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We analyze a stochastic model of neuronal population dynamics with intrinsic noise. In the thermodynamic
limit N— o, where N determines the size of each population, the dynamics is described by deterministic
Wilson-Cowan equations. On the other hand, for finite N the dynamics is described by a master equation that
determines the probability of spiking activity within each population. We first consider a single excitatory
population that exhibits bistability in the deterministic limit. The steady-state probability distribution of the
stochastic network has maxima at points corresponding to the stable fixed points of the deterministic network;
the relative weighting of the two maxima depends on the system size. For large but finite N, we calculate the
exponentially small rate of noise-induced transitions between the resulting metastable states using a Wentzel-
Kramers-Brillouin (WKB) approximation and matched asymptotic expansions. We then consider a two-
population excitatory or inhibitory network that supports limit cycle oscillations. Using a diffusion approxi-
mation, we reduce the dynamics to a neural Langevin equation, and show how the intrinsic noise amplifies

subthreshold oscillations (quasicycles).
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I. INTRODUCTION

In biochemical and gene networks within cells, there is an
important distinction between intrinsic and extrinsic noise
[1,2]. Extrinsic noise refers to external sources of random-
ness associated with environmental factors, and is often
modeled as a continuous Markov process based on Langevin
equations. On the other hand, intrinsic noise refers to random
fluctuations arising from the discrete and probabilistic nature
of chemical reactions at the molecular level, which are par-
ticularly significant when the number of reacting molecules
N is small. Under such circumstances, the traditional ap-
proach to modeling chemical reactions based on systems of
ordinary differential equations that describe concentration
changes via the law of mass action is inappropriate. Instead,
a master-equation formulation is necessary in order to de-
scribe the underlying jump Markov process. Since master
equations are often difficult to analyze, diffusion approxima-
tions have been developed for mesoscopic systems (large but
finite N) leading to a description based on the chemical
Langevin equation [3,4]. Although the diffusion approxima-
tion can capture the stochastic dynamics of mesoscopic re-
acting systems at finite times, it can break down in the limit
t— . For example, suppose that the deterministic system
based on the law of mass action (obtained in the thermody-
namic limit N—o for finite 7) has multiple stable fixed
points. The diffusion approximation can then account for the
effects of fluctuations well within the basin of attraction of a
locally stable fixed point. However, there is now a small
probability that there is a noise-induced transition to the ba-
sin of attraction of another fixed point. Since the probability
of such a transition is usually of order e=™ except close to
the boundary of the basin of attraction, such a contribution
cannot be analyzed accurately using standard Fokker-Planck
(FP) methods [3]. These exponentially small transitions play
a crucial role in allowing the network to approach the unique
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stationary state (if it exists) in the asymptotic limit 7— . In
other words, for multistable chemical systems, the limits ¢
— o and N— <0 do not commute [5-7].

The distinction between intrinsic and extrinsic sources of
noise can also be applied to neural systems, both at the single
neuron and network levels [8,9]. It is well known that the
spike trains of individual cortical neurons in vivo tend to be
very noisy, having interspike interval distributions that are
close to Poisson [10]. The main source of intrinsic fluctua-
tions is channel noise arising from the variability in the
opening and closing of a finite number of ion channels. The
resulting conductance-based model of a neuron can be for-
mulated as a stochastic hybrid system, in which a continuous
deterministic dynamics describing the time evolution of the
membrane potential is coupled to a jump Markov process
describing channel dynamics [11]. Extrinsic fluctuations at
the single cell level are predominantly due to synaptic noise.
That is, cortical neurons are bombarded by thousands of syn-
aptic inputs, many of which are not correlated with a mean-
ingful input and can thus be treated as background synaptic
noise [9]. It is not straightforward to determine how noise at
the single cell level translates into noise at the population or
network level. One approach has been developed in terms of
a Boltzmannlike kinetic theory of integrate-and-fire networks
[12,13], which is itself a dimension reduction by moment
closure of the population-density method [14,15]. The latter
is a numerical scheme for tracking the probability density of
a population of spiking neurons based on solutions of an
underlying partial differential equation. In the case of simple
neuron models, this can be considerably more efficient than
classical Monte Carlo simulations that follow the states of
each neuron in the network. On the other hand, as the com-
plexity of the individual neuron model increases, the gain in
efficiency of the population density method decreases, and
this has motivated the development of moment closure
schemes. However, considerable care must be taken when
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carrying out the dimension reduction, since it can lead to an
ill-posed problem over a wide range of physiological param-
eters [16]. That is, the truncated moment equations may not
support a steady-state solution even though a steady-state
probability density exists for the full system.

A number of studies of fully or sparsely connected
integrate-and-fire networks have shown that under certain
conditions, even though individual neurons exhibit Poisson-
like statistics, the neurons fire asynchronously so that the
total population activity evolves according to a mean-field
rate equation with a characteristic activation or gain function
[17-21]. Formally speaking, the asynchronous state only ex-
ists in the thermodynamic limit N— oo, where N determines
the size of the population. This then suggests a possible
source of intrinsic noise at the network level arises from
fluctuations about the asynchronous state due to finite-size
effects [22-25]. (Finite-size effects in IF networks have also
been studied using linear-response theory [26-28]). A closer
analogy between intrinsic noise in biochemical and neural
networks has recently been developed by Bressloff [29]
based on a rescaled version of the neural master equation
introduced by Buice et al. [30,31] (see also [32]). The under-
lying system consists of a network of coupled homogeneous
populations. The state of each population is represented by
the number of currently active neurons, and the state transi-
tions are chosen such that deterministic Wilson-Cowan rate
equations [33,34] are recovered in the thermodynamic limit
N— . Corrections to the mean-field equations involving
higher-order moments can then be obtained by carrying out a
Van-Kampen system size expansion along identical lines to
chemical master equations [29]; such moment equations can
also be obtained by carrying out a loop expansion of a cor-
responding path-integral representation of the moment gen-
erating function [29-31].

In this paper we further develop the connection between
chemical and neural master equations, by considering two
important effects of intrinsic noise, namely, noise-induced
transitions between metastable states, and noise-
amplification of subthreshold oscillations or quasicycles. In
both cases, we follow along analogous lines to previous stud-
ies of biochemical networks. In the case of noise-induced
transitions, corrections to mean-field theory based on the
system-size or loop expansion break down. Instead, it is
more appropriate to analyze the master equation using a
Wentzel-Kramers-Brillouin  (WKB) approximation and
matched asymptotics [5,35-39]. On the other hand, quasi-
cycles can be analyzed by considering the power spectrum of
the associated Langevin equation obtained by carrying out a
linear noise approximation of the master equation [40,41].
The structure of the paper is as follows. We introduce the
birth-death master equation for a single bistable network in
Sec. II, and carry out the analysis of noise-induced transi-
tions in Sec. III. In Sec. IV we present the master equation
for a multiple population model, and analyze the noise-
amplification of subthreshold oscillations in an excitatory or
inhibitory network. We also briefly indicate how to extend
the analysis of metastability to multiple populations. Finally,
in Sec. V we give some possible applications of our analysis.
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FIG. 1. Bistability in the deterministic network satisfying u=
—u+f(u) with f given by the sigmoid [Eq. (2.2)] for y=4 and 6
=1.0, fo=2. There exist two stable fixed points u. separated by an
unstable fixed point u,. As the threshold 6 is reduced the network
switches to a monostable regime.

II. MASTER EQUATION FOR A BISTABLE
ONE-POPULATION MODEL

Consider a single homogeneous population of excitatory
neurons satisfying a simple rate equation of the form

d—u:—au+f(u), (2.1)

dt

where u is a measure of mean population activity, « is a rate
constant and f is a nonlinear firing rate function with gain y
and threshold 6. Note that for a single population model, the
strength of recurrent connections within the population can
be absorbed into the gain . For concreteness, f is taken to be
the sigmoid function

fo

1 +e Y0’ 2.2

flu) =

with f, another rate constant. It is straightforward to show
graphically that Eq. (2.1) exhibits bistability for a range of
values of the gain and threshold. That is, there exist two
stable fixed points u. separated by an unstable fixed point 1
(see Fig. 1). We will fix the units of time by setting a=1.
(We interpret o' as a membrane time constant such that
a'=10 msec in physical units).

We now construct a stochastic version of the above rate
model using a master-equation formulation [29-32]. We as-
sume that each neuron can be in either an active or quiescent
state. Let N(7) denote the number of active neurons at time ¢
and introduce the probability P(n,t)=Pr{N(z)=n}. The latter
is taken to evolve according to a birth-death process of the
form

dP(n,t)
dt

=T,(n-=1DPn-1,0)+T_(n+1)P(n+1,1)

=[T,(n) + T_(n)]P(n,1) (2.3)

for integer n=0, with boundary condition P(-1,7)=0 and
initial condition P(n,0)=4, 7 The birth and death rates are
chosen to be of the form
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FIG. 2. Plots of the steady-state distribution Pg(n) for various
thresholds 6 with y=4.0 and f,=2. System size is N=100.

T.(n) =Nf(n/N), T_(n)=n, (2.4)

where N is a system size parameter such that the determin-
istic rate Eq. (2.1) is recovered in the thermodynamic limit
N— o0, That is, multiply both sides of the master Eq. (2.3) by
n and sum over n to obtain

d(n}

=(Ty(n)) =(T_(n)), (25)

where the brackets (...) denote a time-dependent ensemble
averaging over realizations of the stochastic dynamics,
that is, (A(n))=3,P(n,t)A(n) for any function of state A(n).
We now impose the mean-field approximation (7. (n))
~T.((n)), which is based on the assumption that statistical
correlations can be neglected in the thermodynamic limit N
— o, Identifying mean population activity according to u
=(n)/N then yields the rate Eq. (2.1). We leave the interpre-
tation of the system size parameter N open here. One possi-
bility would be to identify N with the number of neurons in
the population such that u(r) is the mean fraction of active
neurons at time ¢t and 0=u=1. However, N could also be
identified with the mean number of synaptic inputs into a
neuron in a sparsely coupled network, for example. In this
case the number of neurons in the network would be yN for
some integer y, where y determines the degree of sparseness.

Note that the master Eq. (2.3) is a rescaled version of the
one considered by Buice ef al. [30,31]. That is, they take the
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transition rate T,(n)=f(n) so that u=(n) in the mean-field
Eq. (2.1), which corresponds to the mean number of active
neurons. Such a choice would be appropriate if population
activity were itself Poissonlike, rather than characterized in
terms of finite-size fluctuations about an asynchronous state.
The advantage of our choice of scaling from an analytical
viewpoint is that one can treat N~' as a small parameter and
use large deviation theory to study escape from metastable
states [35,42,43]. Moreover, the finite time behavior within
the basin of attraction of a metastable state can be analyzed
using a system size expansion or diffusion approximation
[3].

In order to describe the nontrivial effects of fluctuations
for large but finite N, suppose that the deterministic network
is in the bistable regime so that the system tends toward
either the high or low activity stable fixed point as t— o,
depending on the initial condition. In the same parameter
regime, the stochastic network will also tend toward one of
these fixed points on a fast time scale, but will randomly
switch between the basins of attraction of the two fixed
points on a slower time scale that depends exponentially on
the system size N; the fixed points are thus only metastable
in the presence of intrinsic noise. The state transitions play a
crucial role in determining the slow approach of the prob-
ability distribution P(n,) to its unique steady state Pg(n).
The equation for the steady-state distribution Pg(n) can be
written as [44]

0=J(n+1)-J(n), (2.6)
with J(n) the probability current,
J(n)=T_(n)Pg(n) = T,(n—=1)Pgy(n—1). (2.7)

Since 7_(0)=0 and Pg¢(—1)=0, it follows that J(0)=0 and
J(n)=0 for all n=0. Hence,

T.(m-1)

Ps(”) T_(m)

T,(n—1)
_— ————Ps(n-1)= PS(O)mH1

(2.8)

with P¢(0)=1-2%,,=,Ps(m). One finds that the stable and
unstable fixed points of the deterministic rate equation are
represented as minima and maxima, respectively, of the
steady-state distribution Pg(n) (see Fig. 2). The relative
heights of the maxima depend on the system size N as illus-
trated in Fig. 3.

) 0 0
4 N =50 N =100
-5 20
-6
8 -10 -40
In(Ps) -10 15 -60
-12 20 -80
-14
25 -100
-16
N = 1000
-18 -30 -120
0 40 80 120 160 0 100 200 300 0 400 800 1200 1600

FIG. 3. Plots of steady-state distribution Pg(n) for various system sizes N. Other parameters are y=4,6=0.87,f,=2
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Note that approximating the neural master Eq. (2.3) by a
neural Langevin equation would lead to exponentially large
errors in the values of the peaks of the steady-state distribu-
tion, and consequently exponentially large errors in the cal-
culation of the escape rates between metastable states (see
Sec. IIT). The Langevin equation can be derived by carrying
out a Kramers-Moyal expansion of the master equation [3,4].
First, introduce the rescaled variable x=n/N and correspond-
ing transition rates NQ. (x)=T.(Nx), that is

Q.(x) =fx), Q_(x)=x. (2.9)
Equation (2.3) can then be rewritten in the form
dP(x,t
% =N[Q,(x=1/N)P(x—=1/N,1) + Q_(x + 1/N)

XP(x+1/N,t) = (Q,(x) + Q_(x)) P(x,1)].
(2.10)
Treating x as a continuous variable and Taylor expanding

terms on the right-hand side to second order in N~! leads to
the FP equation

PED Db+ 3, Totpwpee]
at dx 2o Ox
@.11)
with e=N-"? and
AX)=Q,(x)-Q_(x), Bx)=Q.(x)+Q_(x).
(2.12)

The solution to the FP Eq. (2.11) determines the probability
density function for a corresponding Ito stochastic process
X(z), which evolves according to a neural Langevin equation

of the form
dX =AX)dt + eb(X)dW(z), (2.13)

with b(x)?>=B(x). Here W(¢) denotes an independent Wiener
process such that

(W(1))=0, (W(t)W(s))=min(z,s). (2.14)
The FP Eq. (2.11) has the steady-state solution
O -0W)
Pg(x)=A exp(ZNf 0.00) +Q_(x’)dx ) (2.15)

where A is a normalization factor. On the other hand, setting
n=Nx in Eq. (2.8), one finds that for large N (see also Sec.

1),
Py(x)=A' exp(fo ln%dy)

with normalization factor A’. Writing Pg(x) ~e VW, we see
that the stochastic potential ®(x) associated with the FP
equation differs from that of the underlying master equation,
and this leads to exponentially large errors when calculating
escape rates for example. Thus great care must be taken
when approximating a neural (or chemical) master equation
by a corresponding FP or Langevin equation [5-7].

(2.16)
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III. ANALYSIS OF STOCHASTIC DYNAMICS
IN THE BISTABLE REGIME

In order to explore the approach to steady state, let us
rewrite the master equation (2.3) as the linear system

dp

o= (3.1
where p=[P(0,7),P(1,7),...]" and Q is the matrix
- T7,(0) T_(1) 0
7,000 -T.(1)-T7(1) T_(2)
0 T,(1) -T,(2)-T(2)
(3.2)

Suppose that we order the eigenvalues of Q according to
No=N; =MN,=.... The Perron-Frobenius theorem implies
that all the eigenvalues of Q are real with the largest being a
simple eigenvalue, \g=0, so that \;<<O for i=1. Suppose
that the system is operating in a bistable regime so that there
exist two stable fixed points x. and one unstable fixed point
xo of the corresponding deterministic rate Eq. (2.1). In the
bistable regime, one finds that the second largest eigenvalue
N\ differs from the other negative eigenvalues in the sense
that it decays exponentially with the system size N, |\
~e N for 7,=0O(1), whereas \;,i>1 are only weakly de-
pendent on N. The existence of an exponentially small eigen-
value reflects the corresponding exponential dependence on
N of the escape rates between the two stable fixed points of
the deterministic system. Indeed, \;=—(r,+r_) [5], where r_
is the escape rate from x_ to x, and r, is the escape rate from
X, to x_. Expanding the solution to the master equation (2.3)
in terms of the eigenvalues \; and corresponding eigenvec-
tors v;(n),

P(n,t) = couy(n) + cjv (n)eM’ + -+ (3.3)

Since \;<0 for all i=1, it follows that lim,_.P(n,1)
=covo(n) and we can identify vy(n) with the steady-state dis-
tribution Pg(n). The higher-order eigenmodes v;(n) for i> 1
will decay relatively rapidly, so that the approach to the
steady-state will be dominated by the first eigenmode v (n).
In this section we show how the escape rates r. and hence
the eigenvalue N\; can be calculated by exploiting the fact
that r. are exponentially small functions of the system size
N. Following previous studies of chemical master equations
[5,35-39], we construct a quasistationary solution of the
master equation using a WKB approximation. This leads to a
corresponding Hamiltonian dynamical system that describes
the most probable path of escape from a metastable state.
The escape rates are then obtained by asymptotically match-
ing the quasistationary solution with an appropriate inner
solution in a neighborhood of the saddle point x=x,. This is
necessary in order to satisfy appropriate boundary conditions
at x,. Finally, the long-term behavior of the bistable network
can be represented in terms of a two-state Markov process
describing transitions between the two metastable states n.
=Nx. [7].
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A. WKB approximation

Let I1(x) with x=n/N denote a quasistationary solution
associated with finding the network in the basin of attraction
of one of the stable fixed points x*=x.:

0=0Q,(x-1/N)II(x = 1/N) + Q_(x + 1/N)II(x + 1/N)
= [Q,(x) + Q_(x) JTI(x). (3.4)

Note that here x is treated as a continuous variable x
e[0,). We seek a WKB solution of the form

I(x) ~ K(x)e™W, (3.5)

with S(x*)=0,K(x*)=1. Substituting Eq. (3.5) into Eq. (3.4),
Taylor expanding with respect to N~!, and collecting the
O(1) terms gives

> Q@[S W-1]=0,

r=*1

(3.6)

where S’ =dS/dx. Mathematically speaking, Eq. (3.6) takes
the form of a stationary Hamilton-Jacobi equation
H[x,S'(x)]=0 for S, with Hamiltonian

H(x,p)= 2 Q,)[e” - 1]=xle? - 1]+ fx)[e” - 1].
r==*1
(3.7)
This suggests a corresponding classical mechanical interpre-
tation, in which H determines the motion of a particle with

position x and conjugate momentum p. A trajectory of the
particle is given by the solution of Hamilton’s equations

oH

F=—= > rQ,(x)e’” = - xe” + f(x)e’ (3.8)
(7[7 r=*1
p=- o S T fer )= (e~ 1T+ L 1]
x r=*1 dx

(3.9

Here the time ¢ should be viewed as a parameterization of
paths rather than as a real time variable. Introducing the La-
grangian

L(x,x)=p-x—H(x,p), (3.10)

it follows that S(x) with S(x*)=0 corresponds to the classical
action evaluated along the least-action trajectory from x* to
X,
T
S(x) = inf f L(x,x)dt. (3.11)

x(tg)=x"x(T)=xY 0

In terms of the underlying stochastic process X(z), the least-
action path can be interpreted as the most probable fluctua-
tional path from x* to x (in the large N limit) [42,43]. Since
p=S' everywhere along this path, we have

S(x)=ficp(x')dx’, (3.12)

with the integral taken along the trajectory. It follows that the
leading-order term in the WKB approximation is determined
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FIG. 4. (Color online) Phase portrait of Hamiltonian equations
of motion for Q,(x)=fy/(1+e "9 and QO_(x)=x with y=4,
=1.0, and f,=2. The zero energy solutions are shown as thicker
curves.

by finding zero energy solutions p=p(x) such that
H[x,p(x)]=0. Given these zero energy solutions, the multi-
plicative factor K(x) can be determined by solving the equa-
tion

K 1,
Hp? Y Hyp = Hps,

(3.13)
with H,=dH[x,p(x)]/dp etc. Equation (3.13) is obtained by
collecting the O(1/N) terms in the WKB solution of Egq.
(3.4).

Since Eq. (3.6) is a quadratic in e, there are two classes
of zero energy solution given by (see Fig. 4)

Q_(x)
Q+(x) .

The classical equation of motion along the so-called relax-
ation trajectory p=0 is precisely the deterministic rate Eq.
(2.1), which in the bistable regime has three fixed points
X+,Xo. Motion along a neighborhood of a relaxation trajec-
tory toward one of the two fixed points x. characterizes the
fast behavior of the system that is consistent with a Gaussian
process in a neighborhood of the given fixed point. However,
on exponentially long time scales we expect transitions be-
tween the two metastable states centered about x., and the
most likely (optimal) path of escape will be along the so-
called activation trajectory p=p.(x) from x. to the saddle
point xy. On crossing x, we expect the system to rapidly
move along the relaxation trajectory to the other fixed point
x=. In Fig. 4 we illustrate the Hamiltonian phase space for a
bistable neural network showing the constant energy solu-
tions of the Hamiltonian given by Eq. (3.7); the zero energy
activation and relaxation trajectories through the fixed points
of the deterministic system are highlighted as thicker curves.
After evaluating the factor K(x) by solving Eq. (3.13), it
follows that along an activation trajectory [39]

p=0, p=p.x)=In (3.14)

—NS(x)

H(x) = ——=
O

(3.15)

with
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tO0)
S(x):f In dy, (3.16)
Q.(y)
whereas, along a relaxation trajectory S=0 and
B
nx)=——"- (3.17)
Q,(0)-Q_(x)

for some constant B.

B. Calculation of escape rates

Given the WKB approximation, the rate of escape r_ from
the metastable state centered about x=x_ can be calculated
by matching the quasistationary solutions with an appropri-
ate inner solution in a neighborhood of the saddle point x
=xy [5,35-39]. This is necessary since the quasistationary
solutions (3.15) and (3.17) do not satisfy appropriate bound-
ary conditions at the saddle point separating the two meta-
stable states. We will briefly describe the method of Escud-
ero and Kamenev [39], and then apply their result to the
particular example of a bistable neural network. Escudero
and Kamanev assume that there is a constant flux J through
the saddle and then match the activation solution on one side
of the saddle (x<x,) with the relaxation solution on the
other side of the saddle (x> x;) using a diffusion approxima-
tion of the full master equation (2.3) in the vicinity of x,. The
latter yields the FP [Eq. (2.11)], which can be rewritten in the
form of a continuity relation

Jd d
EP(X,[) =— a—xJ(x,t) (3.18)
with
I = [0, - O_(]P(cD)
S0, + 0 WP} (319

Substituting the quasistationary solution IT(x,7)=II(x)e™"
into Eq. (3.18) and using the fact that r_ is exponentially
small, gives

J=[Q,(x) = Q_()I(x) - %V(%{[mx) +Q_() ()},

(3.20)

where J is the constant flux through the saddle. In a neigh-
borhood of the saddle this equation can be Taylor expanded
to leading order in x—Xx; and integrated to obtain the solution

JN e(x—xo)z/ozf e—(y _XO)Z/UZdy’ (321)

H0=5 )

where

o \/ 20, (xo)
- N[‘QL(XO) -0 (xp)]

determines the size of the boundary layer around the saddle.

In order to match the activation and relaxation solutions,
the following asymptotic behavior of the inner solution
(3.21) is used,

(3.22)
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FIG. 5. Plot of calculated escape rates r+ for a bistable neural
network as a function of the threshold . Other parameters are y
=4.0, fo=2, and N=20. The escape rates are approximately equal
for ~=0.85.

NJo? _
s —— X—X0> O
(0 = x0) Q4 (x0) 0
(x) = Nolm (3.23)
eLALUNCE W xo—x> 0

Q,(xp)

The solution to the right of the saddle matches the relaxation
solution  (3.17) since Q. (x)—Q_(x) = (x—x)[ Q. (x0)
—Q/(xp)] for x=~x, such that B=J. In order to match the
solution on the left-hand side of the saddle with the activa-
tion solution (3.15), Taylor expand S(x) about x, using
S"(x0)=0 and S"(xy)=—2/No>. It follows that

18" (xo)|
27N

AQ+(x0)
\“"Q+(X0)Q_(X0)

e NSko), (3.24)

The final step in the analysis is to link the flux J with the
escape rate r_. This is achieved by integrating the continuity
Eq. (3.18) over the interval x € [0,x,] and using a reflecting
boundary condition at x=0,

l_lFOH( )
o ey

0

(3.25)

Since the activation solution is strongly peaked around the
fixed point x_, a Gaussian approximation of II(x) around x_
can be used to give the result [39]

Q,(x
ro= %) VIS" () [S7 (x_)e MStol=SteI1 (3 26)

Similarly, the escape rate from the metastable state x, is

O, (xy) =—7—
r+=LVy|Sn(x0)|Srr(x+)e—N[S(x0)—S(x+)]'

y. (3.27)

We now apply the above results to the particular case of a
bistable neural network evolving according to a master equa-
tion with transition rates of Eq. (2.9). In particular, the varia-
tion of the calculated escape rates r. with respect to the
threshold 6 is plotted in Fig. 5. As expected, r, (r_) increases
(decreases) as the threshold increases, reflecting the fact that
the more active metastable state dominates at lower thresh-
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3.5

1 2 3 4 5 8
time t (sec)
FIG. 6. Time series showing a single realization of the stochas-
tic process X(r)=N(t)/N where N(z) is the birth-death process cor-
responding to the neural master equation (2.3). The parameters are

0=0.86, y=4.0, fy=2, and N=20. The bistable nature of the process
is clearly seen.

olds. It can also be seen that there is a narrow range of
thresholds over which r. are comparable; otherwise, one
metastable state dominates. The bistable nature of the sto-
chastic neural network is illustrated in Figs. 6 and 7 for dif-
ferent choices of threshold. It can be seen that the dynamics
is characterized by sharp transitions between the two meta-
stable states x. combined with localized (Gaussianlike) fluc-
tuations in a neighborhood of each state. Consistent with Fig.
5, lowering the threshold increases the relative time the net-
work spends in the active state. (Note that the bistable nature
of the system vanishes in the rescaled version of the master
equation considered by Buice er al. [30,31], since it operates
in a Poissonlike regime).

C. Bistable network as two-state Markov process
Having calculated the escape rates r., the long-term be-
havior of the stochastic bistable network can be approxi-

mated by a two-state Markov process that only keeps track of
which metastable state the system is close to [7]

|

time t (sec)

FIG. 7. Same as Fig. 6 except that §=0.83.
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alr)=eli) o= 1) e
dtP+_QP+’Q_ ro=r./) (3.28)

where P are the probabilities of being in a neighborhood of

x.. The matrix Q has eigenvectors \g=0 and \;=—(r,+r.)
and corresponding eigenvectors

r, 1
R re+r_ R 2
Vo= , V1= (3.29)
a2 1
ro+r_ 2

The eigenvalues of Q are identical to the first two eigenval-
ues of the full matrix Q of the master equation (3.1). More-
over, the two-component eigenvectors V; are reduced ver-
sions of the eigenvectors v;(n),n=0 of Q. That is

o
0,0~ 2 vdn), G~ 2 vin), j=0,1. (3.30)

n=0 n=n

In particular, v, determines the steady-state probability of
being in the neighborhood of either metastable state. Note
that the two-state model generates an exponential density for
the residence times within a given metastable state. This cap-
tures the behavior of the full master equation at large resi-
dence times but fails to capture the short-term dynamics as-
sociated with relaxation trajectories within a neighborhood
of the metastable state.

IV. MULTIPLE POPULATION MODEL

Now suppose that there exist M homogeneous neuronal
populations labeled i=1, ... ,M, each of size N. Assume that
all neurons of a given population are equivalent in the sense
that the effective pairwise synaptic interaction between a
neuron of population i and a neuron of population j only
depends on i and j. Suppose that there are N,(r) active neu-
rons in the kth population. The state or configuration of the
network is now specified by the vector N(z)
=[N,(t),N,(1),...,Ny(t)], where each N,(r) is treated as a
stochastic variable that evolves according to a one-step jump
Markov process. Let P(n,)=Prob[N(s)=n] denote the prob-
ability that the network of interacting populations has con-
figuration n=(n,,n,,...,ny,) at time 7,1>0, given some ini-
tial distribution P(n,0). The probability distribution is then
taken to evolve according to a master equation of the form
[29-31]

M
—dP(n’[) => > [T, (n—rey) P(n—ret) — T, ,(n)P(n,1)].

dr k=1 r==1
4.1)
Here e, denotes the unit vector whose kth component is

equal to unity. The corresponding transition rates are given
by

Tk’_l(n) = ainy, Tk,+1(n) = Nf(z Wk/l’l[/N‘l' hk) 5 (42)
l

where «; are rate constants, wy; is the effective synaptic
weight from the /th to the kth population, and /4, are external
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inputs. Equation (4.1) is supplemented by the boundary con-
ditions P(n,#)=0 if n;=—1 for some i. The master equation
preserves the normalization condition 2, -2, ~oP(n,7)=1
for all +=0.

Introduce the rescaled variables x;=n;/N and correspond-
ing transition rates

Qe 1(x) = g, Oy 1(x) =f<2 WX+ hk)- (4.3)
]

Carrying out a Kramers-Moyal expansion to second order
then leads to the multivariate FP equation

M M
D 3 L opn)+ 3 80P
(4.4)
with e=N"12,
Ap(x) =y 1 (x) = Q4 (x) (4.5)
and
Bi(x) = Oy 1 (x) + Q1 (x). (4.6)

The solution to the FP Eq. (4.4) determines the probability
density function for a corresponding stochastic process
X(1)=[X,(),...,Xy(2)], which evolves according to a neural
Langevin equation of the form

ka = Ak(X)dt + €bk(X)de(Z) . (47)

with b(x)?’=B(x). Here W,(r) denotes an independent
Wiener process such that

(W) =0, (W (DW(s)) = &, min(z,s).

As in the one-population model, the FP or Langevin equation
captures the relatively fast stochastic dynamics within the
basin of a attraction of a stable fixed point (or limit cycle) of
the corresponding deterministic rate equations

(4.8)

du

7 (4.9)

== aglly +f<2 Wi+ hk)-
I

However, in order to analyze state transitions between basins
of attraction, it is necessary to consider a higher-dimensional
version of the asymptotic methods presented in Sec. III. In
this section we first show how the neural Langevin equation
can be used to analyze noise-induced oscillations in a two-
population network. We then describe how the WKB ap-
proximation and associated Hamiltonian formulation can be
extended to multiple populations.

A. Noise-induced amplification of oscillations in E-I network

One of the major differences between the single and mul-
tipopulation models is that the latter can support limit cycle
oscillations. The simplest and best studied example is a two-
population model consisting of an excitatory population in-
teracting with an inhibitory population as shown in Fig. 8.
The associated mean-field Eq. (4.9) for this E-I (excitatory-
inhibitory) network reduces to the pair of equations
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=/

FIG. 8. (Color online) Two-population E-I network

dME
? =—ug+ f(Wgptp — wg + hg),
du
d_tI:—M]'f'f(W[EME_W[]u]'*'h[)v (410)

where we have set ay ;=1 for simplicity and we have made
the sign of the weights explicit by taking wy,;=0 for all k,!/
=E,I. The bifurcation structure of the two-population
Wilson-Cowan model given by Egs. (4.10) has been ana-
lyzed in detail elsewhere [50]. An equilibrium (u,u;) is ob-
tained as a solution of the pair of equations

ugp=f(Wegity — wgpity + hg),

uy = flwypug = wiuy + hy). (4.11)
These can be inverted to yield
hi =" (ug) = wepuy +wguy
hy= £ (u)) = wiguy + wuj (4.12)

As a simplification, let us take the gain function f to be the
simple sigmoid f(u)=(1+e™)~!. Using the fact that the sig-
moid function then satisfies f'=f(1—f) and applying the
fixed-point equations allows us to represent the associated
Jacobian in the form

(— 1+ wggup(l - uy)

- - WEIM*E(I - ”Z) )
WlEuj (1- “; )

-1- Wu“j(l - “;)

An equilibrium will be stable provided that the eigenvalues
N+ of J have negative real parts, where

Ao ==(TrJ = \[Tr J]*— 4 Det J). (4.13)

N | =

This leads to the stability conditions Tr J<<0 and DetJ
>(0. In order to construct a phase diagram in the
(hg,hy)-plane for a fixed weight matrix w, we express u; as a
function of uy by imposing a constraint on the eigenvalues
A~ and then substitute the resulting function into Egs. (4.12).
This yields bifurcation curves in the (hg,h;)-plane that are
parametrized by uy, and 0<up <1 (see Fig. 9). For example,
the constraint
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.

Fold
hi H'Lpf
5y Fold #
l\.
10}

FIG. 9. Phase diagram of two-population Wilson-Cowan model
(4.10) for fixed set of weights wgp=w;z=wg;=10, ,w;;=4. The dots
correspond to Takens-Bogdanov bifurcation points

TrJ=-2+wggup(l —up) —wyuu, (1 —u;)=0
(4.14)

with Det J>0 determines Hopf bifurcation curves where a
pair of complex-conjugate eigenvalues cross the imaginary
axis. Since the trace is a quadratic function of uj,u;, we
obtain two Hopf branches. Similarly, the constraint Det J
=0 with Tr J <0 determines saddle-node or fold bifurcation
curves where a single real eigenvalue crosses zero. The
saddle-node curves have to be determined numerically, since
the determinant is a quartic function of uy,u;.

Consider a point in parameter space where there exists a
single fixed point of the mean-field Egs. (4.10). Suppose that
the fixed point is a stable focus so that its Jacobian has a pair
of complex-conjugate eigenvalues. The corresponding deter-
ministic network exhibits transient or subthreshold oscilla-
tions that decay at a rate given by the real part of the eigen-
values. We will show how intrinsic noise can convert these
transient oscillations into large amplitude sustained coherent
oscillations, giving rise to a peak in the corresponding power
spectrum (quasicycles). We proceed along similar lines to
recent work on biochemical oscillations in cellular systems
[40,41]. The first step is to decompose the solution to the
neural Langevin Eq. (4.7) as

X =uj + en() (4.15)

such that A (u*)=0, where u=(ug,u;). Taylor expanding Eq.
(4.7) to the first order in & then implies that 7, satisfies the
linear Langevin equation

dye= 2 Jumdt+b(w)dW,(1),
I=E,I

(4.16)

where J;=dA;/ 3x;|g—y*- Introducing the white-noise pro-
cesses & (1) according to dWy(t) =& (r)dr with

(&0)=0, (&O&E)=g,0t-1"),  (4.17)
we can rewrite the Langevin equation in the form
dn
== 2 Jum+ bw)E). (4.18)
dr g

Let 7,(w) denote the Fourier transform of %(r) with
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w) = f eI (1)dr.

—0o0

Taking Fourier transforms of Eq. (4.18) gives

~ioT(w) = 2 Jui(o) + bu)E(w).  (4.19)
I=E,I
This can be rearranged to give
i(w) = 2 O (0)bu)E(w) (4.20)

I=E,I

with @y (w)=—iwd; ;—J;;. The Fourier transform of the
white-noise process &(z) has the correlation function

(El@)&(0) =275 8w+ o). (4.21)
The power spectrum is defined according to
27w8(0) P(w) = (| Fi(w) |, (4.22)
so that Egs. (4.20) and (4.21) give
Pw)= 2 | ()B/(w), (4.23)

I=E.I

with B,(u*)=b,(u*)>. The right-hand side can be evaluated
explicitly to yield

P = 4.24
(@) D(w)? (4.24)
with D(w)=Det ®(w)=—w’+iw Tr J+Det J and
Be= J§2BE(U*) + J%zBl(“*), ye=Bp(u’)  (4.25)
Br=J3,Be(u’) + J1,B)(u*), ¥ =Bu"). (4.26)

Finally, evaluating the denominator and using the stability
conditions Tr J <0, Det J>0, we have [40]

B+ niw’
(- Q(z))z + 120’

where we have set I'=Tr J and Q2=Det J.

In Fig. 10, we compare our analytical calculation of the
spectrum for subthreshold oscillations in an E-I pair with
direct simulations of the full master equation (2.3). We
choose a point in parameter space that lies just above the
upper Hopf curve in Fig. 9 by taking hp=0,h;=-2. The only
fixed point is a stable focus. It can be seen in Fig. 10(a) that
the spectrum exhibits a strong peak at a frequency w=2,
which is close to the Hopf frequency of limit cycle oscilla-
tions generated by crossing the nearby Hopf bifurcation
boundary by decreasing the inhibitory input A;. Sample tra-
jectories for uy and u; also indicate oscillatorylike behavior
[see Fig. 9(b)].

Note that it is also possible to extend the above spectral
analysis to the case where the mean-field equations support a
limit cycle oscillation by using Floquet theory [41]. How-
ever, a more relevant approach within the neural context
would be to carry out a phase reduction of the underlying
Langevin equation after converting it from the Ito to Stra-
tanovich interpretation (so the standard rules of calculus can

051903-9



PAUL C. BRESSLOFF

10 -3 0.1 L L L L L L L ‘ ‘
0 2 4 6 8 : 5 10 15 20 25 30 35 40 45 50
0] time t

FIG. 10. (Color online) Noise-amplification of subthreshold os-
cillations in an E-I network. (a) Power spectrum of fluctuations
(solid curve) obtained by Fourier transforming the Langevin Eq.
(4.18). Data points are from stochastic simulations of full master
equation with N=1000, averaged over 100 samples. (b) Sample
trajectories obtained from stochastic simulations of full master
equation with N=100. Same weight parameter values as Fig. 9 with
hp=0 and h;=-2.

be applied [45]). This would then provide a framework for
studying the effects of intrinsic noise on the synchronization
of synaptically coupled E-I networks, each of which exhibits
limit cycle oscillations in the mean-field limit. One applica-
tion of such a model is to stimulus-induced oscillations and
synchrony in primary visual cortex model, where each E-I
network is interpreted as a cortical column consisting of re-
ciprocally coupled populations of excitatory and inhibitory
neurons [46,47].

B. Metastable states and WKB approximation for multiple
populations

It is clear from Fig. 9 that there also exist parameter re-
gimes in which the deterministic E-I network exhibits bista-
bility due to the emergence of an additional stable fixed point
via a fold or saddle-node bifurcation. Unfortunately, the
analysis of metasability in a stochastic multipopulation
model is considerably more involved than the one-population
case. Here we briefly describe how to generalize the WKB
method of Sec. III (see Refs. [35,42,43] for more details).
Let I1(x) and x=n/N denote the quasistationary probability
distribution associated with finding the network in the neigh-
borhood of a stable fixed point S of the mean-field Egs. (4.9).
That is

M

> 2 [, (x - reyNITI(x - rey/N) - O ,(0TI(x)] =

k=1 r==%1
(4.28)

Following the analysis of the one-population model, we seek
a solution that has the WKB form

II(x) ~ K(x)e™™  K(S)=1,W(S)=0. (4.29)

Substituting into the stationary master equation (4.28) and
collecting O(1) terms gives the Hamilton-Jacobi equation
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> Eﬂkr(X)[e””‘—l] 0,

r=*1 k=1

H(x,p) = (4.30)

where p,=JdW/dx,. Similarly, collecting O(1/N) terms gen-
erates a differential equation for the factor K,

FW FH
0—'.xi.xj‘ 0])1 &pj

9H oK PH

D

y—
ap; 0x; . Op;dx; 2,-,1-

(4.31)

Under the corresponding classical mechanical interpretation,
the associated Hamiltonian H determines the motion of a
particle with position vector x € R” and conjugate momen-
tum vector p. A trajectory of the particle parametrized by 7 is
given by the solution of Hamilton’s equations

x,;ﬁ— >y (x)e'™x, (4.32)
o —
= E ”(x)[ 1] (4.33)

5'xk =1 I=1

given the initial conditions [x(z,),p(¢,)] in phase space. In-
troducing the Lagrangian
L(x,X) =

p-x-H(x,p), (4.34)

it follows that W(x) with W(S)=0 corresponds to the classi-
cal action evaluated along the least-action trajectory from S
to x [42],

T
W(x) = inf : f L(x,X)dt. (4.35)
T)=x

x(t9)=S,x(T)=

Since p,=d,W everywhere along this path, it follows that

W(x) = fxp(x') ~dx’, (4.36)
s

with the line integral taken along the trajectory. Since S is a
fixed point of the mean-field Eq. (4.9), that is,
2,17 (8)=0 for all k=1,...,M, it can also be shown
that (S,0) is a hyperbolic fixed point of the Hamiltonian
dynamical system given by Egs. (4.32) and (4.33). It follows
that along any most probable functional path starting from S
we have lim,_,_.[x(¢),p(r)]=(S,0) so that one should take
to=—= in Eq. (4.35). From a dynamical systems perspective,
the most probable paths form the unstable manifold of the
fixed point (S,0). The stable manifold is given by p=0 and
consists of trajectories given by solutions of the mean-field
Eq. (4.9).

In contrast to the one-population model, it is no longer
possible to obtain analytical expressions for the quasistation-
ary density. However, one can numerically evaluate W(x)
and K(x) by evolving Hamilton’s equations from initial
points [x,p(x)] in a neighborhood of (§,0) with p(x) deter-
mined using a Gaussian approximation of W. Let Z;
=0;0;W(x) denote the Hessian matrix of W(x) [38]. A dy-
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namical equation for Z can be derived by differentiating
equation H[x,p(x)]=0 twice with respect to x using Hamil-
ton’s equations and

4 _9 59
dx,  ox, T dxidp;
This yields the matrix equation
5 H
DT Opi 0xy
F H & H
= —— Zalp+ > Zj
Kl Pk 9D ; 0x;dp;
& H PH
+ 2 Zil + . (437)
| 0x;dp; 9x;  X;
At the fixed point (S,0) we have Z=0 and
FH .,
= E r—’(S) EAkl’
X 9pr == 09X
FH
= Oy > O (S) = By,
IprIp; r=x1
FPH
=0 (4.38)
C?xk (9)(:1

so that the Hessian evaluated at S is given by the solution to
the algebraic Riccati equation

Z(S)BZ(S) + Z(S)A + A"Z(S) = 0. (4.39)

It can be shown that if Tr A #0 then there are exactly four
solutions for Z(S): one of full rank, two of unit rank, and the
trivial solution Z(S)=0 [43]. Since the point S is a local
minimum of W(x), it follows that only the full rank solution
is physically relevant and that in a small neighborhood of §
we have the Gaussian approximation

W) = = 3 2 Z(S)lx; ~ 5]l = x,($)] (4.40)
L]

with Z(S) the unique solution to the Riccati equation. It fol-
lows that pi(X) zEJZU(S)[)C]—)C](S):l and

e ~ exp{— Y 2,5)0 - ()] - xj<s>]}.

(4.41)

The latter is also the solution to the corresponding FP Eq.
(4.4), linearized about the fixed point S [3].

Having obtained the WKB approximation that matches
the Gaussian approximation around, it remains to match with
an inner solution close to the boundary dM of the basin of
attraction. This is necessary, since the WKB solution does
not satisfy the appropriate boundary condition on dM. Typi-
cally, one either takes an absorbing boundary condition
Py(x)=0 on dM or one assumes that there is a constant
flux J(x) through the boundary that is determined self-
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consistently. Following standard problems in classical transi-
tion rate theory, suppose that the deterministic network de-
scribed by the mean-field Eq. (4.9) is bistable so that there
exist two stable fixed points S,S’ separated by a saddle point
Q that lies on the separatrix dM. In this case the most prob-
able path from S to S’ is through Q and the behavior around
Q dominates the matched asymptotics. Provided that certain
additional constraints hold, it can be shown that the transi-
tion rate takes the form [43]

A (Q)| det Z(S)

12
=l 7 -W(Q)/N
No= . [ 4oL Z(0) ] K(Q)e ,  (4.42)

where A\, (Q) is the positive eigenvalue of the Jacobian ob-
tained by the linearizing the mean-field equation about Q. In
general, the geometry of the trajectories in phase space
makes the calculation of transition rates in the multidimen-
sional case computationally challenging. However, an effi-
cient numerical method called “transition path sampling” has
recently been developed that allows one to study transition
pathways for rare events in complex systems which can then
be used to extract important physical quantities such as tran-
sition rates from metastable states [51].

C. Continuum neural field model

One of the distinct features of neural systems compared to
chemical systems is that when spatial degrees of freedom are
taken into account, the former involves nonlocal interactions
rather than diffusive interactions. That is, it iS common to
model large-scale cortical networks in terms of spatially dis-
tributed populations labeled by spatial coordinates q € R2. In
the deterministic limit, these continuum networks evolve ac-
cording to neural field equations of the form [34]

Jui(q.1)
s LA Y
ot iy (q,1)

+f[2 Jwkz(q,q’)uz(q’,t)dq’+hk(q,t) ,

I=EI
(4.43)

where k,/=FE,I specifies whether a given population is exci-
tatory or inhibitory. The synaptic weight distributions
wi(q,q’) specify the form of the nonlocal interactions. The
associated stochastic neural field model is described in terms
of a probability functional satisfying an infinite-dimensional
version of the master equation (4.1). Under the diffusion ap-
proximation, this reduces to a functional FP equation of the
form

IP([x].1) D )

__ e (@ AralDPOL0)

Jt k=E.,I

& 8
+ EkzzE,l W[Bk,q([X])P([X]J)],

(4.44)
with [x]={(xz(q).x,(q)).q € R?},
Apq([x]) = - @) + fiq (XD,
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By o([x]) = apxi(@) + fro([x]),

and

fk,q[(x)]=f|:2 f wi(a,q")x,(q",0)dq" + h(q.1) |.

I=E.I

It is has previously been shown that deterministic neural field
models support a variety of spatially coherent states includ-
ing spatially periodic patterns arising via Turinglike instabili-
ties [34,52-55]. In the case of homogeneous weight distribu-
tions, one could apply Fourier methods to the FP Eq. (4.44)
in order to analyze the effects of intrinsic noise on such
pattern forming instabilities [48]. One could also extend the
analysis of quasicycles to the spatial domain, following
along similar lines to a recent study of a diffusive predator-
prey model [56]. However, as in the case of finite population
models, the FP Eq. (4.44) would not take proper account of
noise-induced transitions to other metastable states.

V. DISCUSSION

In this paper we have shown how techniques from the
study of chemical master equations can be carried over to
that of a scaled version of the neural master equation intro-
duced by Buice et al. [30,31]. The latter can be viewed as a
stochastic version of the Wilson-Cowan model of neural
population dynamics in which noise is treated intrinsically.
We focused on two particular effects of intrinsic noise fluc-
tuations. First, we calculated exponentially small escape
rates between metastable states of a one-population model
using a WKB approximation and matched asymptotics; cor-
rections to mean-field equations based on a system-size ex-
pansion (or loop expansion in the corresponding path-
integral formulation) are no longer appropriate. Second, we
analyzed quasicycles in an E-I network by determining the
power spectrum of the associated neural Langevin equation.

A major outstanding question is to what extent the master-
equation formulation captures the types of statistical fluctua-
tions in population activity that can be observed in real ner-
vous tissue. Buice and Cowan [30] have used path-integral
methods and renormalization-group theory to establish that a
continuum version of the stochastic Wilson-Cowan model
belongs to the universality class of directed percolation, and
consequently exhibits power-law behavior suggestive of
many measurements of spontaneous cortical activity in vitro
and in vivo [57,58]. However, the existence of power-law
behavior is controversial [59]. Moreover, it is likely that a
variety of different stochastic models could exhibit behavior
consistent with what is observed experimentally. Therefore,
can one use multiscale analysis to derive a master equation
of population dynamics (or perhaps a different type of sto-
chastic Wilson-Cowan model) starting from more detailed
microscopic models? That is, the master-equation formula-
tion of stochastic neurodynamics developed here and else-
where [29-31] is a phenomenological representation of sto-
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chasticity at the population level. It is not derived from a
detailed microscopic model of synaptically coupled spiking
neurons, and it is not yet clear under what circumstances
such a microscopic model would yield population activity
consistent with the master-equation approach. Nevertheless,
if one views the Wilson-Cowan rate equations [33,34] as an
appropriate description of large-scale neural activity in the
deterministic limit, it is reasonable to explore ways of adding
noise to such equations from a top-down perspective. One
possibility is to consider a Langevin version of the Wilson-
Cowan equations involving some form of extrinsic spa-
tiotemporal white noise [48,49], whereas another is to view
the Wilson-Cowan rate equations as the thermodynamic limit
of an underlying master equation that describes the effects of
intrinsic noise [29-32]. As we have highlighted in this paper,
the two formulations are not equivalent.

One possible application of the master-equation formula-
tion of neural population dynamics is modeling noise-
induced switching during binocular rivalry. Binocular rivalry
concerns the phenomenon whereby perception switches back
and forth between different images presented to either eye
[60,61]. Recordings from the brain and reports by human
subjects during binocular rivalry tasks show eye dominance
time statistics that may be fit to a gamma distribution [62]. In
addition, statistical analysis of such data shows little corre-
lation between one dominance time and the next [62—64].
This suggests that the switching between one eye’s domi-
nance and the next may be largely driven by a stochastic
process. One possibility is that the inputs arriving at the net-
work encoding rivalry are stochastic, so that the noise is
extrinsic. A number of recent models have examined domi-
nance switching times due to additive noise terms in a com-
petitive Wilson-Cowan model with additional slow adapting
variables [65—67]. On the other hand, Laing and Chow [68]
considered a deterministic spiking neuron model of binocular
rivalry in which the statistics of the resulting dominance
times appeared noisy due to the aperiodicity of the high-
dimensional system’s trajectories. The latter is suggestive of
an effective intrinsic noise source within a rate-based popu-
lation model. One important issue is whether the switching
time statistics is better captured by noise-induced transitions
in a bistable network or noise--induced amplification of sub-
threshold oscillations (quasicycles). In order to study this
within the master equation framework, it will be necessary to
incorporate some form of slow adaptation into the stochastic
Wilson-Cowan model.
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