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Abstract
The tug-of-war model of motor-driven cargo transport is formulated as an intermittent trapping
process. An immobile trap, representing the cellular machinery that sequesters a motor-driven
cargo for eventual use, is located somewhere within a microtubule track. A particle
representing a motor-driven cargo that moves randomly with a forward bias is introduced at
the beginning of the track. The particle switches randomly between a fast moving phase and a
slow moving phase. When in the slow moving phase, the particle can be captured by the trap.
To account for the possibility that the particle avoids the trap, an absorbing boundary is placed
at the end of the track. Two local signaling mechanisms—intended to improve the chances of
capturing the target—are considered by allowing the trap to affect the tug-of-war parameters
within a small region around itself. The first is based on a localized adenosine triphosphate
(ATP) concentration gradient surrounding a synapse, and the second is based on a
concentration of tau—a microtubule-associated protein involved in Alzheimer’s
disease—coating the microtubule near the synapse. It is shown that both mechanisms can lead
to dramatic improvements in the capture probability, with a minimal increase in the mean
capture time. The analysis also shows that tau can cause a cargo to undergo random
oscillations, which could explain some experimental observations.

1. Introduction

A neuron relies heavily on microtubule transport to develop
its asymmetric, extended morphology and to maintain the
functioning of its many cellular compartments. A neuron
is usually composed of three main parts: a cell body (or
soma) that contains the nucleus, a tubular protrusion called
the axon that sends electrical signals to other neurons and one
or more highly branched tubular protrusions called dendrites
that receive signals from other neurons. Many neurological
disorders are characterized by a breakdown of the protein
transport machinery. In particular, Alzheimer’s disease—a
lethal, degenerative neurological disease—is known to involve
microtubule transport [1].

The motivating example of neuronal cargo transport we
consider in this paper is mRNA transport in dendrites, which

has been shown to be a key component of consolidation
of long-term synaptic plasticity [2]. However, the model
presented here also applies to transport of other types of
cargo, such as mitochondrial transport in axons and dendrites
[3–6]. While many details regarding mRNA transport have
been uncovered, how the motor-driven mRNA are delivered
to specific synapses is still unclear. Synaptic spines in the
dendrite are discrete structural units that compete with each
other for resources transported from the soma. mRNA must be
captured and temporarily sequestered from access by nearby
competing synapses [7, 8]. Once sequestered, the mRNA can
either be consumed by a synapse undergoing plastic changes,
or it can escape from sequestration and reenter the available
pool of motor-driven mRNA. Thus, delivery can be thought
of as a two-step process: first, the mRNA is temporarily
sequestered in an immobile pool and then it is later recruited
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by a synapse for translation. For the purposes of this paper, we
will focus on the former. That is, we will consider ‘delivery’
as capture and sequestration of a motor-driven cargo.

Microtubules—long filament tracks with a distinct (+) and
(−) end—are useful for targeting resources to specific cellular
compartments. In general, a given molecular motor will move
with a bias toward a specific end of the microtubule; for
example, kinesin moves toward the (+) end and dynein moves
toward the (−) end. Microtubules are arranged throughout an
axon or dendrite with a distribution of polarities: in axons and
distal dendrites, they are aligned with the (−) ends pointing to
the soma (plus-end-out) and in proximal dendrites they have
mixed polarity1 [10, 11]. It is also known that many types of
motor-driven cargo move bidirectionally along microtubules
[7, 8, 12–14]. Together, these observations imply that cargo
is transported by multiple kinesin and dynein motors. In
proximal dendrites, it is also possible that one or more identical
motors move a cargo bidirectionally by switching between
microtubules with different polarities. In either case, it is well
established that multiple molecular motors often work together
as a motor complex to pull a single cargo [15–17].

An open question remains as to how the many molecular
motors pulling a cargo are coordinated [15]. One possibility
is that the motors compete against each other in a tug of war
where an individual motor interacts with other motors through
the force it exerts on the cargo. If the cargo places a force
on a motor in the opposite direction it prefers to move, it
will be more likely to unbind from the microtubule. A recent
biophysical model has shown that a tug of war can explain
the coordinated behavior observed in experiment [18]. While
this model provides an explanation for how a motor complex
works, it still remains to explain how such a motor complex
correctly delivers its cargo.

Recently, we extended the tug-of-war model to account
for the position of the motor complex on a microtubule
track along with a target synapse somewhere within the track
[19, 20]. We included the possibility that the motor complex
can find a hidden synaptic target if it is close enough to the
target and in a slow moving state. This allowed us to interpret
the random movement of the cargo as a particle undergoing
an intermittent random search, where the particle transitions
between a fast moving phase and a slow search phase. We
used the model to calculate the delivery probability and the
average delivery time to find the target and to explore how
various biophysical parameters in the model could be tuned to
optimize delivery.

In this paper, we address a different question: How can
the synapse change cellular conditions in a localized region
around itself to improve cargo localization? Instead of an
intermittent search where a randomly moving searcher must
find an immobile hidden target, we can interpret this new
scenario as a intermittent trapping process where an immobile
trap must capture a randomly moving target. With this new
formulation, we will use our model to calculate the capture
probability and the mean first passage time (MFPT), defined
as the average time necessary to capture the target, so that

1 Certain invertebrates have been shown to have a minus-end-out distribution
of dendritic microtubules [9].

we can explore two possible signaling mechanisms a synapse
might use to capture a nearby moving motor-driven cargo.

Adenosine triphosphate (ATP)—the energy source or fuel
used by molecular motors to move along a microtubule—is a
crucial component in cellular function and its availability is
highly regulated. In a typical neuron, demands on ATP can
be quite large—especially near synapses where considerable
levels of actin polymerization take place [21]. Since ATP
concentration ([ATP]) is heavily buffered, a small region of
intense ATP phosphorylation could create a sharp, localized
[ATP] gradient, which would have a significant impact on a
nearby motor complex. Our analysis will show how an [ATP]
concentration gradient surrounding the synaptic trap impacts
the capture probability and MFPT.

Local [ATP] gradients affect the energy the motor
complex needs in order to pull its cargo. Another way
to affect the motor complex is to modify the interaction
of the motor binding domains with the microtubule. For
example, microtubule-associated proteins (MAPs) can bind to
microtubules and effectively modify the free energy landscape
of the motor-microtubule interactions [22, 23]. Specifically,
tau is a MAP found in the axon and is known to be a key
player in Alzheimer’s disease [24], and a recent study has
found a link between tau phosphorylation and dopamine D1
receptor activation [25], but the function of tau in regulating
mitochondrial transport is still unclear. Another important
MAP, called MAP2, is similar in structure and function to
tau, but is present in dendrites [26]. Moreover, MAP2 has
been shown to be involved in activity-dependent changes in
a dendritic structure [27] and has also been shown to affect
dendritic cargo transport [28]. Experiments have shown
that tau and MAP2 can significantly affect the binding rate
of kinesin to the microtubule [29–32]. This observation
motivates the possibility that the presence of MAPs on the
microtubule near a synapse can cause a motor complex to
disengage from the microtubule, allowing the cargo to be
captured.

The structure of the paper is as follows. The tug-of-war
model and how its various parameters depend on [ATP] and
tau is presented in section 2. We then formulate the tug-of-war
model as an intermittent trapping process by including space
so that we can consider capture by a hidden trap (section 3).
Finally, in sections 4 and 5 we derive analytical approximations
for the capture probability and MFPT. In section 6, we use the
analytical approximations combined with statistics extracted
from Monte Carlo simulations to explore how varying the
ATP (section 6.1) and tau/MAP2 (section 6.2) concentration
at a synapse affects the capture probability and MFPT.

2. Tug-of-war model

We begin by reviewing the tug-of-war model as was originally
formulated [18, 33]. Suppose that there are two sets of
motors bound to a given cargo. Each set of motors moves
preferentially toward opposite ends of the microtubule. The
case that we will consider in this paper is a set of N+ kinesin
motors that prefer to move toward the microtubule (+) end,
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Figure 1. Diagram of the tug of war between different motors pulling a single cargo. In this example, there is only a single motor in each
population.

and a set of N− dynein motors that prefer to move toward the
microtubule (−) end (see figure 1).

When bound to a microtubule, each motor has a load-
dependent velocity:

v(F ) =
{

vf (1 − F/Fs) for F � Fs

vb(1 − F/Fs) for F � Fs,
(2.1)

where F is the applied force, Fs is the stall force satisfying
v(Fs) = 0, vf is the forward motor velocity in the absence of
an applied force in the preferred direction of the particular
motor, and vb is the backward motor velocity when the
applied force exceeds the stall force. The unbinding rate is
approximately an exponential function of the applied force

β(F ) = β0 e
F
Fd , (2.2)

where Fd is the experimentally measured force scale on which
unbinding occurs. On the other hand, the binding rate is taken
to be independent of load:

π(F ) = π0. (2.3)

Let Fc denote the net load on the set of anterograde motors,
which is taken to be positive when pointing in the retrograde
direction. It follows that a single anterograde motor feels
the force Fc/n+, whereas a single retrograde motor feels the
opposing force −Fc/n−. Equations (2.2) and (2.3) imply
that the binding and unbinding rates for the anterograde and
retrograde motors are

β±(n+, n−) = n±β0± exp(Fc/n±Fd±) (2.4)

π±(n±) = (N± − n±)π0±. (2.5)

The cargo force Fc is determined by the condition that all the
motors move with the same cargo velocity vc. Depending
on the number of motors bound at a given time, either the
anterograde or retrograde set of motors will be stronger. In
the former case, the anterograde motors are dominant when
n+Fs+ > n−Fs−, and the net motion is in the anterograde
direction, which is taken to be positive. Then, equation (2.1)
implies that

vc = vf +(1 − Fc/(n+Fs+)) = −vb−(1 − Fc/(n−Fs−)). (2.6)

We thus obtain a unique solution for the load Fc and cargo
velocity vc:

Fc(n+, n−) = (Fn+Fs+ + (1 − F)n−Fs−), (2.7)

where

F = n−Fs−vf +

n−Fs−vf + + n+Fs+vb−
, (2.8)

and

vc(n+, n−) = n+Fs+ − n−Fs−
n+Fs+/vf + + n−Fs−/vb−

. (2.9)

The corresponding formulas for the case where the backward
motors are stronger, so that n+Fs+ < n−Fs−, are found by
interchanging vf and vb.

Several groups have developed models of the [ATP]
and force-dependent motor parameters that closely match
experiments for both kinesin [34, 35] and dynein [36, 37].
Based on these studies2, we take the forward velocity of a
single motor under zero to have the Michaelis–Menten form

vf ±([ATP]) = vmax
f ± [ATP]

[ATP] + K0
m±

. (2.10)

The backward velocity is small (vb± = ±0.006 μm s−1)
so that we can ignore its [ATP] dependence. The
unbinding rate of a single motor under zero load can be
determined using the [ATP]-dependent average run length
Lρ±([ATP])3. The mean time to detach from the microtubule
is vf ±([ATP])/Lρ±([ATP]) so that

β0±([ATP]) = vmax
f ± ([ATP] + Kp±)

Lmax
ρ±

(
[ATP] + K0

m±
) . (2.11)

The binding rates are determined by the time necessary for an
unbound motor to diffuse within the range of the microtubule
and bind to it, which is assumed to be independent of both load
and [ATP]. Finally, the [ATP]-dependent stall force is given
by

Fs±([ATP]) = F 0
s± +

(
F max

s± − F 0
s±

)
[ATP]

Ks± + [ATP]
. (2.12)

2 Others later refined the kinesin model to include a more detailed description
of the chemo-mechanical stepping process [38–40]. However, we proceed
with the minimal kinesin model as the results obtained here do not change
significantly when incorporating these more complex models.
3 We are making the assumption that 〈vf /L〉 = 〈vf 〉/〈L〉, which is justified
on spatial scales that we consider. For more details, see [40].
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Table 1. Tug-of-war parameter values.

Parameter Kinesin Dynein

Max. antero. velocity vmax
f (μm s−1) 1 [34] 0.7 [36]

Retro. velocity vb(μm s−1) 0.006 [41] 0.006
ATP equil. const. K0

m(μM) 79 [34] 38 [36, 37]
Max run length Lmax(μm) 0.86 [35] 1.5 [36]
ATP equil. const. Kp(μM) 3.13 [35] 1.5 [36, 37]
Low ATP stall force F 0

s (pN) 5.5 [34] 0.22 [36, 37]
High ATP stall force F max

s (pN) 8 [34] 1.24 [36, 37]
ATP equil. const. Ks(pN) 100 [34] 480 [36, 37]
Unbinding force scale Fd(pN) 3 [34] 3 [36]
Low tau binding rate π0(s−1) 1.6 [32] –
Max tau binding rate πmax

0 (s−1) 5 [32] –
Tau dep. binding rate scale γ 100 [32] –
Tau scale τ0 0.19 [32] –

Experiments have shown that the presence of tau or MAP2
on the microtubule can significantly alter the dynamics kinesin;
specifically, by reducing the rate at which kinesin binds to the
microtubule [32]. Moreover, the tau- and MAP2-dependent
kinesin binding rates have the same form [30]. It has also been
shown that, at the low tau concentrations affecting kinesin,
dynein is relatively unaffected by tau [31]. We are unaware of
any experiments that have looked at how MAP2 affects dynein,
but given the similarities between tau and MAP2, it is likely
that dynein will be similarly resistant to low concentrations of
MAP2. Since more experimental evidence exists to quantify
the effect of tau on kinesin binding, we use the tau-dependent
kinesin binding rate instead of that of MAP2—even though
we are modeling cargo transport in dendrites.

As we will show, the binding rate of kinesin has the
greatest effect on the dynamics of the motor complex, so that as
a first approximation, we can ignore how any other parameters
might vary in the presence of tau. Based on these experiments,
we model the effect of local concentrations of tau bound to the
microtubule by introducing the tau concentration-dependent
binding rate for kinesin given by

π0(τ ) = πmax
0

1 + e−γ (τ0−τ)
, (2.13)

where τ is the dimensionless ratio of tau per microtubule dimer
and πmax

0 = 5 s−1. The remaining parameters are found by
fitting the above function to experimental data [32], so that
τ0 = 0.19 and γ = 100.

A list of parameter values consistent with experiments is
given in table 1.

3. Generalized intermittent trapping model

The tug-of-war model [18] considers the stochastic dynamics
associated with transitions between different internal states
(n+, n−) of the motor-cargo complex, without specifying the
spatial position of the cargo along a one-dimensional track.
This defines a Markov process with a corresponding master
equation for the time evolution of the probability distribution
p(n+, n−, t). In order to apply the model to the intermittent
trapping problem, it is necessary to construct a differential
Chapman–Kolmogorov (CK) equation for the probability

density p(n+, n−, x, t) that the cargo is in the internal state
(n+, n−) and has position x at time t.

The intermittent trapping problem for the tug-of-war
model is formulated as follows. Suppose a target particle
is moving along a one-dimensional track of length L having
started at some location 0 � x0 � L. The track represents
a segment of dendrite, which can be a single branch or a
segment of a long branch. To model an entire dendrite one
must consider a tree-network, which has been developed in
a previous paper [42]. In general, the track can consist
of one or more linked microtubules, but we will consider a
single effective microtubule and, for simplicity, ignore details
regarding jumping between parallel microtubules. At the
left boundary of the track we impose a reflecting boundary,
which can represent the soma or a branch point; however,
we also assume that the particle’s motion is biased in the
anterograde direction, which means the reflecting boundary
will have little effect. At the right boundary, we impose
an absorbing boundary, which represents degradation of the
cargo or sequestration by competing synapses. That is, the
probability of returning to the trap after traveling a sufficient
distance beyond it will be approximately zero due to the
combination of biased transport, low levels of degradation, and
sequestration by competing synapes. Indeed, the possibility of
failure of the trap to capture the particle is a key feature of our
analysis, and the absorbing boundary is included to explore
this.

A trap is introduced somewhere within the track at
location x = X so that if the target particle is within a distance
l of the trap and in a receptive state it can be captured by the
trap at a rate k0. For the tug-of-war model, we assume that the
target particle is in a slowly moving receptive state, where it is
able to be captured if the number of anterograde and retrograde
motors are equal (n+ = n−), whereas, it is in a fast-moving
non-receptive state when n+ �= n−. Since kinesin and dynein
have different biophysical properties, the velocity vc(n, n) in
states with equal numbers of opposing motors engaged will be
small but not identically zero.

In order to write down the CK equation, it is convenient
to introduce the label i(n+, n−) = (N+ + 1)n− + (n+ + 1)

and set p(n+, n−, x, t) = pi(n+,n−)(x, t). We then have
an n-component probability density vector p ∈ R

n with
n = (N+ + 1)(N− + 1). The corresponding differential CK
equation takes the form [43]

∂tp = A(x)p − L(p), (3.1)

where the space-dependent matrix A(x) ∈ R
n×n contains the

transition rates between each of the n internal motor states.
The differential operator L has the structure

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

L1 0 · · · 0

0 L2 0 · · · 0
...

. . .
...

Ln−1 0

0 · · · 0 Ln

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.2)

where the scalar operators are given by

Li = [κi(x) + ∂xvi(x)]. (3.3)

4



Phys. Biol. 7 (2010) 036004 J Newby and P C Bressloff

Here, vi(x) is the velocity of internal state i = i(n+, n−) and
κi(x) is the rate of target capture at location x. Assuming that
the trap is at location X and can affect the environment within
a region of half-width l around itself, we set κi(x) = kiχ(x)

and

vi(x) = vc(n+, n−; S(x)), i = i(n+, n−), (3.4)

where

S(x) = S1 + S2χ(x) (3.5)

is the signal (either τ or [ATP]) concentration, and

χ(x) =
{1, if |x − X| < l

0, otherwise.
(3.6)

The constants S1,2 are the concentrations away from the trap
and near the trap, respectively. The target particle can only
be captured if it is within the range and in a slowly moving
receptive state so that the capture rates are taken to be

ki =
{
k0 if n+ = n−
0 otherwise.

(3.7)

Although the velocities in any state where at least one of each
motor type is bound will be slow, extending the set of nonzero
capture rates does not alter the qualitative conclusions and does
not significantly affect the quantitative results obtained in this
paper. The components ai,j (S(x)), i, j = 1, . . . , n, of the
state transition matrix A(x) are given by the corresponding
binding/unbinding rates of equations (2.4) and (2.5). The
space dependence is given implicitly through the spatially
varying signal concentration S(x) (3.5). Setting i = i(n+, n−),
the non-zero off-diagonal terms are (suppressing the S(x)

dependence)

ai,j = π+(n+ − 1) for j = i(n+ − 1, n−), (3.8)

ai,j = π−(n− − 1) for j = i(n+, n− − 1), (3.9)

ai,j = β+(n+ + 1, Fc) for j = i(n+ + 1, n−),

(3.10)

and

ai,j = β−(n− + 1, Fc) for j = i(n+, n− + 1).

(3.11)

The diagonal terms are then given by ai,i = −∑
j �=i aj,i . We

note that at any fixed location x, the Markov process defined
by the CK equation

∂t
 = A(x)
 (3.12)

admits a stationary distribution p̂(x) such that A(x)p̂(x) = 0
and

∑n
i=1 p̂i(x) = 1.

Finally, it is necessary to specify the initial conditions and
boundary conditions at the ends x = 0, L. We will impose an
initial condition of the form p(x, 0) = δ(x)p̂. At the origin,
we impose the reflecting boundary condition

n∑
i=1

vi(0)pi(0, t) = 0, ∀ i = 1, · · · , n (3.13)

and the auxiliary condition

p1(0, t)

p̂1(0)
= pi(0, t)

p̂i(0)
, (3.14)

for all i = 2, . . . , n such that vi(0) > 0. At the other end
of the interval (x = L), we impose the absorbing boundary
condition

pi(L, t) = 0, (3.15)

for all i = 1, . . . , n such that vi(L) < 0.

4. Model reduction

To analyze the model, we compute the capture probability and
the MFPT. The capture probability is given by

P = k0

∫ ∞

0
J (t) dt, (4.1)

and the MFPT is given by

T = k0

P

∫ ∞

0
tJ (t) dt, (4.2)

where the probability flux into the trap is given by

J (t) =
∫ X+l

X−l

dx
∑
n+,n−

p(n+, n−, x, t)δn+,n− . (4.3)

For ease of notation, we have suppressed the dependence on
initial conditions.

Although it would be possible in principle to calculate P
and T analytically for the full model by following along similar
lines to previous studies of three-state models [44, 45], the
analysis is considerably more involved due to the complexity
of the molecular motor model. Therefore, we follow a different
approach here by carrying out a quasi-steady-state (QSS)
reduction of the differential CK equation (3.1) based on a QSS
reduction previously applied to the spatially homogeneous
process [19, 20]. The reduced model is described by a scalar
Fokker–Planck (FP) equation with an extra inhomogeneous
decay term accounting for target detection. Within this
approximation, the capture probability and MFPT can be
expressed in terms of the Laplace transformed solution of
the FP equation. Others have considered similar reductions
for jump-velocity processes, with space-dependent velocity
states and state transitions [46, 47]. In these models, the
jump-velocity process describes a cell moving in response to a
spatially varying chemotactic substance. The most significant
difference in the model considered here is that the signal S(x)

is spatially localized.
Suppose that we fix the units of space and time by

setting l = 1 and l/v(1, 0) = 1, which corresponds to
non-dimensionalizing the CK equation (3.1) by performing
the rescaling x → x/l and t → tv(1, 0)/ l. Furthermore,
we assume that for the given choice of units aij = O(1/ε)

and Lij = O(1), for some small parameter ε 	 1, and set
A = ε−1Â. We can then carry out a QSS reduction of the
dimensionless CK equation

∂tp = 1

ε
Â(x)p − L(p). (4.4)

5
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The QSS reduction is carried out using a standard
projection method4. If the state velocities vi are small and
the transition rates aij are fast, then the CK equation will
rapidly evolve toward the stationary distribution p̂ of the space-
clamped Markov process (3.12). The solution can then be
written as

p(x, t) = u(x, t)p̂(x) + εw(x, t), (4.5)

where

u(x, t) =
n∑

i=1

pi(x, t),

n∑
i=1

wi(x, t) = 0. (4.6)

The spatially varying signal concentration defined by (3.5)
imposes a discontinuity in the state transition rates, which
leads to a discontinuity in the stationary distribution p̂. This
means that the discontinuity will also perturb the internal-
state distribution of the solution away from the stationary
distribution near the point of discontinuity. Thus, for the
ansatz (4.5) to be valid, we must require that S2 = O(ε) so
that the jump in p̂ is also O(ε).

For brevity we omit the details of the perturbation method
here (for full details, see [19, 20]). First, it is convenient to
define the mean of a vector v with respect to the stationary
distribution p̂ according to

〈v(x)〉 ≡ vT (x)p̂(x). (4.7)

We also define the vectors v(x) = (v1(x), . . . , vn(x))T and
k = (k1, . . . , kn)

T , which contain the state velocities and
capture rates, respectively. After applying the QSS reduction,
we obtain the Fokker–Planck (FP) equation for u

∂tu = −λu − ∂x(V u) + ∂x(D∂xu), (4.8)

with the x-dependent parameters

λ(x) = χ(x)(〈k〉 − εkT q(x) + O(ε2)), (4.9)

V (x) = 〈v(x)〉 + εχ(x)(−kT r(x) − vT (x)q(x) + O(ε)),

(4.10)

D(x) = εvT (x)r(x) + O(ε2)χ(x). (4.11)

We note that λ, V and D depend on x and are piecewise constant
on the domain (0, L), with jump discontinuities at x = X ± l.
The vectors r(x) and q(x) satisfy the following equations for
all x ∈ [0, L]:

Â(x)r(x) = −((〈v(x)〉 − v1(x))p̂1(x), . . . , (〈v(x)〉
− vn(x))p̂n(x))T , (4.12)

Â(x)q(x) = −((〈k〉 − k1)p̂1(x), . . . , (〈k〉 − kn)p̂n(x))T .

(4.13)

Although the matrix Â(x) will be singular, it can be shown
that solutions to the above equations exist. We obtain a unique
solution by imposing the condition

n∑
i=1

ri(x) ≡ 0,

n∑
i=1

qi(x) ≡ 0. (4.14)

4 For general details on projection methods in the context of stochastic model
reduction, see [43].

At O(ε), the drift velocity V picks up additional terms within
the trapping region in order to compensate for the flux into the
trap. In order to compute the O(ε) contributions to λ, V and
D, the rank-deficient equations (4.12)–(4.13) can be solved
numerically using the full singular value decomposition of the
matrix Â (for details, see [19, 20]).

Initial conditions for the reduced FP equation (4.8) are
chosen from the stationary distribution p̂ so that

u(x, 0) = δ(x). (4.15)

Boundary conditions corresponding to (3.13) and (3.15) are

D∂xu − V u|x=0 = 0, u(L, t) = 0. (4.16)

For simplicity, the initial condition and the reflecting boundary
condition can be combined to get the inhomogeneous Robin
condition

D∂xu − V u|x=0 = −1. (4.17)

5. MFPT and capture probability

To analyze the efficiency of the generalized intermittent
trapping process, we will use the FP equation (4.8) to calculate
the capture probability P and MFPT T, which approximate
the exact capture probability P and MFPT T defined by
(4.1) and (4.2), respectively. Let Q(t) = ∫ L

0 u(x, t) dx be
the total probability that the particle is still located in the
domain 0 < x < L at time t. After integrating equation (4.8)
with respect to x and using the reflecting boundary conditions
(4.16), we have

∂Q

∂t
= −

∫ X+l

X−l

λ(x)u(x, t) dx + D∂xu(L, t). (5.1)

It follows that the total flux into the trap is

J (t) =
∫ X+l

X−l

λ(x)u(x, t) dx, (5.2)

The capture probability, having started at x = 0 at time t = 0,
is then

P =
∫ ∞

0
J (t) dt, (5.3)

and the corresponding MFPT is

T =
∫ ∞

0 tJ (t) dt∫ ∞
0 J (t) dt

. (5.4)

Consider the Laplace transform of the probability flux J,

ϒ(s) ≡ J̃ (s) =
∫ ∞

0
e−st J (t) dt. (5.5)

Taylor expanding the integral with respect to the Laplace
variable s shows that

ϒ(s) =
∫ ∞

0
J (t)[1 − st + s2t2/2 − · · ·] dt

= P

[
1 − sT +

s2

2
T (2) − · · ·

]
, (5.6)
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assuming that the moments

T (n) =
∫ ∞

0 tnJ (t) dt∫ ∞
0 J (t) dt

(5.7)

are finite. Thus, ϒ(s) can be viewed as a generating
function for the moments of the conditional first passage time
distribution [48]. Equations (5.2) and (5.5) imply that

ϒ(s) =
∫ X+l

X−l

λ(x)Ũ(x, s) dx, (5.8)

where Ũ (x, s) is the Laplace transform of u(x, t). Once the
generating function has been computed, the capture probability
and MFPT are given by

P = ϒ(0), T = −ϒ ′(0)

ϒ(0)
. (5.9)

Hence, we can proceed by solving the Laplace transformed FP
equation (4.8) to determine Ũ (x, s). Substituting the result
into equation (5.8) then allows us to extract P and T using
equation (5.9).

Now that we have a way of extracting the mean first-
passage time and capture probability, we need only solve
for the Laplace transform of the function Ũ . Because of
the piecewise-constant parameters in the FP equation (4.8),
we divide the interval [0, L] into three regions and solve the
equation separately in each region. Region one is the interval
(0, X − l), region two corresponds to the immobile trap on
the interval (X − l, X + l) and region three is the interval
(X + l, L). We subscript functions and parameters belonging
to each region by ρ = 1, 2, 3. For simplicity, each region will
have its own local coordinate system xρ , where

x1 = x, x2 = x − (X − l), x3 = x − (X + l).

(5.10)

Laplace transforming the FP equation (4.8) yields

Dρ∂
2
x Ũρ(xρ, s) − Vρ∂xŨρ(xρ, s) − (s + λρ)Ũρ(xρ, s) = 0,

(5.11)

where the initial condition u(x, 0) = δρ,1δ(x) is accounted for
by imposing the Robin boundary condition

V1Ũ1(0, s) − D1∂xŨ1(0, s) = 1. (5.12)

Other boundary conditions are as follows. In region one, we
impose the open boundary condition

Ũ1(L1, s) = �a(s), (5.13)

where �a(s) is an unknown function. In region two, we
impose the open boundary conditions

Ũ2(0, s) = �a(s) and Ũ2(L2, s) = �b(s), (5.14)

where L2 = 2l and �b(s) is an unknown function. Finally, in
region three, we impose the open boundary condition

Ũ3(0, s) = �2(s), (5.15)

at x3 = 0, and the absorbing boundary condition

Ũ3(L3, s) = 0, (5.16)

at x3 = L3 = L − X − l. We can then solve for the
unknown functions �a,b(s) by imposing conservation of flux
at the boundary between regions one and two and the boundary
between regions two and three. This results in a 2 × 2 system
of equations for �a,b(s).

For ease of notation, we will suppress the explicit
functional dependence on the Laplace variable s. The
eigenvalues are given by

μρ,± = Vρ

2Dρ

± ηρ, ηρ =
√

V 2
ρ + 4(s + λρ)Dρ

2Dρ

.

(5.17)

To solve (5.11), we use linearity to construct the solution from
a superposition of sub-solutions satisfying individual boundary
conditions. The solution satisfying a reflecting boundary
condition at the origin is given by

φ(x1) = (μ1,−D1 − V1) eμ1,+x1 − (μ1,+D1 − V1) eμ1,−x1 ,

(5.18)

and the solution satisfying an absorbing boundary condition at
the origin is given by

ψρ(xρ) = eμρ,+xρ − eμρ,−xρ . (5.19)

Using these sub-solutions, we construct the full solution
to (5.11) in each region by applying appropriate boundary
conditions to get

Ũ1(x1, s) = F̂1(x1) + �aF1(x1), (5.20)

Ũ2(x2, s) = �aF̂2(x2) + �bF2(x2), (5.21)

Ũ3(x3, s) = �bF̂3(x3), (5.22)

where

F̂1(x1) = −ψ1(x1 − L1)

D1ψ
′
1(−L1) − V1ψ1(−L1)

, F1(x1) = φ(x1)

φ(L1)

(5.23)

F̂2(x2) = ψ2(x2 − L2)

ψ2(−L2)
, F2(x2) = ψ2(x2)

ψ2(L2)
(5.24)

F̂3(x3) = ψ3(x3 − L3)

ψ3(−L3)
. (5.25)

To finalize the solution, we must determine the unknown
functions �a,b. We define the flux operator according to

Jρ[f ](x) ≡ Dρf
′(x) − Vρf (x). (5.26)

Imposing conservation of flux yields a system of two equations
for the two unknowns �a,b

J1[F̂1](L1) + �aJ1[F1](L1) = �aJ2[F̂2](0) + �bJ2[F2](0),

(5.27)

�aJ2[F̂2](L2) + �bJ2[F2](L2) = �bJ3[F̂3](0). (5.28)

To simplify the solution, we introduce the following
abbreviation for the various fluxes

7
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gρ ≡ Jρ[F̂ρ](Lρ), hρ ≡ Jρ[Fρ](Lρ), (5.29)

ḡρ ≡ Jρ[Fρ](0), h̄ρ ≡ Jρ[F̂ρ](0), (5.30)

Solving (5.28) for �b yields

�b = −g2

H2
�a, (5.31)

where

Hρ = hρ − h̄ρ+1. (5.32)

Substituting (5.31) into (5.27) yields

�a = −g1

H1 − g2ḡ2

H2

. (5.33)

Combining (5.33) and (5.31) yields the desired result

Ũ2(x2, s) = −g1

H1 − g2ḡ2

H2

(
F̂2(x2) − g2

H2
F2(x2)

)
. (5.34)

The capture probability and MFPT, given by the formula
(5.9), can now be calculated by substituting the above solution
into (5.8).

6. Results and discussion

In the last section, we formulated the tug-of-war model as
an intermittent random trapping process where an immobile
trap at location X changes its environment in a small region
of radius l around itself to improve its chances of capturing
a randomly moving target. The immobile trap represents
the localized machinery used by a synapse to recruit newly
synthesized mRNA. A cargo attached to a multiple motor
complex consisting of N− dynein motors and N+ kinesin
motors is coordinated through a tug-of-war competition. The
means by which the trap changes the environment around itself
to improve target capture represents a signaling mechanism.

In this section, we will explore two signaling mechanisms
based on a localized [ATP] gradient and a localized
concentration of tau. To model these two signals, we use the
[ATP] and τ -dependent tug-of-war parameters (see table 1)
to carry out a QSS reduction for two sets of parameters (we
assume that environments to the left and right of the trap region
are identical so that in terms of the notation from section 5 we
have V1 = V3 and D1 = D3). The first set of QSS parameters
(λ1, V1 and D1) are valid away from the immobile trap, and
the second set (λ2, V2, and D2) are valid within a distance l of
the trap (since the particle can only be captured near the trap,
we set λ1,3 = 0 and λ = λ2). We define the drift velocity and
diffusivity as functions of x

V (x) = V1 + �V χ(x), D(x) = D1 + �Dχ(x), (6.1)

where χ(x) is the indicator function defined in (3.6), �V =
V2 − V1 and �D = D2 − D1. The capture probability P and
MFPT T are then found by substituting these QSS parameters
into the expression for Ũ2 (5.34), and using the result in the
formula for the generating function (5.8).
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Figure 2. QSS parameters as a function of [ATP] obtained from the
tug-of-war parameters in table 1. (a) The effective capture rate λ.
(b) The drift velocity V. (c) The diffusivity D.

6.1. ATP signal

Kinesin and dynein both require ATP as fuel to move
their cargo along a microtubule. In a dendrite, local
ATP concentration gradients may form as a result of actin
polymerization at an active synapse. We would like to see how
a reduction in available ATP near a synapse improves cargo
localization. To analyze the model in terms of [ATP], we select
parameters for dynein and kinesin according to table 1, with
the binding rate for kinesin set to π0 = πmax

0 = 5. We perform
the QSS reduction to obtain V1 and D1 for fixed [ATP] at
103 μM away from the target. Then, [ATP] is reduced within a
distance l of the trap so that the second set of QSS parameters
(λ([ATP]), V2([ATP]) and D2([ATP])) are functions of the
reduced [ATP]. The effect of lowering [ATP] near the trap
is characterized by the [ATP] dependence of the capture rate
λ, the drift velocity V and the diffusivity D (see figure 2).
The capture rate λ is a decreasing function at high [ATP]
because the motor complex is more likely to be in a mobile,
non-receptive state with more fuel around (figure 2(a)). A
maximum in the capture rate at low [ATP] suggests that the
motor complex will be more receptive to capture if the trap
were to lower [ATP]. However, reducing the available amount
of fuel will also decrease the average speed of the motor
complex. Recall that kinesin is much stronger than dynein so
that, even if the motor complex comprises equal numbers of
kinesin and dynein motors, the motion of the motor complex
will always have a directional bias. At low [ATP] kinesin
looses much of its strength; therefore, the coordinated motion
of the motor complex becomes less biased, the drift velocity is
reduced and the individual motors move more slowly so that
the diffusivity is reduced (figure 2(b, c)). Thus, slowing the
particle down will increase the capture rate by making it spend
more time near the trap, but does so at the cost of raising the
MFPT.

The [ATP]-dependent peak in the capture rate and
reduction of the drift velocity depend on the motor
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Figure 3. The capture probability P and MFPT T as functions of [ATP] using QSS and tug-of-war parameters from figure 2. (a) The
concentration of ATP is lowered near the trap for the localized signal (black solid line) and lowered everywhere for the nonlocalized signal
(blue solid line). (b) Analytical approximation P (solid lines) and the results of Monte Carlo simulations (symbols). (c) Analytical
approximation T (solid lines) along with averaged Monte Carlo simulations (symbols). The black curves show the MFPT for the case where
the signal is localized so that [ATP] is held fixed at 103 μM away from the synapse and decreased within a distance l = 2 μm of the synapse.
The blue curves show the case where the signal is not localized, so that ATP is decreased throughout the whole domain. The length of the
microtubule track is L = 20 μm, and the synaptic trap is located at X = 10 μm. The capture rate is k0 = 0.5 s−1.

configuration (N+, N−). As the number of kinesin and
dynein motors is increased, the maximum drift velocity, at
[ATP] = 103 μM, increases. The drift velocity for the motor
configuration (4, 3) drops at a faster rate as [ATP] is reduced,
compared to the other two configurations. Increasing the
number of motors also causes the peak capture rate to occur at
a lower [ATP]. This behavior suggests the effect of changing
[ATP] on the capture probability and MFPT will depend on
the motor configuration. The capture probability P and MFPT
T (black curves) resulting from changing the [ATP] near the
target are shown in figure 3.

These results clearly show that lowering the [ATP] near
the trap can improve the capture probability.

As expected, the level of response to the ATP signal
depends on (N+, N−). The idea is to balance the number of
kinesin and dynein motors so that the drift velocity is high at
background levels of [ATP] and low near the trap where [ATP]
is reduced. This requires the signal to be localized to the
trap so that the cargo velocity is high for most of the distance
the cargo must travel to reach the trap and only reduced for
a short time while the cargo is near the trap. Without the
signal localization, a global reduction in [ATP] would result
in a significant increase in the MFPT.

In contrast, the capture probability is approximately
independent of how far outside the trapping radius the signal
extends. For a 1D search, the cargo will encounter the trap
with probability one. Because the motion of the particle is
biased in the forward direction, the particle will be unlikely
to re-encounter the trap after passing it up. Thus, only
the behavior of the particle within the trapping radius will

significantly affect the capture probability. This means that we
can restrict the region where the signal is applied to minimize
the MFPT, without affecting the capture probability. To see
this, we compare the MFPT for a localized ATP reduction to a
reduction of ATP throughout the whole domain (blue curves)
in figure 3(c). For each choice of motor configuration, the
MFPT is increased by an order of magnitude in the absence of
signal localization. The corresponding results for the capture
probability in figure 3(b) are not shown, as the analytical
approximations and MC simulations for the two cases are
indistinguishable.

6.2. Tau signal

Tau and MAP2 can bind to a microtubule and alter the free
energy landscape of the interactions between a molecular
motor and the microtubule. Experiments have shown that
tau and MAP2 can alter the binding rate of kinesin to the
microtubule [29–32]. Because the effect of tau and MAP2
on the binding rate of kinesin is functionally identical [30],
we will drop the distinction between the two and simply refer
to them both as tau. Theoretical models have also explored
how tau affects the binding rate of kinesin and how this effect
alters the dynamics of transport by teams of motors [49–51],
but have not explored stochastic cargo delivery.

To explore how tau might affect the capture probability
and MFPT, we use the tau-dependent tug-of-war parameters
from table 1 and assume that the ATP concentration is held
fixed at 103 μM. This yields QSS parameters λ, V and D
that are functions of τ (see figure 4). In contrast with the
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Figure 4. Parameters from the QSS reduction as a function of tau concentration obtained from the tug-of-war parameters in table 1, with
[ATP] fixed at 103 μM. (a) The effective capture rate λ. (b) The drift velocity V. (c) The diffusivity D.
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Figure 5. Effect of adding tau to the target on the capture probability P and MFPT T using parameters from figure 4. (a) The analytical
approximation P (solid line) and results from Monte Carlo simulation. (b) The analytical approximation T along with averaged Monte Carlo
simulations. The synaptic trap is located at X = 10 μm, the trapping region has radius l = 2 μm and the microtubule track has length
L = 20 μm. The capture rate is taken to be k0 = 0.5 s−1.

[ATP] signal, the effective capture rate λ changes very little
with the tau concentration. The capture rate and drift velocity
also depend much less on the motor configuration—a fact that
suggests that the tau signal is more robust than the [ATP]
signal. The most significant alteration in the behavior of the
motor complex is the change in the drift velocity V. The drift
velocity switches sign (figure 4(b)) when τ is increased past
a critical point. By reducing the binding rate of kinesin, the
dynein motors become dominant, causing the motor complex
to move in the opposite direction.

To calculate the capture probability and MFPT, we first
compute the QSS parameters (V1 and D1) with τ fixed at zero.
The second set of QSS parameters (λ(τ), V2(τ ) and D2(τ ))
are valid within a distance l of the trap. In figure 5, we plot
the capture probability P and the MFPT T as a function of
τ near the target. As τ is increased above the critical level

τ0 = 0.19, we see a sharp increase in P , confirming that τ can
improve the capture probability. We also see a small rise in the
MFPT T , which is comparable to rise from the [ATP] signal
(figure 3). Note that we restrict the results to a maximum value
of τ = 0.21 because the capture probability is near unity at
this level and the QSS approximation loses accuracy at higher
tau levels—a fact we explore in more detail below.

Changing the sign of the drift velocity near the trap
has many intriguing implications. Most notably, tau can
create stochastic oscillations in the motion of the motor
complex. As a kinesin-driven cargo encounters the tau-coated
trapping region the motors unbind at their usual rate and
cannot rebind. Once the dynein motors are strong enough
to pull the remaining kinesin motors off the microtubule,
the motor complex quickly transitions to (−) end-directed
transport. Then as the dynein-driven cargo leaves the
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Figure 6. Diagram showing the effective potential well created by a region of tau coating a microtubule and a representative trajectory
showing random oscillations.

tau-coated region, kinesin motors are allowed to reestablish
(+) end-directed transport until the motor complex returns to
the tau-coated region. This process repeats until the motor
complex is able to move forward past the tau-coated region.
Interestingly, particle tracking experiments have observed
oscillatory behavior during mRNA transport in dendrites
[7, 8]. In these experiments, motor-driven mRNA granules
move rapidly until encountering a fixed location along the
dendrite where they slightly overshoot and then stop, move
backward and begin to randomly oscillate back and forth.
After a period of time—lasting about 1 min—the motor-driven
mRNA stops oscillating and resumes fast ballistic motion.

The initial overshoot can be explained by a rapidly
moving motor complex with several kinesin motors engaged
encountering a patch of tau on the microtubule. The motor
complex would continue moving forward until enough of the
kinesin motors unbind to allow the dynein motors to take
over and move the cargo backward. Tau-induced random
oscillations can also explain why the motor-driven mRNA
sometimes resumes fast ballistic transport. While oscillating,
the motor complex is moving within an effective potential
well, which is reminiscent of the hysteresis effect from a
time-varying external force predicted by Müller et al [52].
However, in our case, the random oscillations are not caused
by an external force, but rather the signal’s influence on the
transition rates and motor velocities, which can be thought of
as an effective force generating an effective potential well.

Consider a drift velocity V that arises due to a constant
force Fext = ϑV acting on a Brownian particle under
dissipation. Without loss of generality assume that ϑ = 1, then
the potential (see figure 6) arising from a piecewise-constant
force is given by

�(x) =
∫ x

X−l

V (x ′) dx ′ (6.2)

=
⎧⎨⎩

−V1(x − X + l), x < X − l

−V2(x − X + l), X − l < x < X + l

−V1(x − X − l) − 2lV2, X + l < x.

,

(6.3)

Depending on the length of the region influenced by
the trap, and the magnitude of the drift velocities, the time
spent in the potential well can be quite long. Suppose that a

Brownian particle starts at the bottom of the potential well.
The corresponding mean exit time (MET) is given by

MB =
∫ X+l

X−l

exp

(
−�(y)

D(y)

)
dy

∫ y

−∞

exp
(

�(z)

D(z)

)
D(z)

dz, (6.4)

=
∫ 2l

0
e− V1

D1
y dy

(
1

D1

∫ 0

−∞
e

V1
D1

z dz +
1

D2

∫ y

0
e

V2
D2

z dz

)
,

(6.5)

= 2lD2

ν
(e

ν
D2 − 1)

(
1

V1
+

2l

ν

)
− 4l2

ν
, (6.6)

where ν = −V22l is the depth of the well. In general, the MET
will be an exponentially increasing function of the depth of the
well. This means that if we wish to estimate the MET with the
QSS reduction, any error generated by the approximation will
also grow exponentially. Because the transition rates contained
in the matrix A contains a discontinuity at X−l, the stationary
distribution p̂ is also discontinuous at this point. The QSS
reduction assumes that the probability distribution instantly
transitions from one stationary distribution to the next, when
in fact it takes some time for this to occur. The higher order
diffusion term in the FP equation (4.8) can approximate the
behavior of the particle when its internal-state distribution
remains within a small O(ε) neighborhood of the stationary
solution. If the drift velocities all point in the same direction,
the error produced by this assumption is small—as was the case
for the ATP signal. However, since the drift velocity changes
the sign for the tau signal, the particle will spend a significant
amount of time crossing back and forth over the turning point
xturn where V (xturn) = 0 (see figure 6(b)). For this reason, we
expect MB , which is based on the QSS reduction, to be a poor
approximation for the MET. Unfortunately, one cannot correct
for this using higher order terms in the perturbation expansion
since contributions from higher moments of the propagator
become significant. Thus, the full model must be solved to
accurately calculate the MET. Using techniques based on the
backward CK equation, it can be shown that when starting at
position x0 in state i, the MET satisfies the following equation:

vi∂yMi(y) +
n∑

j=1

âj,i (y)Mj (y) = −1, i = 1, . . . , n,

(6.7)
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Figure 7. Plot of the mean exit time (MET) for starting position
x0 = 0 as a function of τ for different motor configurations
(N+, N−). Thick solid lines represent analytical solutions to (6.7),
thin solid lines represent the exit time MB for a Brownian particle
(6.4) and symbols represent averaged Monte Carlo simulations.
Parameters are chosen according to table 1 with l = 1 μm and
k0 = 0.5 s−1.

where the state velocities vi are given by (3.4). The transition
rates are defined by

âi,j (y) = a−
i,j + (a+

i,j − a−
i,j )χ(y), (6.8)

where a+
i,j = ai,j (τ ), a−

i,j = ai,j (0), and the τ dependent
transition rates ai,j (τ ) are given by (3.8)–(3.11) along with
τ -dependent parameters in table 1. For simplicity, we have
defined the transition rates âi,j (y) so that the minimum of the
potential well is located at y = 0. Boundary conditions for
the above equation are as follows. First, the solution grows
linearly as y →= −∞ so that for all i = 1, . . . , n

Mi(y) ∝ −x, as y → −∞. (6.9)

Second, the solution is continuous at y = 0, so that

lim
h→0

[Mi(y)]y=h

y=−h = 0. (6.10)

Finally, at the far boundary of the tau-coated region, the
MET vanishes for internal states with a corresponding positive
velocity, so that

Mi(2l) = 0, (6.11)

for all i = 1, . . . , n such that vi > 0. The averaged solution to
(6.7), defined as 〈M〉 = ∑n

i=1 Mip̂i , is shown in figure 7 along
with results from averaged Monte Carlo simulations.

Note that we have reduced the detection radius l by half in
order to reduce computation time of Monte Carlo simulation,
which are computationally expensive when exit from the
effective potential well is a rare event. These results confirm
that the average duration of tau-induced random oscillations
is on the order of minutes for a range of different motor
configurations.

7. Conclusions and outlook

In this paper, we have combined a model of microtubule
motor-driven transport with an intermittent trapping process
to explore how different signaling mechanisms affect cargo
localization. The intermittent trapping process we consider
involves an immobile trap that must alter the environment in a
local region around itself to capture a randomly moving target.

The immobile trap represents cellular machinery associated
with a synapse in a dendrite that can engage a signaling
mechanism to improve its chances of capturing (temporarily
sequestering) a motor-driven cargo, such as a mRNA or
mitochondria. We explored two such signaling mechanisms
that lead to improved activity-dependent cargo localization.

We first explored the possibility of an [ATP] signal
created by increased actin dynamics at an active synapse.
We found that a local decrease in [ATP] will cause a nearby
motor complex to slow down and spend more time receptive
to capture. We used our model to calculate the capture
probability and MFPT for the case when [ATP] is held fixed
away from the target at 103 μM and decreased in a small
region surrounding the target. The results showed that the
capture probability can be increased drastically by the [ATP]
signal without significantly increasing the MFPT. Although
no experimental evidence exists for ATP gradients, steep
gradients are theoretically possible—especially considering
that ATP is heavily buffered and that there are discrete, isolated
dendritic compartments associated with a group of synapses.

It was also found that the number of kinesin and dynein
motors bound to the cargo affects its response to the [ATP]
signal. The motor configuration (N+, N−) must be balanced
to enable the cargo to travel at a high average velocity in
background [ATP] levels and at a slow average velocity
in the low [ATP] conditions near the synapse. This was
achieved when many dynein and kinesin motors were bound
to the cargo, so that the kinesin motors were better able to
overpower the weaker dynein motors at high [ATP], while
remaining balanced with the dynein motors at low [ATP].
One experimental study showed that vesicles travel with
approximately 1–4 kinesin and 1–5 dynein motors bound [53],
which is consistent with our results. In another study, many
dynein motors worked against a single kinesin motor; however,
the dynein motors may have been weaker and more prone to
detachment [54].

We also explored a signaling mechanism based on
the microtubule-associated protein tau. Using experimental
results quantifying the τ -dependent binding rate for kinesin,
we calculated the capture probability and MFPT as a function
of τ localized around the synapse. Much like the [ATP] signal,
we found that increasing τ causes a sharp increase in the
capture probability, and we also found that the MFPT was held
relatively constant. These results show that, like ATP, tau can
also serve as a signaling mechanism to enhance localization
of a motor-driven cargo. Interestingly, a recent study
[28] has found a link between synaptic activity and MAP2
recruitment to microtubules, mediated by posttranslational
microtubule modifications (specifically, by polyglutamylation
of tubulin dimers). This study also showed that the upstream
signal inducing MAP2-microtubule binding may also affect
certain kinesin-cargo linkers; specifically, it showed that
gephyrin—a cargo linker for KIF5—function was disrupted
by polyglutamylation, while the KIF5 cargo linker GRIP1
was unaffected. These observations imply an intricate traffic
regulation system capable of localizing specific types of motor-
driven cargo.

An unexpected observation of the tau signal’s effect on
the motor complex was the response of the drift velocity,
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derived from the QSS reduction, to high levels of tau.
Interestingly, as tau is increased the drift velocity changes
the sign, creating an effective potential well that confines
the motor-driven cargo. The motion of the cargo in this
potential well would appear as random saltatory oscillations,
which has been observed experimentally in dendritic mRNA
transport; recall that dendritic transport would depend on
MAP2, which is functionally similar to tau. To explore this,
we calculated the average duration of the random oscillations
for different motor configurations and various concentrations
of tau. Our results showed that the average duration of the
oscillations is on the order of minutes, which is consistent with
experimental findings. This provides additional support for
the ‘tug-of-war’ theory of multiple-motor transport in neurons
and further motivates the possibility that tau not only serves
as a microtubule stabilizer, but may also provide a means of
regulating motor traffic.
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