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We use the theory of noise-induced phase synchronization to analyze the effects of demographic noise

on the synchronization of a metapopulation of predator-prey systems within a fluctuating environment

(Moran effect). Treating each local predator-prey population as a stochastic urn model, we derive a

Langevin equation for the stochastic dynamics of the metapopulation. Assuming each local population

acts as a limit cycle oscillator in the deterministic limit, we use phase reduction and averaging methods to

derive the steady-state probability density for pairwise phase differences between oscillators, which is

then used to determine the degree of synchronization of the metapopulation.

DOI: 10.1103/PhysRevLett.107.118102 PACS numbers: 87.23.Cc, 02.50.Ey, 05.40.�a

A major problem in ecology is understanding the
mechanisms for synchronizing spatially separated popula-
tions or patches (metapopulations) [1]. It is important in
conservation because synchrony is strongly correlated with
the chances of global extinction [2]. On the other hand,
synchrony may be desirable in the case of pest or pathogen
control, since it can help to eliminate an outbreak [3].
There are two basic mechanisms for synchronizing patches
within a metapopulation: isolated patches can be driven by
the same environmental fluctuations (the so-called Moran
effect [4]) or patches can interact with each other through
dispersal in a constant environment [5–7]. The dominant
mechanism will depend on the spatial scale of the meta-
population and the nature of the local patch dynamics.

In this Letter, we use the theory of noise-induced phase
synchronization to analyze the effects of demographic
noise on the synchronization of a metapopulation of
predator-prey systems within a fluctuating environment.
Noise-induced phase synchronization concerns the general
dynamical theory of how a global extrinsic noise source
can synchronize an ensemble of uncoupled limit cycle
oscillators [8,9]. Although the theory has applications to
a wide range of systems in the physical and life sciences
(most recently neuroscience), it has not previously been
applied within ecology, even though the Moran effect has
been known for a long time. Moreover, in most previous
applications, all sources of noise are extrinsic to the oscil-
lator rather than partially arising from finite size effects
(see [10] for an analysis of demographic noise in neural
population oscillators). We start by incorporating demo-
graphic noise into a single predator-prey system using a
stochastic urn model [11]. Approximating the associated
master equation using a Kramers-Moyal expansion [12],
we derive a Langevin equation for an ensemble of
predator-prey systems. We show that the multiplicative
Gaussian noise terms can be decomposed into a set of
independent white noise processes that are uncorrelated

across populations (demographic noise) and an additional
white noise term that is common to all populations (envi-
ronmental noise). Assuming that each predator-prey sys-
tem acts as a limit cycle oscillator in the deterministic
limit, we use phase reduction and averaging methods
to derive the steady-state probability density for pairwise
phase differences between oscillators, which is then used
to determine the degree of synchronization of the metapo-
pulation. We illustrate this using the Holling-Tanner
model [13,14].
Suppose that at time t there are m individuals of species

C1 (prey) and n individuals of species C2 (predators). Let
the total number of individuals within a patch have an
upper bound N and use the symbol E to denote the set of
N �m� n available slots for reproduction and intraspe-
cies competition. Following Ref. [11], we consider a gen-
eral stochastic urn model of a predator-prey system
consisting of the following processes: birth processes
CjE!bjCjCj, death processes Cj!djE, intraspecies com-

petition CjCj!cjCjE, and predator-prey interactions

C1C2!p1C2E,C1C2!p2C2C2. Here bj, dj, cj are the birth,

death, and competition rates, p1 is the rate of prey con-
sumption due to predation, and p2 is the growth rate of
predators at the expense of prey. Suppose that a pair of
constituents is drawn with probability � and a single
constituent is drawn with probability 1��. We can then
write down the following transition rates Tr;sðm; nÞ from
state (m, n) to (mþ r, nþ s) [11]:

T�1;0ðm;nÞ¼ ð1��Þd1m=Nþ2�c1�m;m�1þ2�p1�m;n;

T0;�1ðm;nÞ¼ ð1��Þd2n=Nþ2�c2�n;n�1;

T1;0ðm;nÞ¼2�b1�m;N�m�n;

T0;1ðm;nÞ¼2�b2�n;N�m�n;

T�1;1ðm;nÞ¼2�p2�m;n;
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where �n;m ¼ nm=ðNðN � 1ÞÞ. The master equation for

the probability Pm;nðtÞ that the system consists of m prey

and n predators at time t then takes the form

dPm;n

dt
¼ X

r;s

½Tr;sðm0; n0ÞPm0;n0 � Tr;sðm; nÞPm;n�; (1)

with m0 ¼ m� r, n0 ¼ n� s.
An exact solution of the master equation (1) can rarely

be found, so it is necessary to consider some form of
approximation. In particular, for large N we can carry out
a Kramers-Moyal expansion of the master equation (1)
[12]. Introduce new variables x1 ¼ m=N, x2 ¼ n=N, and
set Pm;nðtÞ ¼ Pðx1; x2; tÞ. Treating x1, x2 as continuous

variables and Taylor expanding each term on the right-
hand side of Eq. (1) to second order in 1=N yields the
Fokker-Planck (FP) equation

@P
@t

¼ � X
i¼1;2

@ðAiðxÞPÞ
@xi

þ �2

2

X
i;j¼1;2

@2ðGijðxÞPÞ
@xi@xj

; (2)

where x ¼ ðx1; x2Þ, � ¼ 1=
ffiffiffiffi
N

p � 1,

A1ðxÞ¼2b1x1ð1�x1�x2Þ�2c1x
2
1�d1x1

�2ðp1þp2Þx1x2;
A2ðxÞ¼2b2x2ð1�x1�x2Þ�2c2x

2
2�d2x2þ2p2x1x2; (3)

and GjjðxÞ is obtained from AjðxÞ by reversing the minus

sign on the last three terms, whereas G12ðxÞ ¼ G21ðxÞ ¼
�2p2x1x2. We have rescaled the various rates according
to dk ! ð1��Þdk=N, bk ! �bk=ðN � 1Þ, ck ! �ck=
ðN � 1Þ, pk ! �pk=ðN � 1Þ.

Next we introduce the three stoichiometric vectors
v1 ¼ ð1; 0ÞT , v2 ¼ ð0; 1ÞT , v3 ¼ ð�1; 1ÞT , which (up to a
sign) represent all possible increments in the number of
predator and prey induced by single interactions. For ex-
ample, predation C1C2 ! C2C2 is represented by the stoi-
chiometric vector ð�1; 1ÞT . It can then be shown that the
solution to the FP equation (2) determines the probability
density function for a corresponding stochastic process
X ¼ ðX1; X2Þ that evolves according to an Ito type

Langevin equation dX ¼ AðXÞdtþ �
P

3
i¼1 B

ðiÞðXÞdWi,

where BðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GjjðxÞ � 2p2x1x2

q
vj, j ¼ 1, 2, and Bð3Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p2x1x2
p

v3. Here Wi denotes an independent Wiener
process such that hdWiðtÞi ¼ 0 and hdWiðtÞdWjðtÞi ¼
�i;jdt. The Langevin equation approximates the effects of

demographic noise arising from the finite size N of the
local predator-prey population. It is also possible to include
a common extrinsic noise source due to environmental
fluctuations. For concreteness, suppose that we add a sto-
chastic term to the birth rates bk according to bk ! bk þ
��ðtÞ=2, where �ðtÞ is a white noise term and � is the
strength of environmental noise. Substituting for bk in
Eq. (3) and expanding to Oð�Þ leads to an additional
multiplicative term in the Langevin equation of the form

�HðXÞdW, where H ¼ ðH1; H2Þ with H1ðXÞ ¼ r1x1
ð1� x1 � x2Þ, H2ðXÞ ¼ r2x2ð1� x1 � x2Þ, and dWðtÞ ¼
�ðtÞdt is an additional independent Wiener process, which
is treated in the sense of Stratonovich.
In the deterministic limit (�, � ! 0) the Langevin equa-

tion reduces to the deterministic planar dynamical system
_x1 ¼ A1ðxÞ, _x2 ¼ A2ðxÞ with Aj given by Eq. (3). Suppose

that the deterministic system supports a limit cycle solution
x ¼ x�ðtÞwith x�ðtþ kTÞ ¼ x�ðtÞ for all integers k, where
T is the period of oscillations. Now consider an ensemble
of N identical, spatially separated predator-prey patches,
each of which acts as a limit cycle oscillator in the deter-
ministic limit. If we ignore spatial interactions (dispersal,
migration) between the isolated patches, then we have a
system of uncoupled population oscillators driven by a
common environmental noise source. Introducing the label
�,� ¼ 1; . . . ;N , the Langevin equation for the ensemble
of patches is

dXð�Þ ¼ Að�Þdtþ �
X3
i¼1

Bði;�ÞdWð�Þ
i þ �Hð�ÞdW; (4)

where Að�Þ ¼ AðXð�ÞÞ, etc. We associate an independent

set of Wiener processes W
ð�Þ
j with each population oscil-

lator (demographic noise) but take the environmental noise

to be common to all the oscillators: hdWð�Þ
i ðtÞdWð�Þ

j ðtÞi ¼
�i;j��;�dt, hdWð�Þ

i ðtÞdWðtÞi ¼ 0, hdWðtÞdWðtÞi ¼ dt.

Following previous studies of noise-induced phase syn-
chronization [8–10], we now carry out a stochastic phase
reduction of the Langevin equation (4). First, we introduce
the phase variable � 2 ð�	;	� such that the dynamics of
a single oscillator in the absence of noise reduces to the
simple phase equation _� ¼ !0, where !0 ¼ 2	=T. We
then extend the notion of phase into some neighborhood
M � R2 of the limit cycle using an isochronal mapping
�: M ! ð�	;	�, with � ¼ �ðxÞ, assuming that the
limit cycle is sufficiently attracting so that for small �
and �, the dynamics can be restricted to the neighborhood
M with high probability [15]. This allows us to define a
stochastic phase variable for each oscillator according to

�ð�Þ ¼ �ðXð�ÞÞ with Xð�Þ evolving according to the
Langevin equation (4). After converting the demographic
noise terms in Eq. (4) to Stratonovich form [which adds an
Oð�2Þ correction to the drift terms [10] ], we perform a

change of variables Xð�Þ ! ð�ð�Þ; rð�ÞÞ and then project
out the phase dynamics along the lines of Ref. [16]. This
ultimately leads to an Ito Langevin equation for the sto-

chastic phase variables �ð�Þ of the form

d�ð�Þ ¼ !ð�Þdtþ �
X3
i¼1



ð�Þ
i dW

ð�Þ
i þ ��ð�ÞdW; (5)

with 
ð�Þ
i ¼
ið�ð�ÞÞ�Zð�ð�ÞÞ �BðiÞð�ð�ÞÞ, �ð�Þ ¼

�ð�ð�ÞÞ�Zð�ð�ÞÞ �Hð�ð�ÞÞ and !ð�Þ ¼ !ð�ð�ÞÞ �
!0 þ �2�1ð�ð�ÞÞ þ �2�2ð�ð�ÞÞ. Here Z ¼ ðZ1; Z2Þ
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where Zk, k ¼ 1, 2, is the kth component of the infinitesi-
mal phase resetting curve (PRC), which is defined as
Zkð�Þ � @xk�jx¼x�ð�Þ with

P
k¼1;2Zkð�ÞAkðx�ð�ÞÞ ¼ !.

The PRC is the unique, normalized 2	-periodic solution
of the adjoint equation [17] _Zk ¼ �P

j¼1;2Ajkðx�ðtÞÞZjðtÞ,
where Ajk ¼ @Aj=@xk. All terms in Eq. (5) are evaluated

on the limit cycle so that, for example, BðiÞð�Þ ¼
BðiÞðx�ð�ÞÞ. As first shown in Ref. [16], and further devel-
oped in Refs. [18], considerable care must be taken in
carrying out the phase reduction procedure in the presence
of Gaussian white noise in order to obtain the correct form
of the drift terms �1, �2. However, the latter will not be
important in the following analysis.

Following Ref. [9], we now introduce slow phase

variables c ð�Þ ¼ �ð�Þ �!0t and set Qðfc ð�Þg; tÞ ¼
Pðfc ð�Þ �!0tg; tÞ where P is the probability density of

the phases �ð�Þ. For small � and �, Q is a slowly varying
function of time, so we can average the FP equation for

Q over one cycle of length T ¼ 2	=!0 to get @tQ¼
� ��

PN
�¼1@c ð�ÞQþ 1

2

PN
�¼1

PN
�¼1@c ð�Þc ð�Þ ½ �Cð��ÞQ�, where

�� ¼ 1
2	

R
	
�	½�2�1ð�Þ þ �2�2ð��d�, �Cð��Þ ¼�2gðc ð�Þ �

c ð�ÞÞþ�2hð0Þ��;� with gðc Þ¼ 1
2	

R
	
�	�ð�0Þ�ð�0 þc Þd�0

and hðc Þ ¼ 1
2	

R
	
�	

P3
i¼1 
ið�0Þ
ið�0 þ c Þd�0. In order

to characterize the level of synchrony, we focus on a
pair of population oscillators (N ¼ 2). Performing

the change of variables c ¼ ðc ð1Þ þ c ð2ÞÞ=2, � ¼
c ð1Þ � c ð2Þ, and looking for separable steady-state solu-

tions Qðc ð1Þ; c ð2ÞÞ ¼ �ðc Þ�ð�Þ, it can be shown that [9]

�ð�Þ ¼ �0½�2ðgð0Þ � gð�ÞÞþ �2hð0Þ��1 (6)

with �0 a normalization constant, and �ðc Þ ¼ 1=2	. We
see that �ð�Þ is independent of the drift terms �jð�Þ.

In the thermodynamic limit N ! 1 we have � ¼
N�1=2 ! 0 so that the independent noise source vanishes.
The distribution �ð�Þ then diverges at � ¼ 0 while keep-
ing positive since it can be shown that gð0Þ � gð�Þ [9].
Hence, the phase difference between any pair of oscillators
accumulates at zero, resulting in complete noise-induced
synchronization. Thus, a randomly fluctuating global en-
vironmental signal can synchronize a metacommunity of
deterministic predator-prey systems in the absence of dis-
persal, consistent with the Moran effect [4]. However, for
finite N, demographic noise broadens the distribution of
phase differences, resulting in the desynchronization of the
metacommunity. As we now show, the width of �ð�Þ is a
good measure of the desynchronizing effects of demo-
graphic noise.

As an illustrative example of an oscillatory predator-
prey system, consider the Holling-Tanner model [13,14]

_x 1 ¼ rx1

�
1� x1

K

�
� mx1x2

A0 þ x1
; _x2 ¼ sx2

�
1� hx2

x1

�
:

(7)

In this model, the prey exhibit logistic growth up to a
carrying capacity K in the absence of predation. The
predator consumes prey according to a Michaelis-Menten
or Holling type-II functional response and grows logisti-
cally up to a carrying capacity x=h proportional to the
current level of prey in the system. It is straightforward
to find a set of parameters for which Eq. (7) supports a limit
cycle [14] and to numerically evaluate the corresponding
PRCs, see Fig. 1(a). Comparing the right-hand side of
Eqs. (7) with the drift functions of Eq. (3), we set b1 ¼
r=2K, b2 ¼ ðsþ d2Þ=2, d1 ¼ rð1=K � 1Þ, c1 ¼ 0, c2 ¼
sh=2x1 � ðsþ d2Þ=2, p1 ¼ m=½2ðA0 þ x1Þ� � ðsþ d2Þ=
2� r=2K, p2 ¼ ðsþ d2Þ=2, where d2 is a free parameter.
For concreteness, we set d2 ¼ s. We can now determine
the functions g, h in Eq. (6) for an ensemble of Holling-
Tanner oscillators using the given PRC, see Fig. 1(b).
In Fig. 2 we relate our analytical results for the distri-

bution �ð�Þ to direct numerical simulations of the
Langevin Eq. (4) for the Holling-Tanner model. The simu-
lations are carried out using an Euler-Maruyama scheme,
with the Stratonovich environmental noise treated as a
solution of a zero-mean Ornstein-Uhlenbeck process with
a small but finite correlation time. In order to quantify the
effects of demographic noise on the metapopulation, we
introduce ensemble averaged concentrations of prey and

predator according to �XjðtÞ ¼ N �1
PN

�¼1 X
ð�Þ
j ðtÞ, j ¼ 1,

2. For a high ratio of extrinsic to intrinsic noise, there is
significant synchronization of the metapopulation, as in-
dicated by the sharp peak of the steady-state distribution
�ð�Þ at � ¼ 0 in Fig. 2(a) and the corresponding cluster-
ing of the individual oscillators on the deterministic limit
cycle [Fig. 2(d)]. It can also be seen that �XjðtÞ traces out a
trajectory in the phase-plane that remains close to the
deterministic limit cycle. For a moderate ratio of extrinsic
to intrinsic noise, the metapopulation is only partially
synchronized. The distribution � is now much broader
[Fig. 2(b)] and, although the oscillators tend to remain
close to the deterministic limit cycle, they are no longer
tightly clustered. Thus, �XjðtÞ still exhibits some oscillatory

behavior but the amplitude of oscillations is reduced

0 2 4 6
−200

0

100

200
300
400

phase θ

Z
(θ

)

Z1

Z2(a)

0 1 2 3
-1

0

1

2

φ

g(
φ)

(b)

X2

X1
0 0.1 0.2 0.3

0.04

0.06

0.08

 -500

0

500

1000

1500

h(
φ)

−100

FIG. 1. (a) Plot of components Z1, Z2 of PRC for a limit cycle
solution of the Holling-Tanner equations with r ¼ 1, A0 ¼ 0:1,
s ¼ 0:1, h ¼ 2, m ¼ 3, and K ¼ 0:5. (b) Corresponding func-
tions gð�Þ and hð�Þ. Inset shows limit cycle.
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[Fig. 2(e)]. Finally, for a low ratio of extrinsic to intrinsic
noise, the metapopulation is completely desynchronized.
The density � is almost flat [Fig. 2(c)], and individual
oscillators are much more scattered in the phase-plane so
that �XjðtÞ exhibits small fluctuations about the mean of the

limit cycle [Fig. 2(f)]. In order to further quantify how
demographic noise affects synchrony, we introduce the

order parameter RðtÞ ¼ N �1jPN
�¼1 e

i�ð�ÞðtÞj and the

half-width � with
R�=2
��=2 �ð�Þd� ¼ 0:5. In Fig. 3 we

show how the half-width � provides an excellent predictor
of the level of synchrony by comparing its dependence on
system size N with the time average of RðtÞ.

In conclusion, we have applied stochastic phase reduc-
tion and averaging methods to analzye an important
ecological problem, namely, the effects of demographic
noise on the synchronization of a metapopulation in a
fluctuating environment (Moran effect). We have shown
that the degree of synchronization of the metapopulation
can be characterized in terms of the probability density for
pairwise phase differences. One major implication of our
work is that the stabilizing effects of demographic noise
[Fig. 2(f)] could provide an explanation for why oscilla-
tions are often not observed in real ecological systems,
contrary to predictions from deterministic models [19].
There are numerous ecologically motivated extensions of
this work, including dispersal between local patches, spa-
tial heterogeneity [20], and the decay of synchrony with
spatial separation of the patches [1,2].
This work was partially supported by King Abdullah

University of Science and Technology Grant No. KUK-C1-
013-04.
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