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a b s t r a c t

We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative
feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is
described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the
spatial distribution of synapticweights between populations of neuronswhosemean firing rate is taken to
be a Heaviside function of local activity. Discontinuities in the adaptation variable associatedwith a bump
solution means that bump stability cannot be analyzed by constructing the Evans function for a network
with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we
show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations.
We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the
absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling
pulses. In the case of spike frequency adaptation,we show that for awide class of perturbations the activity
and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in
terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect
to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a
spatially localized breather.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Persistent, localized regions of neural activity have been
proposed as substrates of several memory and sensory processes
in the brain. Experiments in primate prefrontal cortex show that
sensory cues can often lead to a spatially localized group of
neurons persistently firing during a recall task. This ‘‘bump’’ of
activity disappears once the task is complete [1–3]. Additionally,
it has been suggested that the brain may keep the eyes still
by representing eye position as an activity bump in the medial
vestibular nucleus [4]. Also, visually evoked bumps of activity have
been seen in striate cortex due to the orientation selectivity of
recurrent connections [5]. There has been a great deal of work
developing models that explain how such bumps of activity might
arise and be sustained in a neuronal network [6–9]. One of the
simplest models known to support stationary bumps is given
by a scalar integrodifferential equation that represents averaged
population activity in a spatially extended network of neurons [6]:

τ
∂u(x, t)
∂t

= −u(x, t)+
∫
∞

−∞

w(x− x′)f (u(x′, t)− θ)dx′

+ I(x, t). (1.1)
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The variable u(x, t) represents the local synaptic drive to a
population of neurons at position x and time t , τ is the membrane
time constant, I(x, t) represents an external input, and w(x) is a
synaptic weight distribution. Usually w is a continuous function
satisfying w(−x) = w(x) and

∫
∞

−∞
w(x)dx <∞. The nonlinearity

f denotes an output firing rate function. Typically, f is a bounded,
positive monotone increasing function such as the sigmoid

f (u− θ) =
1

1+ exp(−η(u− θ))
(1.2)

with gain η and threshold θ . Often, existence and stability of
spatially localized solutions of Eq. (1.1) are conducted in the high-
gain limit η→∞ such that f becomes theHeaviside function [6,9]

f (u− θ) = Θ(u− θ) =
{
0 if u < θ
1 if u > θ.

(1.3)

It is then possible to establish existence of pulse solutions by ex-
plicit construction and to determine local stability in terms of an
associated Evans function. The latter is obtained by linearizing the
neural field equations about the pulse solution [10]. In the case of
stationary pulses or bumps, local stability reduces to the problem
of calculating the effects of perturbations at the bump boundary
where u(x) = θ .
Eq. (1.1) was first analyzed in detail by Amari [6], who showed

that in the case of a Heaviside nonlinearity and a homogeneous in-
put I the network can support a stable stationary bump solution
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when the weight distribution w(x) is given by a so-called Mex-
ican hat function with the following properties: w(x) > 0 for
x ∈ [0, x0) with w(x0) = 0; w(x) < 0 for x ∈ (x0,∞); w(x)
is decreasing on [0, x0]; w(x) has a unique minimum on R+ at
x = x1 with x1 > x0 andw(x) strictly increasing on (x1,∞). On the
other hand, in the case of a purely excitatory network withw(x) a
positive, monotonically decreasing function, any bump solution is
unstable and tends to break up into a pair of counterpropagating
fronts. Following Amari’s original analysis, the study of bumps in
neural fields has been extended tomultiple bump solutions in net-
works with oscillatory weight functions [11,12], two-dimensional
bumps [13,12,14–16], and weakly interacting bumps [17]. There
has also been some progress in studying the existence of bumps in
scalar neural fields when the firing rate function is continuous in
both infinite [18,19] and compact spatial domains [20].
One limitation of the scalar neural fieldmodel given by Eq. (1.1)

is that it cannot support traveling pulses nor spatially structured
oscillations when inhibition is blocked, which is inconsistent with
a variety of in vitro experimental studies of disinhibited slice prepa-
rations [21]. These more complex forms of spatiotemporal dy-
namics can occur, however, when some of form of local negative
feedback is included [22–27]. Pinto and Ermentrout proposed a
neural field model with linear negative feedback that is analogous
to the recovery variable in the Fitzhugh–Nagumo equation [22,19].
The existence and stability of stationary bumps can then be studied
using a straightforward extension of the Amari analysis, since the
bump solution is smooth in a neighborhood of the threshold cross-
ing points. However, the analysis of bump stability is more compli-
cated in the case of nonlinear forms of negative feedback such as
synaptic depression [26] and spike frequency adaptation [23,25].
In these models, the amplitude of the feedback depends on the fir-
ing rate so if the latter is taken to be a Heaviside function, then
the resulting dynamical systembecomes piecewise smooth. In par-
ticular, it is no longer possible to determine stability by directly
linearizing the neural field equations about a bump solution. Pre-
vious studies have thus constructed an Evans function for bump
stability by linearizing the neural field equations with a smooth
sigmoid (1.2) and then taking the high-gain limit [23,25,26].
However, the size of perturbations for which the linear theory re-
mains valid vanishes in the high-gain limit, so that the Evans func-
tion approach does not fully capture the piecewise nature of the
dynamics. Indeed, it is well known from the theory of piecewise
smooth ordinary differential equations that fixed point solutions
can abruptly appear or disappear, and the stability of a fixed point
often depends on the properties of a piecewise linear operator [28].
In this paper, we follow a different approach to analyzing bump

stability, in which the piecewise smooth nature of the dynamics
in the high-gain limit is explicitly taken into account. It turns out
that the way in which the piecewise smooth dynamics affects
bump stability is strongly model dependent. In order to illustrate
this, we study the linear stability of bumps in two different
neural networks with piecewise smooth local negative feedback.
In Section 2, bumps in a network with synaptic depression are
examined. We first demonstrate that an Evans function approach
is singular in the high-gain limit and underestimates the ability of
synaptic depression to destabilize a bump. We then show how the
linear stability of a bump can be analyzed in terms of solutions
to a system of pseudo-linear equations, and use this to derive
sufficient conditions for the instability of a bump. In the particular
case of a network with a Mexican hat weight distribution, we
show that sufficiently strong synaptic depression destabilizes a
bump that is stable in the absence of depression. In Section 3, we
study bumps in a network with spike frequency adaptation, which
appears as a dynamic threshold in the firing rate function f . Aswith
the network with depression, an Evans function approach breaks
down in the high-gain limit, and we must resort to specifically

addressing piecewise smoothness in stability calculations. In this
case, we show that for a wide class of infinitesimal perturbations
the activity and adaptation variables decouple in the linear regime,
such that stability with respect to these perturbations can be
determined using a straightforward modification of the standard
Amari spectral equation [6].We find that, in contrast to the stability
analysis based on the high-gain limit of an Evans function [23,25],
all bumps in the network are unstable, regardless of the strength
of adaptation.

2. Neural network with synaptic depression

In this section, we analyze the existence and local stability
of stationary bumps in a one-dimensional neural field model
with synaptic depression. Synaptic depression is the process by
which presynaptic resources such as chemical neurotransmitter or
synaptic vesicles are depleted [29]. It can be incorporated into the
scalar neural field model [6] by introducing a dynamic prefactor q
in the nonlocal term according to [26,27]

τ
∂u(x, t)
∂t

= −u(x, t)+
∫
∞

−∞

q(x′, t)w(x− x′)f (u(x′, t)− θ)dx′,

(2.1a)

∂q(x, t)
∂t

=
1− q(x, t)

α
− βq(x, t)f (u(x, t)− θ). (2.1b)

The factor q(x, t) can be interpreted as a measure of the fraction
of available presynaptic resources, which are depleted at a rate
βf [30,31], and are recovered on a timescale specified by the
constant α (experimentally shown to be 200–800 ms [32,33,30]).
If we assume that the strength of a synapse is reduced by a factor
η = 0.05 − 0.9 of its maximal value in response to a sustained
input of rate f = 1 [32], then a simple steady-state calculation
shows that β ≈ (1 − η)/(ηα) ≈ 0.0001 − 0.1 (ms)−1 for the
given range of values of α. If we take f = Θ then the dynamics
becomes piecewise smooth due to the presence of the Heaviside
function Θ in the dynamical equation for the depression variable
q(x, t). In the following we set the time constant τ = 1 which sets
the unit of time to be of the order 10 ms.

2.1. Existence of bumps

On setting f = Θ , a stationary solution (U(x),Q (x)) of Eq. (2.1)
satisfies the pair of equations

U(x) =
∫
∞

−∞

Q (x′)w(x− x′)Θ(U(x′)− θ)dx′, (2.2)

Q (x) = 1−
αβ

1+ αβ
Θ(U(x)− θ). (2.3)

Let R[U] = {x|U(x) > θ} be the region over which the field is
excited or superthreshold. Exploiting the fact that any solution can
be arbitrarily translated along the x-axis, we define a stationary
bump solution of half-width a to be one for which R[U] = (−a, a).
Substituting Eq. (2.3) into (2.2) then yields

U(x) =
1

1+ αβ
[W (x+ a)−W (x− a)],

W (x) =
∫ x

0
w(y)dy.

(2.4)

As a simple example, we take a Mexican hat weight distribution
given by the function

w(x) = (1− |x|)e−|x|, (2.5)

which models short-range excitation and long-range inhibition
as a function of distance in the connections between neural
populations. Substituting the weight function (2.5) into the steady
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a b

Fig. 1. Stationary bumps in a networkwith synaptic depression. (a) Plots relating bumpwidth a to amplitude of synaptic depressionβ for different values of θ using Eq. (2.6).
We take the parameter α = 20. Stability analysis based on the piecewise smooth approach (Section 2.3) establishes that bumps along the dashed portions of the existence
curves are unstable; the solid curves indicate bumps that appear to be numerically stable. The Evans function approach predicts that the whole of the upper branch is stable.
(b) Bump profile when θ = 0.2 and β = 0.01.

state solution for U(x) and evaluating the integral yields

U(x) =
1

(1+ αβ)

[
(x+ a)e−|x+a| − (x− a)e−|x−a|

]
.

Applying the threshold conditions U(±a) = θ , we arrive at an
implicit expression relating the bump half-width a to all other
parameters:
2a

(1+ αβ)
e−2a = θ.

The transcendental equation (2.6) can be solved numerically using
a root finding algorithm. The variation of pulse width with the
parameters θ and β is shown in Fig. 1; the stability of the
bumps is calculated below. It is important to note that the
threshold-crossing conditions (2.6) are necessary but not sufficient
for existence of a bump. A rigorous proof of existence, which
establishes that activity is superthreshold everywhere within the
domain |x| < a and subthreshold for all |x| > a, has not been
obtained except in special cases [6]. However, it is straightforward
to check numerically that these conditions are satisfied.

2.2. Stability of bumps: Evans function approach

A popular approach to analyzing the stability of stationary
bumps in neural field models is to linearize about the bump
solution and derive an Evans function, whose roots represent the
spectrum of the associated linear system [10]. Thus, it is tempting
to try to calculate the Evans function of the bump solutions (2.6),
find its roots, and use these to make statements about the linear
stability of the bump. However, the steps necessary to linearize the
system (2.1) when f = Θ are not well defined, due to the exposed
Heaviside function in Eq. (2.1b). This suggests that one way to
proceed is to take f to be the sigmoid function (1.2) with high
gain (η � 1), formally construct the associated Evans function by
Taylor expanding about the bump solution and then take the high-
gain limit η→∞ to recover the Evans function in the case of the
Heaviside. (One cannot evaluate the Evans function analytically for
a smooth sigmoid, since one does not have an explicit expression
for the bump solution.) However, in the high-gain limit the region
of phase space in which the linear stability theory is valid becomes
vanishingly small, due to the ever steepening slope of the sigmoid
right at the threshold crossing points. Thus, it is not clear that
the resulting Evans function will correctly characterize the linear
stability of the bump. Nonetheless, it is useful to present such a
construction here and to point out how it breaks down in the high-
gain limit, leading to erroneous stability results.
We begin by letting u(x, t) = Uη(x) + εψ(x, t) and q(x, t) =

Qη(x)+εϕ(x, t), whereψ, ϕ are smooth perturbations, ε � 1, and

the pair (Uη,Qη) denotes a stationary bump solution of Eq. (2.1)
for a smooth sigmoid function f with gain η. Substituting into the
full system (2.1), expanding to first order in ε and imposing the
stationary bump solutions yields the linear equations

∂ψ(x, t)
∂t

= −ψ(x, t)+
∫
∞

−∞

w(x− x′)

{
Qη(x′)

× f ′(Uη(x′)− θ)ψ(x′, t)+ ϕ(x′, t)f (Uη(x′)− θ)

}
dx′ (2.6)

∂ϕ(x, t)
∂t

= −
ϕ(x, t)
α
− β

[
Qη(x)f ′(Uη(x)− θ)ψ(x, t)

+ϕ(x, t)f (Uη(x)− θ)
]
. (2.7)

We have used the Taylor series approximation

f (Uη + ψ − θ) = f (Uη − θ)+ f ′(Uη − θ)ψ + · · · . (2.8)

Notice that

f ′(Uη(x)− θ) =
η exp(−η(Uη(x)− θ))

(1+ exp(−η(Uη(x)− θ)))2
(2.9)

is well defined when Uη(x) 6= θ as η → ∞. However, when
Uη(x) = θ , which is where we define threshold crossings in the
high-gain limit, Eq. (2.9) scales linearly with η. This will invalidate
any linear approximation to f in the vicinity of a threshold crossing.
Along these lines, as the high-gain limit is approached, for steeper
and steeper sigmoids, the linear approximation at the threshold
crossing becomes progressively worse. Thus, there is a vanishingly
small region of the phase space (ψ(x, t), ϕ(x, t)) in which this
stability analysiswill be valid. Therefore, althoughone can formally
analyze the high-gain limit of the spectrum of the smooth linear
operator defined by the right-hand side of Eqs. (2.6) and (2.7),
this does not yield valid conditions for linear stability of a bump
in a network with Heaviside nonlinearities. Nevertheless, it is
instructive to carry out the spectral analysis of Eqs. (2.6) and (2.7).
That is, set ψ(x, t) = eλtψ(x) and ϕ(x, t) = eλtϕ(x) with
(ψ(x), ϕ(x)) bounded continuous functions onR that decay to zero
exponentially as x→±∞. This gives

(λ+ 1)ψ(x) =
∫
∞

−∞

w(x− x′)
{
Qη(x′)ψ(x′)f ′(Uη(x′)− θ)

+ϕ(x′)f (Uη(x′)− θ)
}
dx′, (2.10)

(λ+ α−1)ϕ(x) = −β
[
Qη(x)ψ(x)f ′(Uη(x)− θ)

+ϕ(x)f (Uη(x)− θ)
]
. (2.11)
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The resulting spectral problem is nontrivial since we have a non-
compact linear operator on R. However, we can obtain a simpler
spectral problem by formally taking the high-gain limit.
First, solving Eq. (2.11) for ϕ(x) yields

ϕ(x) = −β(λ+ α−1

+βf (Uη(x)− θ))−1Qη(x)ψ(x)f ′(U(x)− θ). (2.12)

Assuming that ϕ(x) is non-singular, we may substitute back into
Eq. (2.10) to give a closed equation for ψ(x)

(λ+ 1)ψ(x) =
∫
∞

−∞

w(x− x′)Qη(x′)ψ(x′)
{
f ′(U(x′)− θ)

−β
(
λ+ α−1 + βf (Uη(x′)− θ)

)−1
× f (Uη(x′)− θ)f ′(U(x′)− θ)

}
dx′. (2.13)

We now take the high-gain limit using

lim
η→∞

f (Uη(x)− θ) = Θ(U(x)− θ) = Θ(x+ a)−Θ(x− a),

lim
η→∞

f ′(Uη(x)− θ) = Θ ′(U(x)− θ) =
δ(x+ a)
|U ′(a)|

+
δ(x− a)
|U ′(a)|

,

lim
η→∞

f (0) = 1/2,

lim
η→∞

Qη(±a) =
1+ αβ/2
1+ αβ

so that Eq. (2.13) becomes [26](
λ+ α−1 +

β

2

)
(λ+ 1)ψ(x) =

(λ+ α−1)(1+ αβ/2)
(1+ αβ)|U ′(a)|

× [w(x+ a)ψ(−a)+ w(x− a)ψ(a)] . (2.14)

Eq. (2.14) may appear to be a perfectly reasonable equation
for characterizing the linear stability of a bump in a Heaviside
network, due to its similarity to previous studies of the scalar
equation (1.1). Indeed, one can determine λ in terms of the
spectrum of the linear operatorLψ(x) = w(x+a)ψ(−a)+w(x−
a)ψ(a) acting on the space of continuous bounded functions on
[−a, a]; it can be shown that the linear operator is compact in the
case of standard norms such as L1 [34,35]. It then follows that the
essential spectrum is located at λ = −1 and the discrete spectrum
is determined by setting x = ±a in Eq. (2.14). This yields two
classes of eigenfunctions ψ±(x) = w(x + a) ± w(x − a) with
associated characteristic equations [26](
λ+ α−1 +

β

2

)
(λ+ 1) = Ω±(λ+ α−1)(1+ αβ/2), (2.15)

whereΩ+ = Ω,Ω− = 1 with

Ω =
w(0)+ w(2a)
w(0)− w(2a)

. (2.16)

It is straightforward to show that the characteristic equation for
ψ−(x) has a simple root λ− = 0; one expects a zero eigenvalue,
since this is an indication of the full system of Eqs. (2.1) being
invariant with respect to spatial translations. However, although
one can formally take the high-gain limit of the linear equation
(2.13), this does not properly take into account the breakdown in
the Taylor expansion of the full equations due to the singularity
arising on the steepest part of the sigmoid. Consequently, the Evans
function approach misses instabilities arising from the piecewise
smooth nature of the full system (2.1). Indeed, the Evans function
approach implies that the upper branch of the existence curve
shown in Fig. 1 is linearly stable, that is, all non-zero solutions of
(2.15) have negative real part along this branch, whereas at least
some of this branch is unstable according to the piecewise smooth
approach and according to numerical simulations (see below).

2.3. Stability of bumps: piecewise smooth approach

Rather than analyzing stability in terms of the high-gain
limit of an Evans function, we now consider directly the effects
of infinitesimal perturbations on a stationary bump solution of
Eq. (2.1) when f = Θ . Substituting u(x, t) = U(x)+ εψ(x, t) and
q(x, t) = Q (x) + εϕ(x, t) into the full system (2.1), imposing the
stationary bump solutions (2.2) and (2.3), and dividing through by
ε then gives

∂ψ(x, t)
∂t

= −ψ(x, t)+
1
ε

∫
∞

−∞

w(x− x′)Q (x′)

×
[
Θ(U(x′)+ εψ(x′, t)− θ)−Θ(U(x′)− θ)

]
dx′

+

∫
∞

−∞

w(x− x′)ϕ(x′, t)Θ(U(x′)

+ εψ(x′, t)− θ)dx′ (2.17)
∂ϕ(x, t)
∂t

= −
ϕ(x, t)
α
−
β

ε
Q (x)

[
Θ(U(x)+ εψ(x, t)− θ)

−Θ(U(x)− θ)
]
− βϕ(x, t)Θ(U(x)+ εψ(x, t)− θ). (2.18)

Denote the perturbations of the bump boundary by ε∆±(t) such
that

u(a+ ε∆+(t), t) = u(−a+ ε∆−(t), t) = θ

for all t > 0. Taylor expanding these threshold conditions to first
order in ε we find that

∆±(t) ≈ ±
ψ(±a, t)
|U ′(a)|

. (2.19)

We can smooth out the discontinuities in Eq. (2.18) by introducing
the field

Φ(x, t) =
∫ a+ε∆+(t)

−a+ε∆−(t)
w(x− x′)ϕ(x′, t)dx′. (2.20)

(We will not be able to perform such a change of variables in the
case of the network with spike frequency adaptation in Section 3.)
That is, infinitesimal shifts in the location of the bump boundary
lead toO(1/ε) pointwise changes in the perturbations ϕ(x, t) over
a time-scale of α−1. However, this doesn’t necessarily imply that
the bump solution is unstable, since the region over which the
O(1/ε) changes occur may shrink to zero. This is captured by the
dynamics of the fieldΦ(x, t), whichwill remainO(1)when ϕ(x, t)
is O(1/ε) over an infinitesimal interval.
Differentiating Eq. (2.20) with respect to t and combining this

with Eqs. (2.17) and (2.18) gives

∂ψ(x, t)
∂t

= −ψ(x, t)+ Φ(x, t)

+
1
ε

∫ a+ε∆+(t)

−a+ε∆−(t)
w(x− x′)Q (x′)dx′

−
1
ε

∫ a

−a
w(x− x′)Q (x′)dx′ (2.21)

∂Φ(x, t)
∂t

= −
(
α−1 + β

)
Φ(x, t)−

β

ε

∫ a+ε∆+(t)

−a+ε∆−(t)
w(x− x′)Q (x′)

× [Θ(U + εψ − θ)−Θ(U − θ)] dx′

+ εw(x− a− ε∆+(t))ϕ(a+ ε∆+(t), t)∆̇+(t)

− εw(x+ a− ε∆−(t))ϕ(−a+ ε∆−(t), t)∆̇−(t). (2.22)

We cannow linearize Eqs. (2.21) and (2.22) by expanding in powers
of ε and collecting all O(1) terms. Note that it is important to
keep track of the signs of ∆± when approximating the various
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integrals due to the discontinuous nature of Q (x). We thus obtain
the following pseudo-linear system of equations:
∂ψ(x, t)
∂t

= −ψ(x, t)+ Φ(x, t)+ γw(x+ a)ψ(−a, t)

×G(ψ(−a, t))+ γw(x− a)ψ(a, t)G(ψ(a, t)) (2.23)
∂Φ(x, t)
∂t

= −
(
α−1 + β

)
Φ(x, t)

−βγw(x+ a)ψ(−a, t)G(ψ(−a, t))Θ(ψ(−a, t))

−βγw(x− a)ψ(a, t)G(ψ(a, t))Θ(ψ(a, t)), (2.24)

where G is the step function

G(∆) =
{
1 if∆ > 0
(1+ αβ)−1 if∆ < 0, (2.25)

and

γ−1 = U ′(−a) = −U ′(a) =
w(0)− w(2a)
1+ αβ

. (2.26)

Eqs. (2.23) and (2.24) imply that the local stability of a stationary
bump solution depends on the solutions to a system of pseudo-
linear equations. A class of solutions to these equations can be
obtained under the ansatz that the perturbations ψ(±a, t) (or
equivalently ∆±(t)) do not switch sign for any time t . In other
words, we assume that Eqs. (2.23) and (2.24) have separable
solutions of the form (ψ(x, t),Φ(x, t)) = eλt(ψ(x),Φ(x)), where
λ is real and (ψ(x),Φ(x)) are bounded continuous functions on
R that decay to zero exponentially as x → ±∞. Under this
assumption, the step functionsΘ,G are time-independent so that
there is a common factor eλt that cancels everywhere. We thus
obtain

(λ+ 1)ψ(x) = γw(x+ a)ψ(−a)G(ψ(−a))
(
1−

βΘ(ψ(−a))
λ+ α−1 + β

)
+ γw(x− a)ψ(a)G(ψ(a))

(
1−

βΘ(ψ(a))
λ+ α−1 + β

)
. (2.27)

Note that we are assuming that λ 6= −(α−1 + β) so that we
can use Eq. (2.23) to solve Φ(x) in terms of ψ(±a); the case λ =
−(α−1 + β) does not contribute to any instabilities.
Hence, in the case of the neural field with synaptic depression,

the piecewise smooth nature of the full system persists in the
pseudo-linear system characterizing the stability of bumps. This
is an indication that the discontinuities arising in the stationary
bump solution are manageable by linear stability analysis under
the appropriate change of variables (2.20). By generalizing the
analysis of Guo and Chow [35], it is possible to show how the
solutions forλ can be identifiedwith the spectra of a set of compact
linear operators acting in the space of bounded continuous
functions on the interval [−a, a] [36]. However, here it will suffice
to calculate λ directly from Eq. (2.27). One particular class of
solutions consists of functions ψ(x) that vanish on the boundary,
ψ(±a) = 0, such that λ = −1. This determines the essential
spectrum, since λ = −1 has infinite multiplicity, and does not
contribute to any instabilities. There are then four other classes
of solution to Eq. (2.27) which determine the discrete spectrum:
(i) ψ(−a) > 0 and ψ(a) < 0; (ii) ψ(−a) < 0 and ψ(a) > 0;
(iii)ψ(−a) > 0 andψ(a) > 0; (iv)ψ(−a) < 0 andψ(a) < 0. The
four types of perturbation correspond, respectively, to a leftward
shift, a rightward shift, an expansion, and a contraction of the
stationary bump solution.
(i) ψ(±a) ≶ 0: in this case Eq. (2.27) becomes(
λ+ α−1 + β

)
(λ+ 1)ψ(x) = γw(x+ a)ψ(−a)

(
λ+ α−1

)
+ γw(x− a)ψ(a)

λ+ α−1 + β

1+ αβ
. (2.28)

Setting x = ±a then yields the matrix equation(
Γβ(λ)− γw(0)

(
λ+ α−1

)
−γ

(
λ+ α−1

)
w(2a)

−γ
(
λ+ α−1

)
w(2a) Γβ(λ)− γw(0)

(
λ+ α−1

) )
×

(
ψ(−a)
ψ(a)

)
= −

γαβλ

1+ αβ

(
w(2a)ψ(a)
w(0)ψ(a)

)
, (2.29)

where

Γβ(λ) =
(
λ+ α−1 + β

)
(λ+ 1).

We thus obtain a quartic equation for λ. It is straightforward to
show that there exists a zero eigenvalue λ = 0with corresponding
eigenmode ψ(−a) = −ψ(a) > 0, which represents a leftward
shift. The existence of a zero eigenvalue reflects the translation
invariance of the full system (2.1). Notice that we are able to pick
up the translation invariance of the bump in our perturbation
analysis, even though modifications necessary to shift Q (x) in
space will be O(1) in a neighborhood of x = ±a. This is a
consequence of introducing the field Φ according to Eq. (2.20),
which remains small under small shifts in the bump. (As previously
mentioned, such a technique will not be possible for the adaptive
network in Section 3, so we will not witness the translation
invariance of the system in the linear stability equations.) In order
to calculate any other eigenvalues, we assume that β � 1
(which is consistent with physiological values for the depletion
rate of synaptic depression [30,31]) and carry out a perturbation
expansion in β . First, setting β = 0 in Eq. (2.29) we find that
there are three eigenvalues λ0 = Ω − 1, 0,−α−1 withΩ given by
Eq. (2.16). The first eigenvalue is λ0 = Ω − 1, which can
be excluded since the corresponding eigenmode violates the
assumption thatψ(±a)have opposite sign; the associated solution
branch for β > 0 can also be excluded. The second eigenvalue is
λ0 = 0, which persists when β > 0 (see above). Finally, the third
eigenvalue λ0 = −α−1 is doubly degenerate so that one needs
to use degenerate perturbation theory in order to determine the
splitting of the eigenvalue into two branches as β increases from
zero; λ is a continuous function of β on both branches. Again, one
of the branches is excluded by requiring thatψ(±a) have opposite
sign. We conclude that for sufficiently small β , shift perturbations
do not lead to any instabilities.
(ii)ψ(±a) ≷ 0: as expected from the reflection symmetry of the

original system (2.1) whenw(x) is an even function, the spectrum
associated with rightward shifts is identical to that of leftward
shifts.
(iii) ψ(±a) > 0: in this case Eq. (2.27) becomes(
λ+ α−1 + β

)
(λ+ 1)ψ(x) = γw(x+ a)ψ(−a)

(
λ+ α−1

)
+ γw(x− a)ψ(a)

(
λ+ α−1

)
. (2.30)

Setting x = ±a and noting thatψ(±a)have the same sign,we have
ψ(a) = ψ(−a) > 0 with λ satisfying the quadratic equation(
λ+ α−1 + β

)
(λ+ 1) =

(
λ+ α−1

)
(1+ αβ)Ω, (2.31)

whereΩ is given by Eq. (2.16) and we have substituted for γ using
Eq. (2.26). It follows that λ = λ± with

λ± =
1
2

[
Ω(1+ αβ)−

(
1+ α−1 + β

)]
±
1
2

√[
Ω(1+ αβ)−

(
1+ α−1 + β

)]2
+ 4(Ω − 1)

(
α−1 + β

)
.

(2.32)

The associated eigenmode corresponds to an expansion of the
bump.
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a b

Fig. 2. Eigenvalues associated with respect to shift perturbations (cases (i) and (ii)). (a) Nonzero eigenvalue for various β . Bump is unstable with respect to shifts for
sufficiently large β . The point at which λ becomes positive is slightly different for the two curves. (b) Corresponding plot of the ratio Ψ (a) = ψ(a)/ψ(−a) for a leftward
shift. As β increases, the ratio approaches zero. We take the parameter α = 20. Results are the same for a rightward shift on exchanging x = −a and x = a.

a b

Fig. 3. Eigenvalues associated with expansion and contraction perturbations (cases (iii) and (iv)). (a) Eigenvalues of the expansion (solid curves) and contraction (dashed
curve) perturbations when (a) θ = 0.2 and (b) θ = 0.3. In the grey regions, the roots of Eq. (2.32) are complex thus violating the ansatz that λ is real. We take α = 20.

(iv) ψ(±a) < 0: in this final case Eq. (2.27) becomes

(λ+ 1)ψ(x) = γw(x+ a)ψ(−a)
1

1+ αβ

+ γw(x− a)ψ(a)
1

1+ αβ
. (2.33)

Setting x = ±a shows that ψ(a) = ψ(−a) and λ = λ0 with

λ0 = Ω − 1. (2.34)

The associated eigenmode corresponds to a contraction of the
bump.
We now illustrate an application of the above stability analysis

by considering stationary bumps in a network with the Mexican
hat weight function (2.5). Specifically, we plot the real eigenvalues
for each type of perturbation in the case of the wider bump shown
in Fig. 1, which is stable in the absence of synaptic depression
(β = 0). In Fig. 2, we plot the nonzero eigenvalue λ for
shift perturbations as a function of β; the other two non-zero
solutions to the matrix equation (2.29) violate the shift restriction
ψ(a) < 0 < ψ(−a). As β increases, the eigenvalue becomes
positive, representing destabilization with respect to a shift
perturbation. In comparison, the eigenvalues of type (iii) and (iv)
perturbations (expansions and contractions) are plotted in Fig. 3.
As β is increased, the eigenvalues of the expansion perturbation
become positive, whereas the contraction perturbation is always
stable for the chosen parameters. Since the expansion instability
occurs at larger values of β than shift perturbations, the latter
dominate bump instabilities in the case of the given Mexican hat
weight function. Numerical simulations show that the resulting

instability leads to the formation of a traveling pulse similar to that
shown in Fig. 9 for a network with spike frequency adaptation.
Another important point is that there exists a parameter range
where eigenvalues (2.32) are complex, so stability of expanding
perturbations cannot be analyzed using our given ansatz. When
real roots appear again, there is a jump in their value. Note that the
lower positive branch of expansion eigenvalues meets the branch
of contraction eigenvalues at the critical value of β for which the
upper and lower existence curves in Fig. 1 meet.
We conclude that strong enough synaptic depression (large

β) can destabilize a stationary bump that would be stable in the
absence of depression. This explicitly establishes the breakdown
of the Evans function approach to analyzing the stability of bump
solutions of the neural field model with synaptic depression,
Eq. (2.1), in the high-gain limit; the latter approach predicts
that the upper branch of the existence curves in Fig. 1 is stable.
However, it is important to note that the piecewise smooth
approach itself can only provide sufficient conditions for instability
but not stability of a bump. This follows from the fact thatwehad to
assume thatλ is real in order to construct separable solutions of the
pseudo-linear Eqs. (2.23) and (2.24). Hence, there could beunstable
modes corresponding to non-separable oscillatory solutions that
are not picked up by our analysis, although numerical simulations
suggest that this is not the case for our particular system.
Finally, the piecewise smooth approach can be extended to the
case of radially symmetric two-dimensional bumps, although the
resulting analysis is more complicated since one has to keep
track of variations in the sign of perturbations around the circular
boundary of the bump [36].
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a b

Fig. 4. Stationary bump in a network with spike frequency adaptation. (a) Bump solution (U(x),H(x)) with h0 = 0.04, θ = 0.1, and κ = 0.16. Here a = 1.48, b = 1.60,
and c = 1.67. (b) Zoomed in version of the excited region R[U], showing all of the threshold crossings at x = ±a,±b,±c .
Source: Adapted from [23,25].

a b

Fig. 5. (a) Plot of bump half-widths versus κ for θ = 0.1 and h0 = 0.04. The bump solution exists for κ < κc ≈ 0.32. (b) Plot of bump half-widths versus h0 for θ = 0.1
and κ = 0.16. The bump solution exists for h0 > hc ≈ 0.

3. Neural network with spike frequency adaptation

In this section, we analyze the existence and stability of
stationary bumps in a neural network with spike frequency
adaptation. Spike frequency adaptation is the process by which
a neuron’s firing rate decays to a submaximal level, occurring
when a hyperpolarizing potassium current is activated via
intracellular calcium [37,38]. Since increases in adaptation current
are subtractive terms entering the sum total of all currents driving
a population, they can be equivalently thought of as increases
in the threshold required for a nonzero population firing rate.
This phenomenonwas recently incorporated into the scalar neural
network (1.1) by introducing a dynamic threshold into the firing
rate function, so that on setting f = Θ we have [23,25]

1
α

∂u(x, t)
∂t

= −u(x, t)+
∫
∞

−∞

w(x− x′)Θ(u(x′, t)

− h(x′, t))dx′, (3.1a)

∂h(x, t)
∂t

= −(h(x, t)− h0)+ κΘ(u(x, t)− θ). (3.1b)

The threshold h(x, t) increases from its baseline value h0 to a
maximum of h0 + κ , when the input drive u(x, t) is above θ .
In keeping with previous analyses of this model, we require the
threshold parameters satisfy h0 < θ < h0 + κ . However,
derivations of firing rate models with spike frequency adaptation
from detailed conductance based models suggest that taking h0 =
θ is more physiologically reasonable [37]. The time constant
α quantifies the ratio between synaptic input dynamics and
adaptation dynamics. In order to make a direct comparison with

Coombes andOwen [23,25],we take aMexican hatweight function
of the form (2.5).

3.1. Existence of bumps

A stationary bump solution (U(x),H(x)) of (3.1) satisfies

U(x) =
∫
∞

−∞

w(x− x′)Θ(U(x′)− H(x′))dx′, (3.2)

H(x) = h0 + κΘ(U(x)− H(x)). (3.3)

We restrict ourselves to examining single bumps that satisfy the
threshold conditions

U(±a) = h0 + κ, U(±b) = θ, U(±c) = h0, (3.4)

where a < b < c. As opposed to bumps in the scalar and
depressing networks, the stationary bump solution here will have
a disconnected excited region for U , R[U] = (−c,−b)∪ (−a, a)∪
(b, c), and a different excited region for H , R[H] = (−b, b) so that

U(x) =
(∫

−b

−c
+

∫ a

−a
+

∫ c

b

)
w(x− x′)dx′. (3.5)

An example of such a bump is shown in Fig. 4. This should
be contrasted with multibump solutions, whose activity is in
excess of a homogeneous threshold over several disconnected
subdomains [11,12,16]. For the Mexican hat weight function (2.5),
we can explicitly evaluate the integrals in (3.5) to yield

U(x) = g(x+ c)− g(x+ b)+ g(x+ a)− g(x− a)
+ g(x− b)− g(x− c), (3.6)
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a b

Fig. 6. Different sized perturbations of a bump. (a) Expanding a side of the bump. Zoomed-in version of the bump (U(x),H(x)) is shown along with perturbed solutions
u1(x) = U(x) + ψ1(x) and u2(x) = U(x) + ψ2(x) with ψi(x) > 0. While u1 satisfies the three threshold crossings on this side, u2 does not, due to the condition
u2(a + ∆a+) = h0 + κ being violated. (b) Contracting a side of the bump. Here, u1(x) = U(x) − ψ1(x), (ψ1(x) > 0) still satisfies all three threshold crossing, but
u2 = U − ψ2, (ψ2 > 0) does not, due to u2(c +∆+c ) = h0 being violated. Parameters are h0 = 0.04, θ = 0.1, κ = 0.16.

a b

Fig. 7. Effects of perturbations on the excited region R[U]. (a) Zoomed-in version of the bumpU(x),H(x) shows the accompanying excited region R[U] (black bar). Expanding
a side of the bump to the perturbed form u1(x) = U(x)+ ψ1(x), (ψ1 > 0)will widen both subdomains of the excited region R[u1] (grey bars). (b) Contracting a side of the
bump to the perturbed form u1(x) = U(x)−ψ1(x), (ψ1 > 0) shrinks both subdomains of the excited region R[u1] (grey bars). Parameters are h0 = 0.04, θ = 0.1, κ = 0.16.

where g(x) = xe−|x|. Also note

H(x) =
{
h0 + κ, |x| > b,
h0, |x| < b, (3.7)

implying that, as in the case of the network with depression, the
negative feedback variable here will have a jump discontinuity.
Applying the bump threshold conditions (3.4)–(3.6), we arrive at
an implicit system relating the bumphalf-widths a, b, c to all other
parameters

g(a+ c)− g(a+ b)+ g(2a)+ g(a− b)− g(a− c) = h0 + κ,
g(b+ c)− g(2b)+ g(b+ a)− g(b− a)− g(b− c) = θ, (3.8)
g(2c)− g(c + b)+ g(c + a)− g(c − a)+ g(c − b) = h0.

The system of transcendental equations (3.8) can be solved
numerically using a root finding algorithm. The variation of pulse
widthwith the parameters κ and h0 is shown in Fig. 5. The stability
of the bumps is calculated below.

3.2. Stability of bumps

As in the case of networks with synaptic depression (2.1),
the Evans function approach to analyzing the stability of bumps
breaks down in the high-gain limit due to the vanishing small
domain over which linearization is applicable. (The construction
of the Evans function for traveling pulses can still be carried
out, however [23,25].) Therefore, we will proceed by considering
infinitesimal perturbations of the piecewise smooth system (3.1).
As we show below, there are some subtle differences between

the stability analysis of the system (3.1) as compared with the
system (2.1). First, wewill not be able tomake a change of variables
(2.20) in order to smooth the dynamics of the perturbation in the
h variable, as we were able to do in the case of the depression
variable q. Therefore, the linear stability equations we derive
here will not reflect the underlying translation invariance of the
system. Also, as opposed to the depression network, when bumps
are unstable, linear stability of the adapting network becomes a
very poor approximation to the full system’s dynamics soon after
perturbations begin to evolve. This is due in part to the fact that u
quickly ceases to intersect h at the same number of points as the
stationary solution (see Fig. 6).
Let us set u(x, t) = U(x) + εψ(x, t) and h(x, t) = H(x) +

εϕ(x, t) with ψ, ϕ smooth perturbations and ε � 1. Substituting
into the full system (3.1), dividing through by ε and imposing the
stationary bump solutions (3.2) and (3.3) gives
1
α

∂ψ(x, t)
∂t

= −ψ(x, t)+
1
ε

∫
∞

−∞

w(x− x′)
[
Θ(U(x′)

+ εψ(x′, t)− H(x′)− εϕ(x′, t))−Θ(U(x′)− H(x′))
]
dx′

(3.9)

∂ϕ(x, t)
∂t

= −ϕ(x, t)+
κ

ε
[Θ(U(x)+ εψ(x, t)− θ)

−Θ(U(x)− θ)]. (3.10)

Denote the infinitesimal perturbations of the bump boundary for
the u variable by ε∆a

±
(t), ε∆b

±
(t), ε∆c

±
(t) such that

u(±a+ ε∆a
±
(t), t) = h(±a+ ε∆a

±
(t), t),
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Fig. 8. Plot of eigenvalues arising from perturbations of a bump solution as a function of (a) κ with h0 = 0.04, and (b) h0 with κ = 0.16. In both plots, the positive eigenvalue
associated with a shift perturbation is always larger than that associated with an expansion/contraction. Other parameters are θ = 0.1 and α = 1. Varying α has the effect
of merely scaling the eigenvalues, but not changing their sign.

u(±b+ ε∆b
±
(t), t) = θ, (3.11)

u(±c + ε∆c
±
(t), t) = h(±c + ε∆c

±
(t), t),

for an initial time interval following the perturbation t ∈ (0, T ).
The linear theory will only be valid until the time T that the
existence threshold conditions are violated. It is straightforward
to Taylor expand the expressions in (3.11), truncate to first order
in ε, and solve for the terms

∆a
±
(t) ≈ ±

ψ(±a, t)− ϕ(±a, t)
|U ′(a)|

,

∆b
±
(t) ≈ ±

ψ(±b, t)
|U ′(b)|

, (3.12)

∆c
±
(t) ≈ ±

ψ(±c, t)− ϕ(±c, t)
|U ′(c)|

.

It is important to note that an infinitesimal shift of the point at
which u crosses θ is not equivalent to shifting the boundary of the
outer region of the excited region of u, due to the discontinuity in
H(x). As shown in Fig. 7, infinitesimal perturbations of the bump
lead to changes in the excited region of u in a neighborhood of x =
±a,±c but not x = ±b. For the excited region of u, R[u], to change
in the vicinity of x = ±b, it would be necessary to have an O(1)
change in the threshold h by, for example, uniformly shifting the
full bump solution. Thus, while the shift of the threshold condition
near x = ±b does affect the ϕ dynamics, it will not affect the ψ
dynamics for sufficiently small perturbations. If we now express
the convolution in (3.9) in terms of the bump crossings a, b, c and
perturbations∆a

±
,∆c
±
, we have

1
α

∂ψ(x, t)
∂t

= −ψ(x, t)+
1
ε

[∫
−b

−c+ε∆c
−

w(x− x′)dx′

−

∫
−b

−c
w(x− x′)dx′ +

∫ a+ε∆a
+

−a+ε∆a
−

w(x− x′)dx′

−

∫ a

−a
w(x− x′)dx′ +

∫ c+ε∆c
+

b
w(x− x′)dx′

−

∫ c

b
w(x− x′)dx′

]
. (3.13)

Let us now consider an initial perturbation that only changes
the activity variable u, that is, ϕ(x, 0) = 0 for all x. We can then
linearize the integral terms in Eq. (3.13) by only keeping terms up
to first order in the perturbations ψ,∆x

±
, since ϕ(±a, t) = 0 =

ϕ(±c, t)within the linear regime, that is, infinitesimal changes in

u will only perturb the threshold in a neighborhood of x = ±b.
Thus,

1
ε

∫
−c

−c+ε∆c
−

w(x− x′)dx′ ≈ −∆c
−
w(x+ c)

≈ γcw(x+ c)ψ(−c, t), (3.14)
1
ε

∫
−a

−a+ε∆a
−

w(x− x′)dx′ ≈ −∆a
−
w(x+ a)

≈ γaw(x+ a)ψ(−a, t), (3.15)

1
ε

∫ a+ε∆a
+

a
w(x− x′)dx′ ≈ ∆a

+
w(x− a)

≈ γaw(x− a)ψ(a, t), (3.16)

1
ε

∫ c+ε∆c
+

c
w(x− x′)dx′ ≈ ∆c

+
w(x− c)

≈ γcw(x− c)ψ(c, t), (3.17)

where γ−1y = |U
′(y)|. This yields the linear equation

1
α

∂ψ(x, t)
∂t

= −ψ(x, t)+ γa(w(x+ a)ψ(−a, t)

+w(x− a)ψ(a, t))+ γc(w(x+ c)ψ(−c, t)

+w(x− c)ψ(c, t)). (3.18)

Assuming separability ψ(x, t) = eλtψ(x), we derive a spectral
equation that determines the linear stability of a bump solution
with respect to the given restricted class of perturbations:

(λ+ α)ψ(x) = αγa(w(x+ a)ψ(−a)+ w(x− a)ψ(a))

+αγc(w(x+ c)ψ(−c)+ w(x− c)ψ(c)). (3.19)

Note that Eq. (3.19) is a modified version of the spectral equa-
tion for the scalar Amari equation [6]. The dynamic threshold
introduces extra threshold crossing points that appear as addi-
tional pointwise terms. This is equivalent to the spectral equation
one would derive for an Amari network with a spatially inhomo-
geneous threshold, specified by H(x). Therefore, the translation
invariance of the bump will no longer be implied by the linear sta-
bility equation, since translations of H(x) would involve O(1) ad-
ditions, which we must exclude from our analysis, based on our
assumption that ϕ(x) remains small. The linear operator on the
right-hand side of Eq. (3.19) has an essential spectrum located
at λ = −α and a discrete spectrum that is obtained by setting
x = ±a,±c. The latter yields the following matrix equation for
ψ̄ = (ψ(−a), ψ(a), ψ(−c), ψ(c))T :

λψ̄ = α(M− I4)ψ̄, where
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Fig. 9. Instabilities of a stationary bump solution given by Eqs. (3.6) and (3.7). (a) Space–time plot of a bump destabilizing to form a traveling pulse for α = 1.0, κ = 0.16.
The activity u(x, t) evolves from an initial bump solution that is perturbed by a small rightward shift at t = 5. (b) Space–time plot of a bump destabilizing to form a spatially
localized breather for α = 1.2, κ = 0.16. The activity u(x, t) evolves from an initial bump solution that is perturbed by an expansion at t = 5. Other parameters are θ = 0.1,
h0 = 0.04.

M =

 γaw(0) γaw(2a) γcw(c − a) γcw(a+ c)
γaw(2a) γaw(0) γcw(a+ c) γcw(c − a)
γaw(c − a) γaw(a+ c) γcw(0) γcw(2c)
γaw(a+ c) γaw(c − a) γcw(2c) γcw(0)

 ,
(3.20)

where In is the n × n identity matrix. Let us define an even
(odd) eigenmode as one for which ψ(x) = ψ(−x) (ψ(x) =
−ψ(−x)) at x = a, c. An even eigenmode corresponds to an
expansion/contraction of the bump, whereas an odd eigenmode
corresponds to a shift of the bump. For all parameter values that
we have explored, we find that there are two positive eigenvalues,
with the larger (smaller) positive eigenvalue corresponding to an
odd (even) eigenmode, and a degenerate negative eigenvalue with
an even/odd pair of eigenmodes. By applying the ansatz of an
eigenmode being even or odd, we can compute these eigenvalues
analytically by evaluating the roots of a quadratic. In the case of
even eigenmodes, the associated pair of eigenvalues is

λe
±
=
α

2

(
γaΩ

a
+
+ γcΩ

c
+

− 2±
√
(γaΩ

a
+ − γcΩ

c
+)
2 + 4γaγc

(
Ωm+

)2)
, (3.21)

and in the case of odd eigenmodes, the associated pair of
eigenvalues is

λo
±
=
α

2

(
γaΩ

a
−
+ γcΩ

c
−

− 2±
√
(γaΩ

a
− − γcΩ

c
−)
2 + 4γaγc

(
Ωm−

)2)
, (3.22)

where

Ωa
±
= w(0)± w(2a), Ωc

±
= w(0)± w(2c),

Ωm
±
= w(c − a)± w(c + a).

(3.23)

The dependence of the eigenpairs (3.21) and (3.22) on parameters
is illustrated in Fig. 8. Clearly, varying α will not change the sign
of the eigenvalues λ and thus the qualitative linear stability of
bumps. In contrast to our analysis, the Evans function approach
predicts that bumps are stable for sufficiently small α [23,25]
but destabilize to form a traveling pulse or breather as α
increases. However, numerical simulations of the full system (3.1)
confirm that bumps are always unstable. Moreover, the qualitative

behavior of the resulting instabilities are consistent with our
piecewise smooth analysis (see below).

3.3. Numerical simulations

We now study the full system (3.1) using a numerical
approximation scheme. To evolve the system in time, we use a
fourth order Runge–Kutta method with 2000–4000 spatial grid
points and a time-step of dt = 0.01. The integral term in Eq. (3.1a)
is approximated using Simpson’s rule. For all of our numerical
simulations, we begin with an initial condition u(x, 0) given by an
exact bump solution specified by Eqs. (3.6) and (3.7). After a brief
period, we perturb the system according to u(x)→ u(x)+ ψ±(x)
with

ψ±(x) = χ(w(x+ a)± w(x− a)+ w(x+ c)± w(x− c)), (3.24)

and observe how the system then evolves. Leftward shifts
(rightward shifts) correspond to ψ−(x, t) when χ ≥ 0 (χ ≤ 0),
while expansions (contractions) correspond toψ+(x, t)when χ ≥
0 (χ ≤ 0). Note that the perturbation ψ+(x)(ψ−(x)) is a mixture
of even (odd) eigenmode solutions of Eq. (3.19). The resulting
dynamics depends specifically on the type of perturbation applied
to the bump. For each simulation, we systematically examined
whether or not taking finer grids changed the stability results.
We found that as the grid spacing was decreased the size of
perturbation necessary to destabilize the bump also decreased.
This is important because too coarse a grid can drastically alter
numerical results, since discreteness can stabilize bumps that are
not stable in the continuous system [35].
When shift perturbations destabilize the bump, the resulting

dynamics evolves to a traveling pulse solution, as illustrated in
Fig. 9(a) for a rightward shift. Coombes and Owen [23,25] have
shown that spike frequency adaptation can indeed generate stable
traveling pulses for a wide range of parameters in the system
(3.1). Following a perturbation by a rightward shift, the nonlinear
threshold initially decays at what becomes the trailing edge of
the pulse. As the leading edge moves rightward as well, the
structure soonpropagates invariantly, as demonstrated by the time
snapshots in Fig. 10. In other simulations, we found that increasing
α leads to faster traveling pulses and therefore a more obvious
initial destabilization, in good agreement with the linear theory. In
Fig. 9(b), we show an example of how an expansion destabilizes
a bump leading to the formation of a breather, the existence of
whichwas previously established by Coombes andOwen [23,25]. A
closer look at the corresponding snapshots in Fig. 11 shows that the
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Fig. 10. Snapshots of a bump destabilizing to a traveling pulse at successive times t = 5, 5.5, 6, 10 (top to bottom) for α = 1.0, and κ = 0.16. Both u(x, t) (solid black
curves) and h(x, t) (black squares) are shown in full view (center column), at the trailing edge (left column), and at the leading edge (right column). Also shown are the initial
conditions of the bump for U(x) (solid grey curve) and H(x) (dashed grey curve). Eventually, the threshold crossings u(a+∆a

+
, t) = h0 + κ and u(−c +∆c−, t) = h0 . Other

parameters are h0 = 0.04, θ = 0.1.

breather begins contracting once the threshold h becomes higher
in amplitude than u at the pulse edge. The oscillation amplitude of
the breathing solution decreases as α decreases. Finally, in Fig. 12
we showan example of a shift perturbation destabilizing a bump in
the case of stronger adaptation (larger κ). In this case the traveling
pulse crosses threshold at five locations, rather than four points as
in Fig. 10.

4. Discussion

In this paper we analyzed the linear stability of stationary
bumps in a piecewise smooth neural field model with either
synaptic depression or spike frequency adaptation. In both
cases, stability analysis based on the construction of an Evans
function breaks down in the high-gain limit. In the case of
synaptic depression, we found that sufficiently strong synaptic
depression can destabilize a bump that would be stable in the

absence of synaptic depression; instabilities are dominated by
shift perturbations that evolve into traveling pulses. The stability
analysis assumed that the dominant instabilities were associated
with non-oscillatory, separable solutions of the pseudo-linear Eqs.
(2.23) and (2.24). However, there are well known scenarios in
neural field models where Hopf bifurcations can occur leading
to spatially structured oscillations such as breathers and target
patterns [19,14,15,24]. In future work it would be interesting to
analyze generalized Hopf bifurcations in neural field models with
nonlinear forms of adaptation such as synaptic depression, along
the lines of recent studies of nonsmooth dynamical systems [28,
39]. In the case of spike frequency adaptation, we found that
bumps are always unstable, and that destabilization of a bump
can result in either a traveling pulse or a spatially localized
breather. In future work it would be interesting to develop
tools to analyze the nonlinear (order one) instabilities of the
adaptive network (3.1). This would allow us to analytically find
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Fig. 11. Snapshots of a bump destabilizing to a breather at successive times t = 5, 6, 10, 20 (top to bottom) for α = 1.2 and κ = 0.16. Both u(x, t) (black curves) and
h(x, t) (solid black squares) are shown in full view (left column), and for the right-hand side of the bump (right column). Also shown are the initial conditions of the bump
for U(x) (solid grey curve) and H(x) (dashed grey curve). The threshold crossings u(±a+ ∆a

±
, t) = h0 + κ and u(±c + ∆c±, t) = h0 periodically vanish. Other parameters

are h0 = 0.04, θ = 0.1.

the period of oscillation in the breathing solutions identified using
numerics.
Finally, it could be argued that analyzing the dynamics of

networks with Heaviside nonlinearities is not very realistic
from a neurobiological perspective, and introduces unnecessary
mathematical complications compared to smooth firing rate
functions. However, following the original analysis of Amari [6],
there have been many studies of neural field models where taking
the high-gain limit of a sigmoid function has provided a useful
framework for constructing explicit stationary and traveling wave
solutions (as reviewed in [9]). This constructive approach has
been particularly useful in providing qualitative insights into how
spatiotemporal network dynamics depends on the structure of the
synaptic weight kernel. Moreover, in certain cases it is possible
to use singular perturbation methods [22,19] or fixed point

theorems [18,40] to extend results for networks with Heaviside
nonlinearities to those with sigmoidal nonlinearities. The analysis
presented in this paper shows that the high-gain limit becomes
singular when nonlinear forms of adaptation are incorporated
into neural field models, and suggests that stable bump solutions
found in such networks with smooth nonlinearities either become
unstable or develop vanishingly small basins of attraction as the
gain of the sigmoid increases.
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curve) and H(x) (grey dashed curve). Eventually, the threshold crossing u(a+∆a

+
, t) = h0 + κ vanishes. Other parameters are h0 = 0.04, θ = 0.1.
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