns
tend to be associated with stimulus features such as ocular dominance and orientation (see
section 5.2), this raises the interesting question whether or not such features could also emerge
through the spontaneous symmetry breaking of self-organizing neural fields. This issue has
recently been addressed in terms of spontaneous symmetry breaking [246]. For example, it can
be shown that a binocular one-dimensional topographic map can undergo a pattern forming
instability that breaks the underlying Z2 symmetry between left and right eyes. This leads to
the spatial segregation of eye specific activity bumps consistent with the emergence of ocular
dominance columns. Moreover a two-dimensional isotropic topographic map can undergo a
pattern forming instability that breaks the underlying rotation symmetry. This leads to the
formation of elongated activity bumps consistent with the emergence of orientation preference
columns. A particularly interesting property of the latter symmetry breaking mechanism is
that the linear equations describing the growth of the orientation columns exhibits a rotational
shift-twist symmetry (see section 5.4), in which there is a coupling between orientation and
topography. Such coupling has been found in experimentally generated orientation preference
maps.
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