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We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a
searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is
random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher
moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-
steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced
Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion
tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we
use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the
assumption that the detection range of the target is much smaller than the size of the domain. We show that an
optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric
domain that were based on a decoupling or moment closure approximation. We also show how the decoupling
approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case
of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location.
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I. INTRODUCTION

Random search strategies occur throughout nature as a
means of efficiently searching large areas for one or more
targets of unknown location, which can be detected only
when the searcher is within a certain range. Examples include
animals foraging for food or shelter [1–4], the active transport
of reactive chemicals in cells [5–9], a promoter protein
searching for a specific target site on DNA [10–13], and
the motor-driven transport and delivery of mRNA to synaptic
targets along the dendrites of neurons [14–16]. One particular
class of model, which can be applied both to foraging animals
and active transport in cells, treats a random searcher as a
particle that switches between a slow motion (diffusive) or
stationary phase in which target detection can occur and a fast
motion “ballistic” phase; transitions between bulk movement
states and searching states are governed by a Markov process
[17–21]. Under the assumptions that the random search is
unbiased and that the probability of finding a single hidden
target is unity, it can be shown that there exists an optimal
search strategy given by the durations of each phase that
minimize the mean first passage time (MFPT) to find the target.
Motivated by experimental observations of the motor-driven
transport of mRNA granules in dendrites [22,23], we recently
extended a one-dimensional (1D) version of these models to
the case of a directed intermittent search process, in which
the motion is directionally biased and there is a nonzero
probability of failing to find the target (due to competition
with other targets or degradation) [15,16]. In particular, we
showed that there no longer exists an optimal search strategy
unless additional constraints are imposed such as fixing the
target hitting probability.

In the case of 1D intermittent search processes, in which
the number of internal states of the searcher is sufficiently
small, it is possible to derive analytical expressions for the
MFPT and hitting probabilities by explicitly solving the
backward equation of the associated Chapman-Kolmogorov

(CK) equations [15,17,18]. However, if the number of internal
velocity states becomes large then some form of approximation
is needed. For example, in higher spatial dimensions where
the direction of motion is random, one can use a decoupling
approximation between the second-order moments of the ve-
locity distribution and the MFPT [19,20]. One example where
the number of internal states of the searcher can become large
even in 1D is the molecular motor-based bidirectional transport
of intracellular cargo along microtubule filaments. There is
growing evidence that such transport is a result of the combined
action of multiple motors attached to the cargo; the current
velocity state is then determined by the subset of motors
currently bound to the microtubule [24]. Microtubules are po-
larized filaments with biophysically distinct (+) and (−) ends,
and this polarity determines the preferred direction in which
an individual molecular motor moves. For example, kinesin
moves toward the (+) end, whereas dynein moves toward
the (−) end. Thus, one possible mechanism for bidirectional
transport is that groups of kinesin and dynein motors undergo
a tug-of-war competition, where individual motors influence
each other through the force they exert on the cargo [25–27].
We have recently analyzed a tug-of-war model of 1D random
intermittent search, by carrying out a quasi-steady-state (QSS)
reduction of the corresponding CK equation [28]. The QSS
reduction is based on the observation that the state transition
rates of the searcher (motor-cargo complex) are fast compared
to the velocities over a characteristic length scale. The reduced
model is described by a scalar Fokker-Planck (FP) equation,
which can then be used to calculate the MFPT to find a target
for a wide range of biophysically realistic motor transport
models [29,30].

In the case of axonal or dendritic transport in neurons, the
microtubles tend to be aligned in parallel [31] so one can treat
the transport process as effectively 1D. On the other hand,
intracellular transport within the soma of neurons and most
nonpolarized animal cells occurs along a microtubular network
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that projects radially from an organizing center (centrosome)
with outward polarity [32]. This allows the delivery of cargo
to and from the nucleus. Moreover, various animal viruses
including HIV take advantage of microtubule-based transport
in order to reach the nucleus from the cell surface and release
their genome through nuclear pores [33,34]. In contrast, the
delivery of cargo from the cell membrane or nucleus to
other localized cellular compartments will require a nonradial
path involving several tracks. It has also been found that
microtubules bend due to large internal stresses, resulting
in a locally disordered network. This suggests that in vivo
transport on relatively short length scales may be similar to
transport observed in vitro, where microtubular networks are
not grown from a centrosome and thus exhibit orientational
and polarity disorder [9,35]. A detailed microscopic model of
intracellular transport within the cell would need to specify the
spatial distribution of microtubular orientations and polarity in
order to specify which velocity states are available to a motor-
cargo complex at a particular spatial location. However, a
simplified model can be obtained under the “homogenization”
assumption that the network is sufficiently dense so that the
set of velocity states (and associated state transitions) available
to the diffusing motor complex is independent of position. In
that case, one can effectively represent the active transport and
delivery of cargo to an unknown target within the cell in terms
of a two- or three-dimensional random intermittent search
model. This provides motivation for extending our previous
QSS analysis to higher-dimensional search problems.

In this paper, we perform a QSS analysis of a two-
dimensional (2D) random intermittent search process. We
assume that all velocity states accessible to the searcher have
the same speed v but take the transition rates between the
ballistic and search phases to depend on the particular direction
θ of the velocity state. (In the case of active transport on
an homogenized microtubular network, this could reflect a
dependence of the binding-unbinding rates on the density of
microtubules of different orientations). We first show how
the QSS reduction leads to a FP equation with a nonzero
advection or drift term and an anisotropic diffusion tensor
(Sec. II). In the special case that all velocity states are equally
likely, we recover the random intermittent search model
analyzed by Benichou et al. [8,19,20], and the associated
FP equation describes isotropic diffusion with zero drift. We
then investigate the effectiveness of the QSS reduction by
using the FP equation to calculate the MFPT to find the
target in a bounded planar domain with reflecting external
boundaries (Sec. III). Under the further assumptions that the
target disk is much smaller than the search domain and the
search process is unbiased, we use matched asymptotics along
the lines of Refs. [36–38] to calculate the MFPT as a function
of model parameters and compare our results with Monte
Carlo simulations of the full model. As in previous studies
of unbiased random intermittent search processes [8,19,20],
there exists a global minimum of the MFPT as a function of
the transition rates. An additional feature of our analysis is
a comparison of the QSS approximation with the decoupling
approximation of Benichou et al.. One advantage of the QSS
method is that it provides a systematic perturbation scheme
that is applicable to a wide range of intermittent search
models. Indeed, we show how the decoupling approximation

breaks down in the case of biased search processes. On the
other hand, the decoupling approximation generates a more
analytically tractable expression for the MFPT in the case of
unbiased search processes, which can then be used to calculate
the global minimum. (In order to obtain sufficient numerical
accuracy under the QSS approximation, it is necessary to
include higher-order terms in the asymptotic expansion).

II. RANDOM INTERMITTENT SEARCH MODEL

Consider a particle searching for a hidden target in
the bounded planar domain � = {(x,y), 0 � x,y � L}; see
Fig. 1. Within the interior of the domain �, the particle
can exhibit two types of behavior: either Brownian motion
with diffusion coefficient D0 or ballistic motion with velocity
v(θ ) = v(cos θ, sin θ ) and θ ∈ [0,2π ). We assume that the
target is at a fixed but unknown location r0 = (x0,y0). If the
particle is within a Euclidean distance ρ of the target and is in
the diffusing phase, then the particle can detect or, equivalently,
be absorbed by the target at a rate k. We also assume throughout
that the target disk

U = {(x,y) ∈ R2‖
√

|x − x0|2 + |y − y0|2 � ρ}

lies fully within the planar domain �, that is, U ⊂ �.
Transitions between the diffusing state and a ballistic state
are governed by a discrete Markov process. The transition rate
β from a ballistic state with velocity v(θ ) to the diffusive state
is taken to be independent of θ , whereas the reverse transition
rate is taken to be of the form αQ(θ ) with

∫ 2π

0 Q(θ )dθ = 1.
Suppose that at time t the searcher is undergoing ballistic

motion. Let (X(t),Y (t)) be the current position of the searcher
and let �(t) denote the corresponding velocity direction.
Introduce the conditional probability density p(x,y,θ,t) such
that p(x,y,θ,t)dxdydθ is the joint probability that (x,y,θ ) <

[X(t),Y (t),�(t)] < (x + dx,y + dy,θ + dθ ) given that the
particle is in the ballistic phase. Similarly, take p0(x,y,t)
to be the corresponding conditional probability density if
the particle is in the diffusive phase. For the moment we
will leave the initial conditions unspecified. We then have

target

ρ

FIG. 1. (Color online) Stochastic model of random intermittent
search.
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the following CK equations describing the evolution of the
probability densities for t > 0:

∂p

∂t
= −∇ · (v(θ )p) − βp + αQ(θ )p0 (2.1)

∂p0

∂t
= D0∇2p0 + β

∫ 2π

0
p(r,θ ′,t)dθ ′ − αp0

− kχ (r)p0, (2.2)

with r = (x,y). The indicator function χ is defined according
to

χ (x,y) =
{

1, if (x,y) ∈ U
0, otherwise.

(2.3)

Equations (2.1) and (2.2) are supplemented by reflecting
boundary conditions along ∂�, that is, at x = 0,L and y =
0,L. Note that in the case of a uniform density,Q(θ ) = 1/(2π ),
Eqs. (2.1) and (2.2) reduce to the random intermittent search
model considered by Benichou et al. [8,19,20].

Let P (t) be the probability that the searcher has not found
(been absorbed by) the target at time t . Thus,

P (t) =
∫

�

[∫ 2π

0
p(x,y,θ,t)dθ + p0(x,y,t)

]
dxdy.

Integrating Eqs. (2.1) and (2.2) with respect to r,θ shows that

dP

dt
= −

∫
�

∇ ·
[∫ 2π

0
v(θ )p(r,θ,t)dθ

]
dr

+D0

∫
�

∇2p0(r,t)dr − k

∫
�

χ (r)p0(r,t)dr.

Using the divergence theorem, it follows that the probability
flux through a point on the boundary r ∈ ∂� with outward unit
normal n̂ is

J0(r,t) =
[∫ 2π

0
v(θ )p(r,θ,t)dθ − D0∇p0(r,t)

]
· n̂, (2.4)

so the reflecting boundary condition is J0(r,t) = 0 for all t > 0
and r ∈ ∂�. It also follows that the total probability flux due
to absorption by the target is

J (t) = k

∫
U

p0(x,y,t)dxdy, (2.5)

where U is the target disk.

A. QSS reduction

In order to carry out a quasi-steady-state (QSS) reduction of
the CK equations (2.1) and (2.2), we first nondimensionalize
by fixing the units of space and time according to L = 1 and
L/v = 1. Furthermore, we assume that for the given choice
of units, there exists a small parameter ε � 1 such that all
transition rates are O(ε−1), the diffusivity D0 = O(ε), and all
velocities are O(1). That is, we assume that traveling in the
moving state allows the searcher to cover more ground then it
can by diffusing in the searching state, so the diffusivity in the
searching state is assumed to be small compared to the velocity
in the moving state. We also assume that the hidden target is
located within a large search domain, making it difficult to
find and requiring the searcher to switch between the moving
and searching state often as it explores the domain. Performing
the rescalings D0 → εD0, α → α/ε, and β → β/ε, Eqs. (2.1)

and (2.2) become

∂p

∂t
= −∇ · (vp) − β

ε
p(r,θ,t) + αQ(θ )

ε
p0(r,t) (2.6)

∂p0

∂t
= εD0∇2p0 + β

ε

∫ 2π

0
p(r,θ ′,t)dθ ′ − α

ε
p0(r,t)

− kχ (r)p0(r,t). (2.7)

In the limit ε → 0, the system rapidly converges to the
space-clamped (i.e., ∇p = ∇p0 = 0) steady–state distribu-
tions (pss(θ ),pss

0 ) where

pss
0 = β

α + β
≡ b, pss(θ ) = αQ(θ )

α + β
≡ aQ(θ ). (2.8)

The QSS approximation is based on the assumption that for
0 < ε � 1, solutions remain close to the steady-state solution.
Hence, we set

p(r,θ,t) = u(r,t)pss(θ ) + εw(r,θ,t) (2.9)

p0(r,t) = u(r,t)pss
0 + εw0(r,t), (2.10)

where

u(r,t) ≡
∫ 2π

0
p(r,θ,t)dθ + p0(r,t) (2.11)

and ∫ 2π

0
w(r,θ,t)dθ + w0(r,t) = 0. (2.12)

Furthermore, we take the initial conditions to be

u(r,0) = δ(r − r0), w(r,0) = w0(r,0) = 0, (2.13)

which are equivalent to the following initial conditions for the
full probability densities:

p(r,θ,0) = δ(r − r0)pss(θ ), p0(r,0) = δ(r − r0)pss
0 .

(2.14)

Thus, we are assuming that the initial internal state of the
searcher [diffusive or ballistic with velocity v(θ )] is generated
according to the steady-state distributions pss(θ ) and pss

0 . In
other words, the searcher starts on the slow manifold of the
underlying dynamics. If this were not the case, then one would
need to carry out a multiscale analysis in order to take into
account the initial transient dynamics transverse to the slow
manifold [39].

We can now use perturbation and projection methods to
derive a closed equation for the scalar component u(r,t). First,
integrating equation (2.6) over θ and adding equation (2.7)
yields

∂u

∂t
= εD0∇2p0 − 〈〈v · ∇p〉〉 − kχ (r)p0

= εbD0∇2u − a 〈v〉 · ∇u − ε 〈〈v · ∇w〉〉
− kχ (r)[bu + εw0] + O(ε2), (2.15)

where 〈f 〉 = ∫ 2π

0 Q(θ )f (θ )dθ and 〈〈f 〉〉 = ∫ 2π

0 f (θ )dθ for
any function or vector component f (θ ). Next, substituting
Eqs. (2.9) and (2.10) into Eqs. (2.6) and (2.7) yields

aQ(θ )
∂u

∂t
+ ε

∂w

∂t
= −v(θ ) · ∇ [aQ(θ )u + εw]

−βw + αQ(θ )w0. (2.16)
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and

b
∂u

∂t
+ ε

∂w0

∂t
= εD0∇2 (bu + εw0) + β 〈w〉 − αw0

− kχ (r) [bu + εw0] . (2.17)

Now substitute (2.15) into (2.16) and (2.17). Collecting terms
to leading order in ε and using Eq. (2.12) then gives

w0(r,t) ∼ ab

α + β
[〈v〉 · ∇u − kχ (r)u] , (2.18)

and

w(r,θ,t) ∼ Q(θ )

β
[a2(1 + b) 〈v〉 − av(θ )] · ∇u

+ Q(θ )

β
kab2χ (r)u. (2.19)

Finally, substituting Eqs. (2.19) and (2.18) into (2.15) yields
to O(ε) the FP equation

∂u

∂t
= −∇ · (Vu) + εbD0∇2u + ε∇ · (D∇u) − λχ (r)u.

(2.20)

The diffusion tensor D has components

Dxx ∼ a

β

(〈
v2

x

〉− 〈vx〉2 + b2〈vx〉2
)

Dxy ∼ a

β
(〈vxvy〉 − 〈vx〉〈vy〉 + b2〈vx〉〈vy〉) (2.21)

Dyy ∼ a

β

(〈
v2

y

〉− 〈vy〉2 + b2〈vy〉2
)
,

to lowest order in ε, while the effective drift velocity and
detection rate are given by

V ∼ a 〈v〉
[

1 − 2ε
bλ0χ (r)

β

]
(2.22)

λ ∼ λ0

[
1 − ε

aλ0

β

]
, λ0 = bk. (2.23)

In the Appendix we also calculate higher-order contributions to
the diffusion tensor D and detection rate λ. These higher-order
terms depend on χ (r) and will be needed in order to obtain
sufficient numerical accuracy for our calculation of the MFPT
to a small target; see Sec. III. They are only nonzero inside the
target domain because probability leaves the searching state at
a rate k, which perturbs the solution away from the steady-state
distribution. Thus, we can always take k small enough so these
extra terms are negligible. However, if the detection rate is
large compared to the transition rates, the detection rate and
diffusivity can be modified with enough higher-order terms
needed to reach the desired accuracy.

In the case of a uniform direction distribution Q(θ ) =
1/(2π ), the diffusion tensor reduces to a scalar. This follows
from the fact that vx = v cos θ,vy = v sin θ so 〈vx〉 = 〈vy〉 =
〈vxvy〉 = 0 and to leading order

Dxx = av2

2β
= Dyy, Dxy = 0. (2.24)

More generally, assuming that Q(θ ) is sufficiently smooth, we
can expand it as a Fourier series,

Q(θ ) = 1

2π
+ 1

π

∞∑
n=1

[ωn cos(nθ ) + ω̂n sin(nθ )]. (2.25)

Assume further that ω1 = ω̂1 = 0 so there is no velocity bias,
i.e., 〈vx〉 = 〈vy〉 = 0. Then

Dxx = av2

β

∫ 2π

0
cos2(θ )Q(θ )dθ = av2

2β
(1 + ω2) ,

Dyy = av2

β

∫ 2π

0
sin2(θ )Q(θ )dθ = av2

2β
(1 − ω2) , (2.26)

Dxy = av2

β

∫ 2π

0
sin(θ ) cos(θ )Q(θ )dθ = av2

2β
ω̂2.

It follows that only the second terms in the Fourier series
expansion contribute to the diffusion tensor.

Integrating the FP equation (2.20) over the planar domain
� and using the divergence theorem shows that under the QSS
approximation, the flux through the boundary reduces to

J0(r,t) = [Vu(r,t) − εbD0∇u(r,t) − εD∇u(r,t)] · n̂,

(2.27)

whereas the total flux into the target is

J (t) = λ

∫
U

u(x,y,t)dxdy. (2.28)

The form of these fluxes could also be obtained by substi-
tuting equations (2.9) and (2.10) into the rescaled versions
of Eqs. (2.4) and (2.5) and carrying out the appropriate
perturbation expansion with respect to ε.

B. Backwards equation and MFPT

One of the main quantities of interest in random intermittent
search processes is the MFPT to find the target, given that it
started at position r, which we denote by T (r). Consistent with
the QSS reduction, we assume that the initial internal state of
the searcher is determined by the steady-state distributions
pss(θ ) and pss

0 . The MFPT can be calculated directly in terms
of the probability flux through the target according to [40]

T =
∫ ∞

0
tJ (t)dt. (2.29)

One way to proceed would be to carry out the QSS approx-
imation and then use Laplace transforms to solve the FP
equation (2.20) with reflecting boundary conditions J0(r,t) =
0 for all r ∈ ∂� and initial condition u(r′,0) = δ(r′ − r). This
is the approach we took in our QSS analysis of 1D search
problems [16,28,29]. In this paper, however, we will proceed
by solving the corresponding backward equation for the MFPT.
First, note that under the QSS approximation the MFPT can
be defined according to

T (r) =
∫ ∞

0
U (r,t)dt, U (r,t) =

∫
�

u(r′,t)dr′, (2.30)

where U (r,t) is the probability that the searcher has not been
absorbed by the target at time t starting at position r. It can be
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shown from equation (2.20) that U satisfies the backward FP
equation [40]:

∂U

∂t
= V · ∇U + εbD0∇2U + ε∇ · (D∇U ) − λχ (r)U,

(2.31)

where we have used the fact that the diffusion tensor is
symmetric. Integrating (2.31) with respect to time t and
using the initial condition U (r,0) = 1 leads to the following
backward equation for the MFPT T (r)

−1 = V · ∇T + εbD0∇2T + ε∇ · (D∇T ) − λχ (r)T .

(2.32)

Equations (2.31) and (2.32) are supplemented by reflecting
boundary conditions on ∂�.

An alternative method for deriving equation (2.32) is to start
from the backward equations of the full CK system and then
apply the QSS reduction to derive the corresponding backward
FP equation. That is, let f (r,θ,t) denote the conditional
probability density that the searcher has not yet found the
target at time t , given that it was initially at position r and had
velocity v(θ ) at time t = 0. Similarly, let f0(r,t) denote the
corresponding probability density assuming that the searcher
was initially in a diffusing state. It is straightforward to show
from equations (2.6) and (2.7) that f,f0 satisfy the backward
CK equations [40]

∂f

∂t
= v · ∇f − β

ε
[f − f0] (2.33a)

∂f0

∂t
= εD0∇2f0 + α

ε
[〈f 〉 − f0] − kχ (r)f0. (2.33b)

Under the QSS reduction, we decompose the solution as

f = U (r,t) + εz(r,θ,t), f0 = U (r,t) + εz0(r,t), (2.34)

with

U (r,t) ≡ a 〈f (r,θ,t)〉 + bf0(r,t) (2.35)

such that

a 〈z(r,θ,t)〉 + bz0(r,t) = 0. (2.36)

Proceeding along analogous lines to the QSS analysis of the
forwards CK equations, we average equation (2.33a) with
respect to the steady-state distribution pss(θ ) = aQ(θ ) and
add the result to equation (2.33b) multiplied by pss

0 = b. This
gives

∂U

∂t
= a 〈v · ∇f 〉 + εbD0∇2f0 − λ0χ (r)f0. (2.37)

We then subtract the averaged Eq. (2.37) from
Eqs. (2.33a) and (2.33b) and then substitute for f,f0

using Eqs. (2.34). Collecting the leading-order terms in ε and
using Eq. (2.36) shows that

z0 ∼ − 1

α + β
[a 〈v〉 · ∇U + (k − λ0)χ (r)U ] (2.38)

and

z ∼ 1

β
[v(θ ) · ∇U − a(1 + b) 〈v〉 · ∇U + bλ0χ (r)U ] .

(2.39)

Finally, substituting Eqs. (2.34) into Eq. (2.37) with z0,z

given by Eqs. (2.38) and (2.39), we recover the backward
equation (2.31).

C. Decoupling approximation

An alternative method for generating a diffusion-like
equation for the MFPT is presented by Benichou et al. based on
a so-called decoupling approximation [19]. This is essentially a
moment closure approximation of the full system of equations
for the MFPT. Defining T (r,θ ) to be the MFPT to find the
target starting from a ballistic state of velocity v(θ ) and position
r, and T0(r) to be the corresponding MFPT starting in the
diffusing state, we have

T (r,θ ) =
∫ ∞

0
f (r,θ,t)dt, T0(r) =

∫ ∞

0
f0(r,t)dt. (2.40)

Integrating Eqs. (2.33a) and (2.33b) with respect to time t

and using the initial conditions f (r,θ,0) = f0(r,0) = 1 then
shows that

−1 = v(θ ) · ∇T − β

ε
[T − T0] (2.41)

−1 = εD0∇2T0 + α

ε
[T − T0] − kχ (r)T0, (2.42)

We also define the averaged quantities

T (r) = 〈T (r,θ )〉 , �(r) = 〈v(θ )T (r,θ )〉 . (2.43)

We see from Eq. (2.30) that T , T0, and T are related according
to T (r) = aT (r) + bT0(r). Averaging equation (2.41) with
respect to the direction distribution Q(θ ) gives

−1 = ∇ · � − β

ε
(T − T0). (2.44)

Similarly, multiplying equation (2.41) by v(θ ) and then
averaging with respect to Q(θ ) gives

−〈v〉 = 〈[v · ∇T ]v〉 − β

ε
� + β

ε
〈v〉T0. (2.45)

Taking the divergence of this equation, we see that

∇ · �(r) = ε

β
〈(v · ∇)2T 〉 + 〈v〉 · ∇T0. (2.46)

We can obtain a closed set of equations for T ,T0 under the
decoupling or moment-closure approximation [19]

〈vivjT 〉 = 〈vivj 〉〈T 〉 = 〈vivj 〉T . (2.47)

Combining Eqs. (2.44), (2.46), and (2.47) then leads to the
equation

−1 = ε

β
〈(v · ∇)2〉T + 〈v〉 · ∇T0 − β

ε
(T − T0). (2.48)

Equations (2.48) and (2.42) form a closed pair of equations
for T ,T0. In the case of unbiased search processes they reduce
to the MFPT equations previously derived by Benichou et al.
[8,19,20].

In contrast to the QSS analysis, the domain of validity of the
decoupling approximation is not specified. In particular, the
decoupling approximation does not require a priori that
the transition rates are relatively fast (ε � 1). Nevertheless,
we can check whether it is consistent with the QSS analysis in
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the small ε limit. For simplicity, suppose that D0 = 0. We can
then use Eq. (2.42) to express T0 explicitly in terms of T :

T0(r) = α

α + εkχ (r)

[
T̄ (r) + ε

α

]
. (2.49)

If (2.49) is now substituted into (2.48), we obtain the MFPT
equation

−1 = V̂ · ∇T + ε∇ · (D̂∇T ) − λ̂χ (r)T (2.50)

with diffusion tensor D having components

D̂ij = α + εkχ (r)

α + β + εkχ (r)

1

β
〈vivj 〉 (2.51)

and

V̂ = α + β

α + β + εkχ (r)
a 〈v〉 , λ̂ = α + β

α + β + εkχ (r)
λ0.

(2.52)

In the small ε limit, we recover the MFPT equation (2.32) of
the QSS approximation with the same leading order drift term
and detection rate, but the diffusion tensor D is replaced by D̂.
In the case of unbiased search processes (〈v〉 = 0), Eqs. (2.21)
and (2.51) imply that D̂ → D as ε → 0 and, hence, the two
approximation schemes have the same asymptotic limit. It has
previously been shown that the decoupling approximation for
unbiased search processes is accurate over a wide range of
parameters that extends beyond the small ε regime [8,19,20].
This reflects the nonperturbative nature of this approximation
with respect to ε. As we will illustrate in Sec. III, it is necessary
to include higher-order terms in the QSS approximation in
order to achieve a comparable level of numerical accuracy as
ε increases.

In the case of biased search processes (〈v〉 = 0), the
decoupling approximation generates the incorrect asymptotic
diffusion tensor. One possible source of this discrepancy is that
the decoupling approximation does not generate the initial
internal state of the searcher from the stationary solutions
pss

0 and pss(θ ), since it involves equations for T (r) and T0(r)
rather than T (r). That is, in contrast to the QSS analysis, the
searcher does not start on the slow manifold of the underlying
time-dependent equations. As explained at some length in
Ref. [39], this can lead to errors in any perturbation analysis
even though the MFPT is itself approximately independent of
the initial state in the small ε limit. In principle, one could
modify the moment closure ansatz (2.47) in the case of biased
search by taking

〈vivjT 〉 = [c1〈vivj 〉 + c2〈vi〉〈vj 〉]T . (2.53)

However, there does not appear to be a way to determine
the coefficients c1 and c2 without introducing additional con-
straints along the lines of the QSS reduction, for example. It is
also not clear how to generalize the decoupling approximation
to the case of more complicated search models such as the
“tug-of-war” model of motor-driven transport [29,30].

III. MFPT TO A SMALL HIDDEN TARGET

We will now use the QSS approximation to calculate the
MFPT to a target in the planar domain �. Note that Benichou
et al. previously analyzed a 2D intermittent search model using

a simplified radially symmetric geometry with the target at the
center of the disk [8,19,20]. In order to derive an analytical
expression for the MFPT in the case of a planar domain, we
will assume that the target is very small, that is, ρ � L = 1,
and use matched asymptotic expansions. We will also assume
that the search process is unbiased (〈v〉 = 0), so the decou-
pling and QSS approximations are consistent for sufficiently
small ε, and set the diffusivity in the search state to zero,
D0 = 0.

A. Isotropic diffusion

We begin by considering the simpler case of isotropic
diffusion and zero drift, which occurs when Q(θ ) = 1/2π .
The backward equation (2.32) for the MFPT then becomes

−1 = εD∇2T − λχ (r)T , (3.1)

with

D ∼ av2

2β
+ ε

ab(1 + b)kv2

2β2
χ (r), λ ∼ λ0

[
1 − ε

aλ0

β

]
(3.2)

and reflecting boundary conditions ∂nT (r) = 0 for all r ∈ ∂�.
We have included the O(ε) contribution to the diffusivity (see
the Appendix). In order to obtain a solution that we can use to
analyze the anisotropic case later on, we will take the planar
domain � to be rectangular with height η1 and width η2 (in
units of L). We will proceed by splitting the solution of the
MFPT equation (3.1) into an interior problem within the target
domain U and an exterior problem over the complementary
domain �/U . Since the target is small compared to the
size of the domain (i.e., ρ � 1), we can assume that T is
approximately constant around the boundary of the target ∂U .
In the exterior problem, we use matched asymptotics along
the lines of Ref. [37] to solve in an inner region around U by
ignoring boundary conditions on ∂� and assuming a fixed (but
unknown) value of T on ∂U . The outer solution of the exterior
problem is then found using the Neumann Green’s function by
treating the target as a source term.

To obtain the inner solution to the exterior problem, we
introduce stretched coordinates s according to r = r0 + ρs,
where r0 is the center of the target disk of radius ρ. Setting
W (s) = T (r0 + ρs) and rescaling equation (3.1) gives

∇2
sW = 0, s ∈ U

W = Tr0 , s ∈ ∂U ,
(3.3)

where Tr0 is the unknown value of T on the target boundary.
The solution, in terms of outer variables, has the far field
behavior

T (r) ∼ Tr0 + A log |r − r0| − A log(ρ), (3.4)

where A is an unknown constant. The outer solution to the
exterior problem satisfies the equation

−1 = De∇2T , r ∈ �/{r0} (3.5)

∂nT (r) = 0, r ∈ ∂�, (3.6)

where the diffusivity, De = ε av2

2β
, is constant outside the target.

This can be solved in terms of the Neumann Green’s function,
which satisfies

∇2G(r,r′) = 1

|�| − δ(r − r′), r ∈ � (3.7)
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∂nG(r,r′) = 0, r ∈ ∂� (3.8)∫
�

G(r,r′)dr = 0. (3.9)

We solve the Green’s function using separation of variables,
and the result is expanded in terms of logarithms (see
Appendix A for details):

G(r,r′) = 1

η2
H0(y,y ′) − 1

2π

∞∑
j=0

∑
n=±

∑
m=±

× (log |1 − τ j znζm| + log |1 − τ j znςm|), (3.10)

where

τ = e−2πη1/η2 , z± = eiπ(x±x ′)/η2 ,
(3.11)

ζ± = e−π |y±y ′ |/η2 , ς± = e−π(2η1−|y±y ′ |)/η2

and

H0(y,y ′) = η1

3
+ 1

2η1
(y2 + y ′2) − max{y,y ′}. (3.12)

Assuming that τ � 1, we have the approximation

G(r,r′) = 1

η2
H0(y,y ′) − 1

2π

∑
n=±

∑
m=±

×(log |1 − znζm| + log |1 − znςm|) + O(τ ).

(3.13)

The only singularity exhibited by Eq. (3.10) occurs when
r → r′, r′ /∈ ∂�, in which case z− = ζ− = 1 and the term
log |1 − z−ζ−| diverges. Writing

log |1 − z−ζ−| = log |r − r′| + log
|1 − z−ζ−|

|r − r′| , (3.14)

where the first term on the right-hand side is singular and the
second is regular, we find that

G(r,r′) = − 1

2π
[log |r − r′| − R(r,r′)], (3.15)

where R is the regular part of the Green’s function given by

R(r,r′) = 2π

η2
H0(y,y ′) − log

|1 − z−ζ−||1 − z−ζ+|
|r − r′|

− log |1 − z−ς−||1 − z−ς+|
− log |1 − z+ς−||1 − z+ς+|
− log |1 − z+ζ−||1 − z+ζ+| + O(τ ). (3.16)

Using the Green’s function, the outer solution to the exterior
problem is

T (r) = −|�|
De

G(r,r0) + Tav, (3.17)

where Tav = |�|−1
∫
�

T (r)dr is a constant. To determine the
unknown constants A and Tav, we must match the inner and
outer solution, which we do using the Van Dyke rule. Taking
two terms of the outer solution and expanding to one term in
inner variables yields

T (r0 + ρs) ∼ |�|
2πDe

[log |ρs| − R(r0,r0)] + Tav. (3.18)

The first term of the inner solution, expanded to two terms in
the outer variable is given by (3.4). After equating these two
we get

A = |�|
2πDe

, Tav = Tr0 + |�|
2πDe

[R(r0,r0) − log(ρ)].

(3.19)

Thus, the matched solution to the exterior problem is

Te(r) ∼ Tr0 + |�|
2πDe

[log |r − r0| − log(ρ)]

− |�|
2πDe

[R(r,r0) − R(r0,r0)] . (3.20)

The interior problem is given by

Di∇2Ti − λTi = −1, r ∈ U , (3.21)

Ti(r) = Tr0 , r ∈ ∂U , (3.22)

where from (3.2) the diffusivity inside the target is

Di = ε
av2

2β
+ ε2 av2

2β2
(b + 1)bk + O(ε3). (3.23)

We change to polar coordinates, r = |r − r0|, with the target
centered at the origin to get

Di∇2
r Ti(r) − λTi(r) = −1, 0 � r < ρ (3.24)

Ti(r) = Tr0 , r = ρ, (3.25)

where ∇2
r is the standard radially symmetric Laplacian. The

solution to the homogeneous problem is well known in terms
of the modified Bessel function, In, and the solution to the
inhomogeneous problem is simply 1/λ. Thus, we have

Ti(r) =
(

Tr0 − 1

λ

)
I0
(

r
li

)
I0
(

ρ

li

) + 1

λ
, (3.26)

where li = √
Di/λ is the length scale associated with absorp-

tion in the target domain.
To match the interior solution (3.26) with the exterior

solution (3.20), we impose conservation of flux along the
boundary ∂U . The flux at the boundary from the interior
solution is

∂Ti

∂r

∣∣∣∣
r=ρ

=
(

Tr0 − 1

λ

)
1

li

I1
(

ρ

li

)
I0
(

ρ

li

) . (3.27)

Using (3.4), the flux at the target boundary from the exterior
solution is

1

ρ

∂W

∂s

∣∣∣∣
s=1

= |�|
2πDeρ

. (3.28)

Equating (3.27) and (3.28) yields

Tr0 = |�|li
2πDeρ

I0
(

ρ

li

)
I1
(

ρ

li

) + 1

λ
. (3.29)

Thus, from Eq. (3.19), the full solution to the MFPT problem,
averaged over the initial position is

Tav = 1

λ
+ |�|

2πDe

[
li

ρ

I0
(

ρ

li

)
I1
(

ρ

li

) − log(ρ) + R(r0,r0)

]
(3.30)
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(a) (b)

[sec-1]

[s
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]
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]

[sec-1]

FIG. 2. (Color online) The MFPT Tav of an unbiassed random intermittent search process on a square domain of length L. T is plotted as
a function of (a) the transition rate α and (b) the transition rate β. The target is located at the center of the domain and the target radius is
ρ = 0.05L. In this and subsequent figures we reabsorb the scaling factor ε into α,β and express parameters in physical units. For the sake of
illustration, we take L = 10 μm, v = 1 μm s−1, and k = 0.5 s−1 and time is measured in seconds.

and the solution, valid for starting positions r away from the
target, is given by

T (r) = 1

λ
+ |�|

2πDe

{
li

ρ

I0
(

ρ

li

)
I1
(

ρ

li

) + log |r − r0| − log(ρ)

− [R(r,r0) − R(r0,r0)]

}
. (3.31)

Figure 2 shows a comparison of the QSS approximation of
the MFPT given by (3.30) to averaged Monte Carlo simulations
as a function of the transition rates α and β (in physical
units of per second). The QSS approximation is in good
agreement with the numerics, provided that we include the
O(ε) corrections to the diffusivity and detection rate; see
Eq. (3.2). Such terms are also necessary in order to identify a
global minimum of the MFPT in the (α,β) plane. An example
of such a minimum is illustrated in Fig. 3, which is in good
agreement with numerical simulations and the corresponding
MFPT calculated under the decoupling approximation. The

latter is obtained by taking the diffusivity and detection rate
to be determined from Eqs. (2.51) and (2.52); see also Sec. III
B. A more detailed comparison of the two approximation
schemes is presented in Fig. 4, where we plot the relative error
with respect to Monte Carlo simulations. Interestingly, the
QSS approximation is more accurate within a conelike region
of the (α,β) plane, reflecting the asymptotic nature of the
approximation. On the other hand, the accuracy of the decou-
pling approximation is more uniform with respect to parameter
values, resulting in a slightly better approximation of the global
minimum.

B. Optimal search strategy

The transition rates αopt and βopt that minimize the MFPT
determine an optimal random search strategy; these transition
rates control the average time spent in the search and movement
phases. We now calculate the optimal transition rates in the
case of a small hidden target in a planar domain, following

(a) (b) (c)

FIG. 3. (Color online) Averaged MFPT, Tav, in the (α,β) plane. (a) Analytical approximation (3.30) with effective diffusivity and detection
rate given by (3.2). The minimum is marked with an “O.” (b) Decoupling approximation, with the minimum at (αopt,βopt) marked with an
asterisk. (c) The amount of 105 averaged Monte Carlo simulations for each value of (α,β) on a 20×20 grid. The minimum is marked by with
“X,” which is also shown in (a) and (b) for comparison. Parameter values are L = 10 μm, ρ = 0.35 μm, v = 1 μm s−1, and k = 1 s−1.
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(a) (b)

FIG. 4. (Color online) Relative error for both approximations in Fig. 3 compared to Monte Carlo simulations. The magnitude of the relative
error is shown on the color bar (gray) scale [dark red (gray) shows error greater than or equal to 0.1]. Contours show the averaged MFPT from
Monte Carlo simulations in Fig. 3(c). (a) The QSS reduction. The cone of accuracy reflects the asymptotic nature of the QSS approximation.
(b) The decoupling approximation. The more uniform accuracy of the decoupling approximation give a slightly better estimate of the optimal
transition rates, but the QSS approximation gives a slightly better estimate of the minimum MFPT.

along similar lines to Benichou et al. [8,19,20]. First, it is
convenient to rewrite equations (3.30) and (3.31) in the more
compact form

T = 1

λ
+ |�|

2πDe

⎡⎣g + 1

ρ

√
Di

λ

I0

(
ρ
√

λ
Di

)
I1

(
ρ
√

λ
Di

)
⎤⎦ , (3.32)

where g is independent of α,β. In the case of the space-
averaged MFPT Tav we have

g = R(r0,r0) − log(ρ), (3.33)

whereas for arbitrary initial position r,

g = log |r − r0| − log(ρ) + R(r0,r0) − R(r,r0). (3.34)

The MFPT depends on the transition rates via the diffiusivity
D and effective detection rate λ see Eq. (3.2). If the target
is very easy to find, i.e., λ � 0, then there is no global
minimum, since Tr0 → 0 [see Eq. (3.29)], and the MFPT is a
monotonically decreasing function of De = av2/2β; that is,
T ≈ |�|g/2πDe. On the other hand, now suppose that the
target is hard to find so the length scale associated with target
capture, li = √

Di/λ, is large compared to the radius ρ. Then,
the Bessel functions can be approximated by

I0
(
ρ
√

λ
Di

)
I1
(
ρ
√

λ
Di

) ∼ 2

ρ

√
Di

λ
, (3.35)

and the MFPT becomes

T ∼ 1

λρ2

( |�|
π

Di

De

+ ρ2

)
+ |�|g

2πDe

. (3.36)

We can further simplify this expression using ρ � 1 to get

T ∼ 1

λ

( |�|
πρ2

Di

De

)
+ |�|g

2πDe

. (3.37)

It turns out that the ratio Di/λ is the critical quantity that
allows the approximation to pick up the global minimum. In
particular, higher-order, k-dependent terms must be included
in both the detection rate and the diffusivity. While the
QSS approximation is capable of approximating the global

minimum, we use the decoupling approximation in order to
link up with previous studies of optimal intermittent search
strategies. The result is a surprisingly accurate and simple
formula for the optimal transition rates.

Suppose that we take the diffusivity Di inside the target
domain and detection rate λ to be given by the expressions
obtained using the decoupling approximation; see Eqs. (2.51)
and (2.52):

De = av2

2β
, Di = α + k

α + β + k

v2

2β
, (3.38)

λ = α + β

α + β + k
λ0. (3.39)

(Since the decoupling approximation does not require ε to be
small, we have reabsorbed this factor into the transition rates
α,β.) Substitution into the MFPT (3.37) gives

T ∼ |�|
πρ2k

[
(α + k)(α + β)

αβ

]
+|�|g

πv2

[
β(α + β)

α

]
. (3.40)

Setting the partial derivatives ∂T
∂α

and ∂T
∂β

to zero we have

|�|g
πv2

β2

α2
= |�|

πρ2k

(
α + k

αβ
− k

α + β

α2β

)
(3.41)

( |�|
πρ2k

)
α + k

β2
= |�|g

πv2

(
1 + 2β

α

)
. (3.42)

Rearranging then yields

α2 = β(k + γβ2) (3.43)

γβ2 (α + 2β) = (α + k)α, (3.44)

where

γ = ρ2gk

v2
. (3.45)
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Solving (3.43) for α and substituting the result into (3.44)
yields

α =
√

β(k + γβ2) (3.46)

(γβ2 − k)[
√

β(k + γβ2) + β] = 0. (3.47)

The real solutions to (3.47) are β = 0 and β =
√

k
γ

. Thus,

the unique optimal transition rates that minimize the averaged
MFPT are

αopt ≈
(

2kv

ρ

)1/2 [ 1

R(r0,r0) − log(ρ)

]1/4

, (3.48)

βopt ≈ v

ρ

[
1

R(r0,r0) − log(ρ)

]1/2

, (3.49)

for k = O(1), ρ �
√

De

λ
, ρ � 1, ε � 1.

By setting R(r0,r0) = −1/2 (the regular part of the Neumann
Green’s function for a circular domain, evaluated at r0 = 0
so the target is located at the center) the above reduces to the
result found in Ref. [19].

C. Anisotropic diffusion

For a general distribution of velocity directions Q(θ ), one
must account for nonzero drift and an anisotropic diffusion
tensor. In this section, we show how the results for the isotropic
case can be modified to account for anisotropic diffusion when
the drift term is zero. An anisotropic diffusion tensor can be
eliminated from the problem using a coordinate transformation
to a domain in which the diffusion is isotropic. The Green’s
function must then be calculated for the transformed domain,
and the inner solution must be modified to account for a
noncircular target domain.

As an example, consider an alternative to the random
direction model, where the reorientations can occur in only one
of four directions: up, down, left, or right. The corresponding
direction distribution is

Q(θ ) = q

2

[
δ

(
θ − π

2

)
+ δ

(
θ − 3π

2

)]
+ (1 − q)

2
[δ(θ ) + δ(θ − π )], (3.50)

where q ∈ (0,1) is a parameter that adjusts the anisotropy. For
simplicity, we set D0 = 0 and consider a square domain of
size L = 1. After substituting (3.50) into the diffusion tensor
(2.21), the MFPT equation (2.32) becomes

−1 = 2D

[
q

∂2T

∂x2
+ (1 − q)

∂2T

∂y2

]
− λχ (x,y)T . (3.51)

with reflecting boundaries on the unit square and D = av2/2β.
Note that when q = 1/2, the FP equation is identical to the
isotropic model considered in the previous section.

Now, consider the coordinate transformation r → z, where
z = (ξ1,ξ2) and

ξ1 = x√
2q

, ξ2 = y√
2(1 − q)

. (3.52)

ξ1

ξ2

q = 1
2

q > 1
2

U

FIG. 5. (Color online) Anisotropy in the diffusion tensor effec-
tively alters the search domain. With no anisotropy (i.e., q = 1/2) the
two domains are both the unit square. As we increase q, diffusion in
the y direction is inhibited, which effectively decreases the distance
to the target, as seen in the rescaled domain.

The MFPT equation (3.51) is then transformed to (3.1) in
the variable z. Thus, the effect of anisotropy is equivalent
to a distortion of the domain from the unit square to a
rectangular domain with width η1 = (2q)−1/2 and height η2 =
[2(1 − q)]−1/2 and (see Fig. 5). Furthermore, the indicator
function, χ̃(z), must now account for an elliptic target region.

One can show [36] that the Green’s function (3.10) can be
modified to deal with a noncircular target by scaling the radius
with the logarithmic capacitance d1 = 1

2 (η1 + η2) so

G(r,r′; ρ) → G(z,z′; d1ρ). (3.53)

The inner solution to the exterior problem and the solution
to the interior problem must have the target radius rescaled
so the area of the effective circular target matches the area of
the transformed elliptic target; that is, the matched value on
∂U , given by (3.29), becomes

Tr0 (ρ) → Tr0 (d2ρ), (3.54)

where d2 = √
η1η2. In Fig. 6, a comparison of the MFPT

to averaged Monte Carlo simulations is shown. The starting
position is taken to be on the center of the left boundary [r =
(0,L/2)] and the position of the target is varied along the right
boundary. As the anisotropy q is varied we see an optimal value
that minimizes the MFPT, which occurs at a value q = 1/2,
illustrating the usefulness of an anisotropic search in certain
circumstances.

IV. DISCUSSION

By combining the QSS reduction with the method of
matched asymptotics for diffusion to a small target, we
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(a) (b)

FIG. 6. (Color online) Effect of anisotropy, q, on the MFPT as the target location r0 is varied while the initial position r of the searcher is
fixed. (a) Plot of MFPT against q for various target locations. (b) Plot of MFPT against target location for various q. Domain parameters L and ρ

are the same as in Fig. 2. The target location is r0 = (L − 3ρ,y0) with ρ � y0 � L/2 and the initial position of the searcher is r = (0,L/2). Here
L = 10 μm and ρ = 0.5 μm. Transition rates are α = 4 s−1 and β = 6 s−1 while the detection rate is k = 0.5 s−1.

have developed a general analytical framework for studying
random intermittent search processes. Indeed, with minor
modifications one could consider higher spatial dimensions,
multiple targets and splitting probabilities, and more complex
transport models. The method proceeds by first applying the
QSS reduction to obtain a FP equation for the probability
density that approximates the random motion of the searcher.
The MFPT to a hidden target is then approximated using
matched asymptotics, under the assumption that the size of
the target is small compared to the size of the domain. We
applied our method to the particular example of a uniform
direction distribution in the ballistic phase, for which the
corresponding FP equation describes isotropic diffusion and
zero drift. We assumed that the target was located in a
rectangular domain so the associated Green’s function of the
FP equation could be calculated exactly. (For more general
geometries, a numerical boundary-integral method can be used
[37].) Consistent with previous studies of random intermittent
search processes [8,19,20], we established the existence of an
optimal search strategy, where the transition rates that control
the average time spent in the moving and searching phases
are chosen to minimize the space-averaged MFPT, Tav, to
the target. In order to achieve sufficient accuracy using the
QSS approximation, it was necessary to include higher-order
corrections to the diffusivity and target detection rate of the
associated FP equation. We also extended our analysis to the
case of anisotropic diffusion and showed that anisotropy could
be advantageous when the searcher starts from a fixed location.

One potential application of the analytical approach de-
veloped in this paper is to modeling mRNA transport within
a developing Drosophila embryo, where complex geometries
and anisotropic diffusion along with specific target locations
and initial conditions are all important factors. Experimental
evidence also suggests the presence of weak directional
bias and spatially inhomogeneous microtubule configurations
[41,42]. A key advantage of the QSS analysis is the ability
to include spatially inhomogeneous transition rates and more
complex internal state configurations, such as the tug-of-war
model of motor transport [28–30].
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APPENDIX A

In this appendix we give details regarding how to construct
the Neumann Green’s function G defined by equations (3.7).
We choose a particular representation that allows us to extract
the regular part of the Green’s function, following along similar
lines to Ref. [37]. Suppose that we expand G in terms of
the x-coordinate eigenfunctions, φn(x) = cn cos(ωnx), where
ωn = nπ

η2
and c0 = 1/

√
η2, cn = √

2/η2 for n > 0. That is,

G(r,r′) =
∞∑

n=0

φn(x)φn(x ′)Hn(y,y ′). (A1)

Substitution into (3.7) yields the following equation for the y

dependent Green’s functions Hn

∞∑
n=0

φn(x)φn(x ′)
∂2Hn(y,y ′)

∂y2
−

∞∑
n=1

ω2
nφn(x)φn(x ′)Hn(y,y ′)

= 1

|�| − δ(r − r′). (A2)

Taking inner products of both sides of the equation with
eigenfunctions φm(x) then yields

∂2H0

∂y2
= 1

η1
− δ(y − y ′) (A3)

[
∂2Hm

∂y2
− ω2

mHm(y,y ′)
]

φm(x ′) = −δ(y − y ′)φm(x ′),

m � 1. (A4)

The generalized Green’s function H0 satisfying the condition
(3.9) is given by

H0(y,y ′) = η1

3
+ 1

2η1
(y2 + y ′2) − max{y,y ′} (A5)
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and the Green’s functions for n � 1 are given by

Hn(y,y ′) = 1

ωn sinh(ωnη1)

×
{

cosh(ωny) cosh[ωn(η1 − y ′)], y < y ′

cosh[ωn(η1 − y)] cosh(ωny
′), y > y ′.

(A6)

Combining these results, we have the full Neumann Green’s
function

G(r,r′)

= 1

η2
H0(y,y ′) + 1

π

∞∑
n=1

cos

(
nπx

η2

)
cos

(
nπx ′

η2

)
×
{

cosh[ωn(η1 − |y − y ′|)] + cosh[ωn(η1 − |y + y ′|)]
n sinh(ωnη1)

}
.

(A7)

This incomplete eigenfunction expansion is useful for com-
puting the logarithmic expansion of the Green’s function.
Writing 2 sinh(ωnη1) = eπ/η2 [1 − e−2π/η2 ], we expand the
denominator in a geometric series and express all other
functions as exponentials to give

G(r,r′) = 1

η2
H0(y,y ′)

+ 1

4π

∞∑
n=1

∞∑
j=0

1

n
τnj τ n/2(zn

+ + zn
+ + zn

− + zn
−)

×(τ−n/2ζ n
− + τn/2ζ−n

− + τ−n/2ζ n
+ + τn/2ζ−n

+ ),

(A8)
where

τ = e−2πη1/η2 , z± = eiπ(x±x ′)/η2 ,
(A9)

ζ± = e−π |y±y ′ |/η2 , ς± = e−π(2η1−|y±y ′ |)/η2 .

Performing the series summation with respect to n finally gives
the logarithmic series representation

G(r,r′) = 1

η2
H0(y,y ′) − 1

2π

∞∑
j=0

∑
n=±

∑
m=±

×(log |1 − τ j znζm| + log |1 − τ j znςm|). (A10)

APPENDIX B

In this appendix we compute higher-order terms in the
QSS reduction of the CK equations (2.1) and (2.2) to the
corresponding FP equation (2.20). For simplicity, we will
assume that 〈v〉 = 0, D0 = 0, and Q is chosen so diffusion
is isotropic. Define the asymptotic expansions

w(r,θ,t) ∼
n∑

j=0

εj zj (r,θ,t), w0(r,t) ∼
n∑

j=0

εj ẑj (r,t).

(B1)

From equation (2.15) we have

∂u

∂t
= −kχ (r)bu − ε

n∑
j=0

εj 〈〈v · ∇zj 〉〉 − εkχ (r)
n∑

j=0

εj ẑj .

(B2)

We also have from (2.16)

β

n∑
j=0

εj zj − αQ(θ )
n∑

j=0

εj ẑj

= −aQ(θ )
∂u

∂t
− aQ(θ )v(θ ) · ∇u − ε

n∑
j=0

εj ∂zj

∂t

− ε

n∑
j=0

εj v(θ ) · ∇zj . (B3)

Substituting (B2) into (B3) we have

β

n∑
j=0

εj zj − αQ(θ )
n∑

j=0

εj ẑj

= aQ(θ ) (bkχ (r)u − v(θ ) · ∇u)

+ εaQ(θ )

⎛⎝ n∑
j=0

εj 〈〈v · ∇zj 〉〉 + kχ (r)
n∑

j=0

εj ẑj

⎞⎠
− ε

n∑
j=0

εj v(θ ) · ∇zj − ε

n∑
j=0

εj ∂zj

∂t
. (B4)

Integrating (B4) over θ provides a second equation

β

n∑
j=0

εj 〈〈zj 〉〉 − α

n∑
j=0

εj ẑj

= abkχ (r)u − εb

n∑
j=0

εj 〈〈v · ∇zj 〉〉

+ εakχ (r)
n∑

j=0

εj ẑj − ε

n∑
j=0

εj ∂〈〈zj 〉〉
∂t

. (B5)

equation (2.12) provides an additional constraint

〈〈zj 〉〉 + ẑj = 0. (B6)

Combining (B6) and (B5) yields

(α + β)
n∑

j=0

εj ẑj = − abkχ (r)u + εb

n∑
j=0

εj 〈〈v · ∇zj 〉〉

− εakχ (r)
n∑

j=0

εj ẑj + ε

n∑
j=0

εj ∂〈〈zj 〉〉
∂t

.

(B7)

Finally, substituting (B7) into (B4) yields

β

n∑
j=0

εj zj = aQ(θ )b2kχ (r)u − aQ(θ )v(θ ) · ∇u

+ εaQ(θ )(b + 1)
n∑

j=0

εj 〈〈v · ∇zj 〉〉

− ε

n∑
j=0

εj v(θ ) · ∇zj
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+ εaQ(θ )bkχ (r)
n∑

j=0

εj ẑj

+ ε

n∑
j=0

εj ∂

∂t

(
aQ(θ )〈〈zj 〉〉 − zj

)
. (B8)

Equations (B7) and (B8) generate a hierarchy of equations
for zj and ẑj . At leading order in ε we have

ẑ0 = − 1

β
ab2kχ (r)u (B9)

z0 = aQ(θ )

β
(b2kχ (r)u − v(θ ) · ∇u), (B10)

which are equivalent to equations (2.18) and (2.19) for D0 = 0
and 〈v〉 = 0. To obtain higher-order terms, we write zj and ẑj

as

ẑj = μjkχ (r)u (B11)

zj = σjQ(θ )kχ (r)u + ϕjQ(θ )v(θ ) · ∇u, (B12)

where μj , σj , and ϕj depend on χ (r) but are otherwise
independent of space and time. In doing so, we are neglecting
higher spatial derivatives of u and terms that depend on 〈v〉.
From (B9) and (B10) we have that

μ0 = − 1

β
ab2, σ0 = 1

β
ab2, ϕ0 = − a

β
. (B13)

In terms of the effective FP equation, the coefficients μj

contribute to the detection rate, whereas the coefficients ϕj

contribute to the diffusivity (assuming Q(θ ) is chosen so
diffusion is isotropic). More specifically,

λ ∼ λ0 + εk2χ (r)
n∑

j=0

εjμj , D ∼ εv2

2

⎛⎝ a

β
−

n∑
j=1

εjϕj

⎞⎠ .

(B14)

Although the σj terms only contribute to the drift velocity in
the effective FP equation, they must still be computed in order
to determine higher-order coefficients μj and ϕj .

In order to complete our analysis, we still need to determine
the term ∂zj/∂t appearing on the right-hand side of equations
(B7) and (B8). Differentiating equation (B12) with respect to
t and using (B2) shows that

∂zj

∂t
= Q(θ )[σjkχ (r) + ϕj v(θ ) · ∇]

∂u

∂t

= −kbχ (r)Q(θ )[σjku + ϕj v(θ ) · ∇u]

− εQ(θ )[σjkχ (r) + ϕj v(θ ) · ∇]

×
(

n∑
i=0

εi 〈〈v · ∇zi〉〉 + kχ (r)
n∑

i=0

εi ẑi

)
. (B15)

Substituting for zi and z̄i on the right-hand side using (B11)
and (B12), dropping higher-order derivatives in space, and

assuming 〈v〉 = 0 finally yields

∂zj

∂t
= −Q(θ )σjkχ (r)

(
bk + εk2

n∑
i=0

εiμi

)
u

−Qϕj

(
bk + εk2

n∑
i=0

εiμi

)
v(θ ) · ∇u. (B16)

Integrating the above equation with respect to θ and substi-
tuting the result for ∂〈〈zj 〉〉/∂t into (B7) yields, after some
algebra,

β

n∑
j=0

εjμj = − ab2 − εb

n∑
j=0

εj (akμj + bkσj )

− ε2bk2
n∑

j=0

n∑
i=0

εi+j σjμi. (B17)

Again we have used (B11) and (B12), dropped higher-
order derivatives in space and set 〈v〉 = 0. Similarly, using
Eqs. (B11), (B12), and (B16), we find that equation (B8)
reduces to the form

β

n∑
j=0

εj (σjkχ (r)u + ϕj v(θ ) · ∇u)

= −
⎡⎣a − εkχ (r)

n∑
j=0

εj (bϕj − σj )

− ε2k2χ (r)
n∑

j=0

n∑
i=0

εi+jϕjμi

⎤⎦ v(θ ) · ∇u

+
⎡⎣ab2 + εb

n∑
j=0

εj (akμj + bkσj )

+ ε2bk2
n∑

j=0

n∑
i=0

εi+j σjμi

⎤⎦ kχ (r)u, (B18)

which results in the u-independent pair of equations

β

n∑
j=0

εjσj = ab2 + εb

n∑
j=0

εj (akμj + bkσj )

+ ε2bk2
n∑

j=0

n∑
i=0

εi+j σjμi, (B19)

β

n∑
j=0

εjϕj = −a + εkχ (r)
n∑

j=0

εj (bϕj − σj )

+ ε2k2χ (r)
n∑

j=0

n∑
i=0

εi+jϕjμi. (B20)

Note that (B19) and (B17) imply that σj = −μj , for all j =
0,1, . . . ,n. Substituting this into (B17) and (B20) yields
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β

n∑
j=0

εjμj = −ab2 − εbk(a − b)
n∑

j=0

εjμj

+ ε2bk2
n∑

j=0

n∑
i=0

εi+jμjμi, (B21)

β

n∑
j=0

εjϕj = −a + εkχ (r)
n∑

j=0

εj (bϕj + μj )

+ ε2k2χ (r)
n∑

j=0

n∑
i=0

εi+jϕjμi. (B22)

Collecting O(ε) terms we have

μ1 = − 1

β
bk(a − b)μ0 = a

β2
(a − b)b3k, (B23)

ϕ1 = 1

β
kχ (r)(bϕ0 + μ0) = − a

β2
b(b + 1)kχ (r). (B24)

For O(εn), n � 2, the recursion becomes nonlinear, with

μn = − 1

β

⎡⎣bk(a − b)μn−1 − bk2
n−2∑
j=0

μjμn−j−2

⎤⎦ , (B25)

ϕn = χ (r)

β

⎡⎣k(bϕn−1 + μn−1) + k2
n−2∑
j=0

ϕjμn−j−2

⎤⎦ . (B26)
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