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Directed intermittent search for a hidden target on a dendritic tree
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Motivated by experimental observations of active (motor-driven) intracellular transport in neuronal den-

drites, we analyze a stochastic model of directed intermittent search on a tree network. A particle injected from
the cell body or soma into the primary branch of the dendritic tree randomly switches between a stationary
search phase and a mobile nonsearch phase that is biased in the forward direction. A (synaptic) target is
presented somewhere within the tree, which the particle can locate if it is within a certain range and in the
searching phase. We approximate the moment generating function using Green’s function methods. The mo-
ment generating function is then used to compute the hitting probability and conditional mean first passage

time to the target. We show that in contrast to a previously explored finite interval case, there is a range of
parameters for which a bidirectional search strategy is more efficient than a unidirectional one in finding the

target.
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I. INTRODUCTION

Recently, a stochastic model of intermittent random
search has been developed [1-3] where a Markov process
governs the internal state of a particle moving on a one-
dimensional track (or its higher—dimensional generalization).
The internal states consist of a forward moving state, a back-
ward moving state, and a stationary (or diffusing) searching
state. There is a target of unknown location somewhere along
the track, which absorbs the particle at a certain rate if the
particle is within a certain range of the target and is in the
searching state. The random motion is taken to be unbiased
with periodic or reflecting boundary conditions, which en-
sures that the particle will eventually find the target. The
efficiency of the random search is characterized by minimiz-
ing the mean first passage time to the target with respect to
the state transition rates. Models of intermittent random
search have been applied to a wide range of biological prob-
lems including animal foraging [1,4,5] and DNA binding ki-
netics [6,7].

Intermittent random search can also be used to model ac-
tive (motor-driven) cargo transport along microtubules and
subsequent delivery to subcellular synaptic compartments
within neurons [8,9]. Recently, there has much interest in
microtubule transport in both axons and dendrites as this
process plays an important role in synaptic plasticity and
many neurological disorders [10-12]. However, in contrast
to previous applications of random intermittent search, active
transport tends to be biased in a certain direction. Addition-
ally, when considering cargo delivery to synaptic sites within
an axon or dendrite, many possible outcomes exist. For ex-
ample, the cargo could be localized to one of many different
possible sites, or it could be degraded. Thus, to model active
cargo transport and delivery in the neuron as an intermittent
random search, we must consider biased motion and a non-
zero probability of failure to find a particular target.

Biased motion implies two different types of search strat-
egy: a unidirectional strategy with only one forward moving
state, and a bidirectional strategy with two moving states.
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Experiments have shown both unidirectional and bidirec-
tional cargo transports within neuronal axons and dendrites
[13—16]. In our previous paper [8], we considered both strat-
egies on a finite interval with a reflecting boundary at the
starting location and an absorbing boundary at the other end
of the interval. Since a unidirectional strategy only has one
shot at finding the target it must spend as much time as
possible in the searching state at the expense of taking longer
to reach the target. The goal was to find out if bidirectional
motion could improve upon the unidirectional strategy by
allowing the particle to back up after missing the target. To
explore this possibility we calculated both the hitting prob-
ability and the conditional mean first passage time (MFPT)
to the target. We compared the two strategies by fixing the
hitting probability and comparing their MFPT to see which
could find the target faster. Our analysis showed that under
these constraints, the unidirectional search strategy will al-
ways find the target faster than the bidirectional search strat-
egy.

In this paper we extend our previous work on directed
intermittent search in order to take into account the extensive
branching structure of a neuron’s dendrites [17]. We use this
to show that, in contrast to a finite interval, partially biased
bidirectional transport can be more efficient than unidirec-
tional transport on a tree network. This is consistent with the
intuitive idea that if a transported cargo goes down an incor-
rect branch, a bidirectionally moving cargo can back up and
go down the correct branch, whereas a unidirectionally mov-
ing cargo must keep moving forward along the incorrect
branch; the cost of such overshooting is amplified in the
presence of branching. Our analytical results offer a possible
explanation for the different dynamical behaviors observed
in neuronal microtubular cargo transport [13-16]. We also
establish that branching leads to an exponential reduction in
the probability of finding a distant target, suggesting that
more local search strategies are necessary. This is consistent
with the finding that clusters of immobile transport vesicles
are found at branch nodes along the dendritic tree.

In order to handle the additional complexity arising from
branching, we first carry out a quasi-steady-state reduction in
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FIG. 1. Schematic diagram of the stochastic directed intermit-
tent search model.

the master equation of the full three-state Markov model,
which leads to a scalar Fokker-Planck equation (Sec. II). We
previously applied such a reduction to a general class of
molecular motor-based models of cargo transport, and
showed that it approximates the hitting probability and
MFPT on a finite interval to a high degree of accuracy [9].
We then construct the Laplace transformed Green’s function
of the Fokker-Plank (FP) equation on a tree network by
adapting a method previously used to calculate the Green’s
function of the advection-diffusion equation [18-20] (Sec.
III). Having obtained the Green’s function on a tree, the
problem of computing the hitting probability and MFPT re-
duces to solving a single integral equation, which can be
approximated numerically and analytically. We illustrate our
Green’s function construction using two simple examples: a
single branch node and a semi-infinite Cayley tree (Sec. IV).
Finally, we calculate the hitting probability and MFPT to find
a hidden target on a tree, and use this to determine the effects
of branching on the efficiency of the directed intermittent
search strategy (Sec. V).

II. STOCHASTIC MODEL OF DIRECTED INTERMITTENT
SEARCH

In our previous work [8], we introduced a three-state di-
rected intermittent random search model in which a particle
moving along a one-dimensional track of length L can be in
one of three internal states: Forward moving with velocity
v,, backward moving with velocity v_, and searching with
zero velocity. The target located at X can be detected if the
particle is within a distance / of the target and in the search-
ing state (see Fig. 1).

The transitions between the three internal states are gov-
erned by a Markov process. Let Z(¢) and N(z) denote the
random position and state of the particle at time ¢ and define
P(x,t,n|y,0,m)dx as the joint probability that x=Z(z)<x
+dx and N(r)=n given that initially the particle was at posi-
tion Z(0)=y and was in state N(0)=m. Setting

pa(x,t) = P(x,1,n|0,0,+) (2.1)

with initial condition p,(x,0)=8(x)4, ,, we have the follow-
ing master equation describing the evolution of the probabil-
ity densities for > 0:

P+ =—0,0pr— Bips + apy, (2.2a)

dp-=v_d,p_— B_p_+ apy, (2.2b)

Ipo= BiP++ B_p-—2apy— kx([x — XJ)py, (2.2¢)

where the indicator function y is defined by
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1, k<1
X(X)={

) (2.3)
0, otherwise.

Here a, B+ are the transition rates between the stationary and
mobile states as indicated in Fig. 1. Master Eq. (2.1) is
supplemented by a reflecting boundary condition at x=0 and
an absorbing boundary condition at x=L. That is,

p-(0,1) =p,(0.1),

The absorbing boundary takes into account the fact that
transported cargo can be degraded or absorbed by other tar-
gets downstream to the given target. Finally, we assume that
the bidirectional transport is partially biased in the forward
moving (anterograde) direction by taking v_/B_<v,/B,,
which implies that when v,=v_ the particle spends more
time in the anterograde state than the backward moving (ret-
rograde) state. Unidirectional transport is obtained in the
limit 3_— %, whereas unbiased bidirectional transport oc-
curs when v_/B_=v./f,.

Suppose that we nondimensionalize master Eq. (2.1) by
rescaling space and time according to

p_(L,1)=0. (2.4)

X v_
X— -, t—1t—,

l
where [ is the typical size of the target. Assuming that the
transition rates «, B+ are large compared to v,/[/, we intro-
duce the dimensionless parameters k=«l/v, v=v_/v,, a
=eal/v,, and b.=€B-l/v,, where e<1. Master Eq. (2.1)
then becomes

1
opy = ;_(_ b+p++ap0)—&xp+, (2.52)

1
dp_=—(=b_p_+apy) +vd,p_, (2.5b)
€

1
aipo= ;(b+p+ +b_p_—2apg) —kx(x - X)po. (2.5¢)

We previously presented a method for reducing this set of
master equations to a single second-order scalar equation for
u defined as the total probability of being at position x at
time 7 in any of the three states [9]. This reduction is moti-
vated by the small parameter e<<1 causing the underlying
Markov process to evolve quickly toward its stable steady-
state distribution. The probabilities p, will be constantly per-
turbed off this stable manifold as information propagates for-
ward and backward at the characteristic speeds 1, —v. Using
perturbation methods along the lines of those presented in
[21] we can reduce the system of three scalar master equa-
tions to a single second-order scalar equation for u. Note that
a number of authors have previously carried out a quasi-
steady-state reduction in linear reaction-hyperbolic equations
such as Eq. (2.4), but have focused on the wavelike proper-
ties of the transport process in the absence of a hidden target
[22-24].
We first rewrite the master equation in the matrix form
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1
Ip=—Ap+L(p), (2.6)
where p=(p,.p_.py)7, A is the matrix
-b, O a
A=| 0 —-b_ a |, (2.7)
b, b_. -2a
and £ is the linear operator
—aufy
L(f) = vo.f> (2.8)
—kx(x = X)f3

The left null space of the matrix A is spanned by the vector

1
=11, (2.9)
1
and the right null space is spanned by
i
b,
11 1
F==l — 2.10
L s (2.10)
1
a

The normalization factor 1y is chosen so that ¢/ p**=1, that is,

1 1 1
y=—+—+-.

2.11
b, b_ a ( )

Let u=4"p and w=p—up* such that ¢/w=0. We can inter-
pret u as the component of p in the left null space of A,
whereas w is in the orthogonal complement.
Multiplying both sides of Eq. (2.6) by ¢! we obtain
Fu =y L(up* +w). (2.12)

Substituting p=w+up** into Eq. (2.6) yields
1
AW + dup® = —A(w + up®) + L(w + up®). (2.13)
€

Using the fact that p* is in the right null space of A and
using Eq. (2.12) in the above equation we obtain

1
aw=—Aw + (I3 — p*") L(W + up®), (2.14)
€

where 5 is the 3 X3 identity matrix. Now introduce the
asymptotic expansion for w

W~ Wo+ €W, + EWat o+ . (2.15)

After substituting this expansion into Eq. (2.14) and collect-
ing O(€!) terms we obtain the equation for w,
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Aw,=0. (2.16)

By construction w is in the orthogonal complement to the
left null space of A, it follows that wy=0. Now collecting
terms of O(1) yields the equation

Aw, =~ (I3 = p”¢") L(up®).

Although the matrix A is singular the orthogonal projection
operator (I;—p*¢") ensures that the right-hand side of the
above equation is in the range of A. By the Fredholm alter-
native theorem a solution w; exists. This rank 2 system can
be solved up to the arbitrary element w,; using Gaussian
elimination. We have the following asymptotic expansion to
first order in e:

(2.17)

kx(x-X) 1-V, N al)
_ i+ —
ably’ by b,
w~e|l kxx-X) v+V, avQ) |, (2.18)
5 5 U+
ab’y? by b_
Q

where we have set )=w,; and

1 ( | ) )
Vo=—|—-—1.
y\b, b_
We can determine () by imposing the condition ’w=0. This
yields

aQ) =

kx(x=X) (1 1 1({1-V,
- |zt 3 |ut+t—
ay

+ U+V0>a
- u.
b2 b Y 8

z b? b2

(2.19)
Substituting this into Eq. (2.14) yields the FP equation

du du Fu
—=-Au-V—+D—, (2.20)
ot ax ox
where A=Ay(x—X) and
A k+ k2(1+1) (2.21)
=—+e55| 5+, .
ay azf bi b’
kX()C —X) 1 1 1- 2V0 1+ 2V0
V=V, P T R S
ay \b: b b b”
(2.22)
1-V,)? +V)?
D= e(( 2") R 2") ) (2.23)
Ybi 2

The leading-order behavior is obtained by taking A=A\,
=k/ay and V=V, The probability density function u is the
total probability of being in any motor state at position x and
time ¢, given that the particle was initially injected onto the
track at x=0. We use equilibrium initial conditions, so that
the process always starts on the slow manifold. The reflect-
ing boundary at x=0 yields the boundary condition

021913-3



JAY M. NEWBY AND PAUL C. BRESSLOFF

Jdu
(D— - Vu)
ox

In the following section we use Laplace transform and
Green’s function methods to solve the Fokker-Planck Eq.
(2.20) on both a finite interval and a tree network, in order to
compute observable quantities that will allow us to charac-
terize how the efficiency of the random search depends on
network topology.

= 0. (2.24)
x=0

III. CALCULATION OF HITTING PROBABILITY AND
MFPT USING GREEN’S FUNCTIONS

The efficiency of the random search can be characterized
in terms of the probability of finding the target which we will
refer to as the hitting probability I, and the conditional mean
first passage time to the target 7. An optimal search strategy
(if it exists) is given by the set of transition rates «, B+ which
maximize Il and minimize T. Let P(f)=/[ éu(x,t)dx be the
total probability that the particle is still located in the domain
0<x<L at time ¢. Integrating Eq. (2.20) with respect to x
and using boundary conditions (2.24), we have

ap Xl du
— ==\ u(x,t)dx+ (D— —Vu (3.1)
ot X-1 dx x=L
It follows that the total flux into the target is
X+1
J(t) = )\f u(x,t)dx. (3.2)
X-1

The hitting probability, having started at x=0 at time =0, is
then

I1 =J J(t)dt, (3.3)
0
and the corresponding conditional MFPT is
f tJ(t)dt
T=" (3.4)

f ’ J(t)dt
0

Consider the Laplace transform of the probability flux J,

Y(s) = J(s) = Jw e J(r)dt. (3.5)
0

Taylor expanding the integral with respect to the Laplace
variable s shows that

Y(S)=f J@O[1 = st+ s2%2—-+-]
0
s2
:H[l—sT+ 570)—---], (3.6)

assuming that the moments
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f " J(r)dt
7 — 0

f ’ J(t)drt
0

are finite. Thus, Y(s) can be viewed as a generating function
for the moments of the conditional first passage time distri-
bution [25]. Equations (3.2) and (3.5) imply that

(3.7)

1
Y(s):)\f U(x + X, s)dx, (3.8)
-1

where U(x,s) is the Laplace transform of u(x,). Hence, we
can proceed by solving the Laplace transformed Fokker-

Planck equation to determine U(x,s). Substituting the result
into Eq. (3.8) and Taylor expanding with respect to s then
allows us to extract I and T using Eq. (3.6).

Laplace transforming Eq. (2.20) under the initial condi-
tion u(x,0)=45(x) gives

D& U(x,s) = Vo, U(x,s) — sU(x,s) = \y(x = X)U(x,s) — 8(x).

(3.9)

The associated Green’s function G(x,y;s) satisfies
[DF, - Va, - 5]G(x,y:s) = x - y)

with homogeneous boundary conditions. The Green’s func-
tion can be used to convert Eq. (3.9) into the integral equa-
tion

(3.10)

1
ﬁ(x,s)—)\ g(x,y+X;s)l7(y+X,s)dy=—g(x,0;s).
-

(3.11)

A particularly useful aspect of the integral equation represen-
tation is that it can be extended to a general tree network by
constructing the corresponding network Green’s function.
We will calculate the latter by introducing inhomogeneous
boundary conditions at the branch nodes of the tree and solv-
ing the Green’s function on each branch separately. The so-
lutions are then matched by imposing current conservation at
each branch node and using an iterative procedure to express
the Green’s function as a continued fraction, following along
similar line to a previous analysis of the drift-diffusion equa-
tion on a tree [18-20]. This method of calculating the
Green’s function is related to the graphical calculus devel-
oped by several authors within the context of linear cable
theory [26-29]. An alternative approach to calculating the
Green’s function is based on the so-called “sum-over-trips”
formalism [30-34], which generates an infinite series expan-
sion of the Green’s function on a tree using the method of
images. Truncating this series expansion for sufficiently large
s and carrying out a numerical inversion of the Laplace
transform generates an approximate solution for the corre-
sponding real-time Green’s function, which is valid up to
some finite time z. In this paper, however, we are interested
in the small-s behavior of the Green’s function and the asso-
ciated generating function, see Eq. (3.6), and so we will fol-

021913-4



DIRECTED INTERMITTENT SEARCH FOR A HIDDEN...

low the continued fraction method here. Since our calcula-
tions of the Green’s function will be for fixed s and y, we
will tend to suppress the explicit dependence on these vari-
ables for ease of notation.

A. Finite interval Green’s function

We first determine the Green’s function on a finite interval
satisfying Eq. (3.10) subject to the homogeneous boundary
conditions (suppressing the s dependence)

J
AOEQ(OJ’) - BG(0,y) =0, (3.12)

d
ALEQ(L,y) - B,G(L,y) =0. (3.13)

These reduce to Dirichlet or closed boundary conditions
when A ;=0 and Neumann or closed boundary conditions
when B, ; =0. Using standard methods, the Green’s function
is given by

0(p) L) - =
Gy {¢< W), 0=x=)

DW(y) | Y ¢y), y=x=L,
(3.14)

where

#Ox) = (rAg — Bo)e™ — (Ao — Bple'?,  (3.15)

PP () = (A, - Bpe! ™D — (A — Bp)e2 D),
(3.16)

W) = O P (v) = PO ()P (y).

The implicit s dependence of the Green’s function arises
from the eigenvalues

(3.17)

V = V2 +4Ds

D (3.18)

Mi2=

To obtain the Green’s function for two open boundaries we
set Ap,=0 and B, ;=-1 to get

Yx) Yy — L) =y
. ] pwy)
R Y R
DW'(y)y 7
where
Px) = eH1* — ek2* (3.20)
W) =gy (y-L)-¢'(y)ly-L). (3.21)

For a left closed boundary and a right open boundary the
Green’s function can be obtained by setting Ao=D, By=V,
A;=0, and B;=-1 to get
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FIG. 2. (Color online) Labeling scheme for a general dendritic
tree. (a) An example of a tree I' with three generations (Gen) of
branch nodes, a primary closed terminal node (corresponding to the
soma), and a set of open terminal nodes. (b) The branch node a(k)
is shown in relation to the neighboring branch node a’(k) closest to
the primary node. The branch segments extending out from «(k) in
the positive direction together comprise the set Z,).

PPy -L)
Gy PO B (3.22)
T we-nety) '
pw(y) T
where
d(x) = (D = V)™ = (uD = V)er?*,  (3.23)
W () =o' (y-L) - ' ()y-L). (3.24)

B. Green’s function for a general tree

Let us now consider an arbitrary tree I', which is assumed
to be finite (we consider an infinite tree in Sec IV B), con-
sisting of N, nodes or vertices and N, line segments or edges
[see Fig. 2(a)]. External line segments are assumed to be
finite in length, although generalizing this procedure to ac-
count for infinite external line segments is straightforward.
The nodes a e I' of the network may be classified as either
branching or terminal. Let 55 denote the set of branching
nodes, and let O and C denote the set of terminal nodes (on
external line segments) with open and closed boundary con-
ditions, respectively. We will take the primary terminal node
(corresponding to the soma of a neuron) to be closed and all
other terminal nodes to be open. The first branch node oppo-
site the closed terminal node is denoted by «. For every
other branching node « € B and open terminal node « € O,
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there exists a unique direct path from a; to a (one that does
not traverse any line segment more than once). We can label
each node a# ¢ uniquely by the index k of the final seg-
ment of the direct path from « to « so that the branch node
corresponding to a given segment label & can be written
a(k). We denote the other node of segment k by «'(k). For
example, ay is the single closed terminal node. We can also
introduce a direction on each segment of the tree such that
every direct path from «) always moves in the positive di-
rection. Consider a single branching node « € B and label
the set of segments radiating from it by Z,,. Let Z, denote the
set of line segments k € 7, that radiate from a € B in a posi-
tive direction [see Fig. 2(b)]. If we denote the total number
of segments radiating from any branch node « by the coor-
dination number z, then the number of elements of B, is z
—1. (Motivated by the example of branching axons and den-
drites, we take the coordination number of the tree to be z
=3). Using these various definitions we can introduce the
idea of a generation. Take « to be the zeroth generation. The
first generation then consists of the set of nodes 3,
={a(k).k e Iao}, the second generation is X,={a(l),!
eZ,,ae,}, etc. Let N denote the maximum number of
generations, that is, N is the smallest integer for which 2,
only includes terminal nodes.

Denote the position coordinate along the ith line segment
by x, 0=x=L,, where L; is the length of the segment and
1=i=N,. Given the above labeling scheme for nodes, we
take x(a’(i))=0 and x(a(i))=L. Let u; denote the probability
density on the ith segment, which evolves according to the
FP equation

al/li (?21/[[ ou;
=D ——— Vi_’

u
ar ' ox? al O<r<Ls
X X

(3.25)

where D, is the diffusion constant and V; is the drift velocity
on the ith segment. For the moment, we are ignoring the
effects of absorption by a hidden target on one of the
branches. Equation (3.25) is supplemented by the initial con-
dition

i(2,0) = 6,0(x). (3.26)
assuming that the particle starts at the closed terminal node
(labeled i=0), together with a set of boundary conditions at
terminal and branch nodes. Let 7 u;] denote the correspond-
ing probability current or flux, which is taken to be positive
in the direction flowing away from the primary node at the
soma,

u:
\Z[M] = - l)li + Viui. (327)
ox

The closed boundary condition on the primary terminal
branch is

Jolu](0,1)=0, (3.28)

whereas the open boundary condition at all other terminal
segments is
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u(Lo) =0 for ali) € Oal}. (3.29)

At all branch nodes a € B we impose the continuity condi-
tions

u(x(a),t) =®(r), for all

where the ®,(r) are unknown functions, which will ulti-
mately be determined by imposing current conservation at
each branch node,

> Jlul(x(a),r)=0.

ieZ,

ieZ,  (3.30)

(3.31)

Note that for the upstream segment j ¢ Z,, x(a)=L; and the
corresponding flux Jj[u](L;,t) flows into the branch node,
whereas for the remaining z—1 downstream segments k
€ Z,, we have x(a)=0 and the flux J,[u](0,7) flows out of
the branch node.

Suppose that we now have a hidden target of half-width
[=1 and position X on the jth branch such that 1 <X<L;
—1. (The lower and upper bounds are chosen so that all of
the target is contained within the segment). After Laplace
transforming the above system of equations on a tree, we
obtain the integral equation

1
Ui(x,s) - )\f G, (x.y+X:s) ljj(y,s)dy =-G,o(x,055),
-1

(3.32)

where G, ; is the corresponding Green’s function on the tree

s d
Di— - Vi——s|G, (x,y;s) =96 ;0lx—y). (3.33

|: 1(9)62 lt?x 1,]( y ) W ( )’) ( )
Given a target on the jth branch, the generating function for
the hitting probability and MFPT is

1
Y(s) = )\f l~/j(x +X,s)dx. (3.34)
-1

The fundamental solution in each branch is given by the
corresponding finite interval Green’s function supplemented
by terms satisfying inhomogeneous boundary conditions of
form (3.30). For internal branches i (suppressing the s vari-
able),

Gi,j(%)’) = @,jg;(x’)’) + (Da’(i)(y)ﬁi(x) + (Da(i)(y)Fi(x)’

(3.35)
for all open terminal branches (i # 0)
Gij(x,) = 8,67 (6,) + PoryE(x),  (3.36)
and for i=0
Go j(x,) = 60,jGo(x,) + P o (¥) Fo(x). (3.37)

Here G and G; are Green’s functions (3.19) and (3.22) on

the ith branch. The functions Fj(x), F (%), k# 0 satisfy the
Laplace transformed FP equation with boundary conditions

F(0)=0, F(L)=1 and F(0)=1, F(L)=0,
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Pi(x) A dlx = Ly)
= , =0 3.38
A=y M=y O
with ¢(x) the k-dependent form of ¢(x), Eq. (3.20),
i (x) = 2¢"¥"?Pk sinh(77,x) (3.39)
(XYL s
= <2Dk> +Dk. (3.40)
For k=0 we have
$o(x)
= ; 3.41
Fo(x) o(Lo) (3.41)

with ¢y(x) given by Eq. (3.23) for D=D,, V=V,, and L
=L,. The unknown functions ®,, are determined by imposing
current conservation condition (3.31) at each branch node
and using the identity J[®,F]=®,J[F], which follows
from the observation that @, is x independent. At the zeroth
generation node «,, the current conservation equation is
given by (suppressing the s and y variables)

D, Tl F1(Lo) = > D, T F1(0)

keiao

+ 0, 2 JLFI0)+X,, (342)

keIaU

and at all other branching nodes a(p) eX,, 1=n<N we
have

q)a’(p)jp[ﬁ](l‘p) + (Da(p)jp[F](Lp)

= X D,y T F1(0) + D ) 2 jk[ﬁ](o)"")(a(p)’

kEIa(p) kEIa(p)

(3.43)

where the target location dependent terms are defined ac-
cording to

KXoy = E_ TLGT10)6 ;= TG 1(Lo)&y;  (3.44)

keI%
and
o= 2 TGOS~ TIGL,)S, ;. (3.45)
ke,

a(p)

Note that X, depends on the source location y through its
dependence on the finite interval Green’s functions G=; this
then generates the y dependence of the functions @,

The four possible contributions to the probability flux at
any branch k# 0 are
D eV

g = JIFIL) = nh(rD)

, (3.406)

\%
h = T FI(Ly) = = Dy coth(pLy) + Ek, (3.47)
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Dy eV

8= J[F10) =~ T einh(pL)

, (3.48)

_ n \%
Iy = JLF1(0) = Dy coth(mLy) + ;" (3.49)

and at the primary branch

bo(Lo)
+

$o(Lo)

Using these definitions the current conservation equations
simplify to

hg = Jo[FI(Lo) = - Vo- (3.50)

Hao(bao - 2_ g_kq)a(k) = Xao (351)
keZ,
0
for the first branch with
Ho =hy— > k. (3.52)

Then, for p e 3,, 1=n<N we have

8P ()t HaPap) = 2 BiPat = X (3.53)
kEIa(p)

where

Huypy=h,— > Iy, (3.54)

kei’a(,,)
and for p € 3 we neglect the open terminal nodes so that

X

wlp)- (3.55)

gp(ba’(p) + Ha(p)q)a(p) =

Our strategy for solving this set of iterative equations will
be to start at the final generation 2y and work inward solving
recursively to branch segment j. Then we must account for
terms involving G* as we continue solving inward toward
branch node «a;. Once @ is known we can use back substi-
tution to obtain the remaining unknown functions. Let
{k,,,m=1,2,--- ,N+1} be a sequence of segments starting at
anode a(k;) € 2y and proceeding along a direct path toward
the terminal node with a(ky,,)=ay. Suppose further that the
branch nodes 8= «(j) and B'=a’(j) of the segment con-
taining the target are contained in the set of nodes given by
A={a(k,),k=1,...N+1}. For the moment we will assume
that j # 0. Let a(k,) and the nodes between a(k,) and B be
denoted by the set A,,C.A. Similarly, let o and the nodes
between B’ and «, be denoted by the set A;, C A. Hence, we
have the decomposition A=A4,+{8, B }+A;,. Finally, let m
be the number of nodes contained in A, and 7 be the num-
ber of nodes contained in the set A;, with i=N-m—1. It
follows that the segment containing the target is j=k,,,; with
ﬂ=0£(k,,“1+1) and :8,=a(krh+2)' MOI'COVCT, Aout={a(km)am
=1,...,m} and A,,={alk,,),m=m+3,... ,N+1}.

Starting at the outer branch node a(k;) we have
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8k,
Ha))

atky

(I)a(kl):_ q)a’(kl)' (356)

Then, as we continue toward [ solving recursively at branch
nodes a(k,,) € A,y we have

8k

—_ m
alk,) ="

q)a"(km)’ 1<m= I’I\’/l, (357)

ak,)

A

where a’'(k,,)=a(k,,,) and the functions H,, ) are defined
recursively: for a(k,) we have

. 8k 8k
Ha(kz) =Ha(k2) + 2 N B (358)
K €Ty, Hatkr)
and subsequently
. 8k’ 8k’
Hopy=Happt 2~ (3.59)

K eToq,) Hat)

Iterating Eq. (3.59) leads to a finite continued fraction. For
example, in the case of three generations (N=3), we have

8k8k

ﬁaozHaO+ 2_
kEZaO Ha(k)+ Z
lEIa(k) Ha(1)+ E

me Za(]) a(m)

(3.60)

818

gmgm

When we reach the node 8 we must account for the contri-
butions to the current from G*. In particular, we now have
the following inhomogeneous terms appearing in Eq. (3.53)

when a(p)=p8,8'":

P (0)¢(y)
Xg(y)=-TIGL) = ", 3.61
5(y) == TG (L)) W) (3.61)
XB,(y)=jj[g+](O)=_£w_ (3.62)

Wi (y)

We have evaluated the right-hand sides using Eq. (3.19). Tt
follows that
_ XB—gJ(I)Br _ XB’_gj’q)a’(j’) (3 63)

q)ﬁ Br

Ay Ay
where ;' is the segment for which «a(;j')=p4', that is, ;'
=k,;.0, and

Voo &

Xgr=Xg — X (3.64)
Hp

Continuing to iterate from B’ toward « the functions j(a(km)

pick up factors of g / I:Ia(km) so that for a(k,,) € A;,
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m—1 =

~ 8k ~

X =| TI —= Xs, m>m+2. (3.65)
" i=m+2 Ha(kl-)

Solving recursively along these branch nodes then yields

jfa(k )~ 8atk, )Pk )
@a(kl”) — m = m m . (3.66)
Ho,)
When ¢ is reached we have
X,
dbao =—, (3.67)
H,
0
where
N _
A 8k |\ »
Xo=| I — |y (3.68)
i=m+2 Ha(kl-)

With CD% known we can use back substitution to solve Eq.
(3.66) along the sequence {ky,kn_i, ... k,.2} toward B’ to
get

| n-1 N-m -g
q)ﬁ' =5 Xﬁ’ + E ( H A l )Xa(kNH—m)

H,Br m=0 \ i=i+2 Ha(ki)
(3.69)
To account for the special case j=0 we define
_ P (0)p(y)
= Ly)=——7—"", 3.70
V() = JolGol(Ly) W0 (3.70)

where we have used Eq. (3.22). Since j=0 recurrence rela-
tion (3.57) is valid for all nodes a(k,,) e A except at ay,
where we have

(3.71)

@

Suppose that we wish to find the solution at the node
a(k,,) € A. Using back substitution to solve Eq. (3.57) along
the sequence {ky,kn_1, ...k}, m=1,---,N, yields

N — 8k,
q)a(km)z H (I)ao'

=n H alk)

(3.72)

The solution for @, at any branch node « € B is now clear.
Given the location of the target segment j, we have two
possibilities, either j>0 or j=0. If j >0 then @ao is given by
Eq. (3.67) and if j=0 then @, is given by Eq. (3.71). Once
we have (I)ao we can find <I>a(km) at any other branch node

a(k,,) € A by using the corresponding back substitution for-
mula (3.69) or (3.72).

C. Approximating the generating function

Given a target located on the jth branch, the calculation of
the hitting probability IT and MFPT T reduces to the follow-

021913-8



DIRECTED INTERMITTENT SEARCH FOR A HIDDEN...

ing steps: (i) Calculate the Green’s functions G;,, G;; and
substitute the results into the integral Eq. (3.32) for i=j; (ii)
Solve the integral equation for U ; and substitute into the
formula for the generating function Y(s), Eq. (3.34); (iii)
Taylor expand the generating function and extract IT,7 ac-
cording to Eq. (3.6). That is,

Y0
Y;(0)
We carry out step (ii) by numerically solving the integral

equation using a standard finite-element method. We note,
however, that an even simpler solution to Eq. (3.32) can be

obtained in parameter regimes where U;

; is approximately
constant within the target interval. Then

ﬁi(x,s) ~ ZAﬁj(X,s)G[,j(x,X;s) - Gio(x,055). (3.73)

The unknown value of U ; at the target can be found by

setting i=j and x=X in the above equation and solving for

ﬁj(x’s)7
~ -G o(X,0;s
Uj(X,S) ~ _.u

: 3.74
1-27G, (X, X;5) (3.74)

It follows that the generating function defined by Eq. (3.34)
can be approximated as
—20\G,((X,0;
Yj(s) ~ !,0( 5)

: 3.75
1 —2\G; (X, X;s) (3:73)

These approximations are used to interpolate between nu-
merical solutions of the integral equation in appropriate pa-
rameter regimes.

IV. EXAMPLES

A. Single branch

In order to illustrate the Green’s function construction of
Sec. III, we begin by considering a single branch node with
three identical branches of length L, diffusivity D, and drift
velocity V. The main branch segment (i=0) has a reflecting
boundary at x=0 and a branch node at x=L. The two daugh-
ter branches (i=1,2) extending out from the branch node
have open terminal nodes at x=L, which represent the effects
of degradation or uptake by another process. At the branch
node there is an unknown quantity ® which must be deter-
mined by imposing conservation of current. It follows from

Egs. (3.37), (3.70), and (3.71) that
Goo(x,y) =G (x,y) + D(y)F(x) (4.1)

and

Giolx,y) =®(MF&), j=1,2, (4.2)

with F(x), F(x) given by k-independent versions of Eq.
(3.38) and

Y040

0= W)

(4.3)

where [see Eq. (3.52)]

PHYSICAL REVIEW E 80, 021913 (2009)

1
0.9{ (b) —_
0.8 —_
0.7 —
06f  \ T
0.5
T4
0.3
0.2
0.1

SSKS<

200
180
160
140
120

7100

FIG. 3. The effect of a single branch on directed intermittent
search. [(a), (c)] The hitting probability IT and MFPT T for a finite
interval of length 2L (no branching) as a function of target location
X and for various values of the drift velocity V. [(b), (d)] The
corresponding hitting probability IT and MFPT T in the case of a
single branch point at X=L. Nondimensional parameter values used
are L=10, \=0.2, and D=0.1.

D),

= - 2h. 4.4
T e T (44

Similarly, Egs. (3.36) and (3.55) imply that
G j(ey) =G )+ PWF), j=1,2, (45

where now
P (0)yly-L)

Py)=———"""T"" 4.6
v HoW*(y) (4.6)

Having constructed the single-branch Green’s function, we
can substitute the results into Egs. (3.32) and (3.34), and use
Taylor expansion (3.6) to calculate the hitting probability I1
and conditional MFPT T. Plots of II and T for both the single
branch and a finite interval of length 2L are shown in Fig. 3.
It can be seen that the absorbing boundary and the branch
node affect the hitting probability by creating boundary lay-
ers. This reflects the fact that the diffusivity D is O(e). As
expected, the hitting probability approximately halves at the
branch node. [For a branch with coordination number z, I1
—I1/(z—1).] We also note that the basic qualitative behavior
of IT and T as we vary the drift velocity V is similar for both
the single branch [Figs. 3(b) and 3(d)] and the finite interval
[Figs. 3(a) and 3(c)]. That is, as the particle slows down it is
more likely to find the target, but does so at the cost of
increasing the MFPT.

B. Semi-infinite Cayley tree

A dendritic tree is a highly branched structure [17]. Given
the number of branches contained within a typical dendrite,
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we can approximate its structure by a semi—infinite Cayley
tree with coordination number z=3. (Extension of the analy-
sis to z# 3 is straightforward). This approximation will be
valid provided that the particle is sufficiently far from the
distal ends of the tree so that boundary effects can be ig-
nored, other than the reflecting boundary condition at the
primary terminal node «). We will assume for simplicity that
the drift velocity V, diffusivity D, and branch length L are
identical throughout the tree so that we can exploit the recur-
sive nature of the infinite tree. (A more realistic model of a
dendritic tree would need to take into account the fact that
branches tend to taper as one proceeds distally away from the
soma; such effects could be modeled using the general con-
struction presented in Sec. III. However, it is not crucial in
terms of the results presented in Sec. V.) Equations (3.35),
(3.37), (3.71), and (3.72) imply that

Goo(x,y) =G (x,y) + P, (V) F(x) (4.7)
and
Gio(x,y) = Pp(F(x) + PgO0)F(x), j#0, (4.8)
where
@, () = L0 (49)
HoW(y)
and

-2 -2 7+l
%(y)=(7)<bﬁr(y)=( " ) D, (y). (4.10)
H H

Note that the self similar structure of the tree implies that for
all branch nodes « # «a,, we have H,=H with [see Eq. (3.54)]

_ \%
H=h—2h=—3D7ycosh(77L)—E (4.11)
and H,=H with [see Eq. (3.59)]
~ 2090
A=H+58 (4.12)
H

It follows that H is the larger root of a quadratic so that

A~ 1 —_——
H=5(H+ VH? + 8g%). (4.13)
At the branch node «a [see Eq. (3.59)],
A 299
H0=H0+§ (4]4)
H

with H, given by Eq. (4.4).
Similarly, Egs. (3.35), (3.63)—(3.65), and (3.69) imply that

G (6.) = GH(x.y) + @ (0 F(x) + Pp(y)F(x) (4.15)

for j# 0, where
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FIG. 4. (Color online) Numerical results for the hitting probabil-
ity II and MFPT T on a semi-infinite Cayley tree with coordination
number z=3 and branch length L=10 um. Comparison of Monte
Carlo simulations of the full three-state Markov model with analyti-
cal results obtained for the reduced scalar FP equation. The solid
gray line represents the analytical approximation of the hitting
probability and MFPT obtained from the generating function (3.34).
The latter is calculated by solving the integral Eq. (3.32) using the
Green’s function for the Cayley tree. The corresponding results
from Monte Carlo simulations of the three-state model are denoted
by “x.” (a) The hitting probability IT as a function of the target
location X. (b) The mean first passage time 7T as a function of the
target location. (The gray bars represent the standard deviation of
the first passage time evaluated using Monte Carlo simulations.)
The diffusivity D, drift velocity V, and absorption rate N of the
scalar FP equation are calculated using the parameter values of the
three-state model: £=0.2 s7!, v.=02 um/s, [=0.5 um, «a
=1 57!, B,=1 s7!, and B_=2 s~!. These values are extracted from
experimental values of mRNA transport in dendrites [13-16].

1| (-eg\ H(-g8\""|:
D =—| 2| +— - X (y),

H| =0\ H? Hy\ H
(4.16)
(0
Dy(y) =~ g%f(y) + M (4.17)
H Wi (y)

and

' (0)
W)

We have used the fact that

Xg(y)=— (w@—L)—I%sb(y)). (4.18)

N-m
~ g A
KXo ) (V) = (;) Xp(y). (4.19)

V. OPTIMAL SEARCH STRATEGIES

In this section we use our analytical results for a semi-
infinite Cayley tree to explore the effects of branching on the
efficiency of directed intermittent search. However, it is first
useful to check the accuracy of our quasi-steady-state reduc-
tion by comparing our analytical results with direct Monte
Carlo simulations of the full three-state Markov model (2.1).
The excellent agreement between the reduced model and full
model is illustrated in Fig. 4, where we plot both the hitting
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FIG. 5. MFPT on a finite interval of length L=20 um with a
hidden target at X=10 um. (a) Plot of MFPT T as a function of a
for fixed I1=0.8 and various B_. Other parameters are v.
=0.1 um s~ and k=0.05 s~!'. Unidirectional case is shown as a
dotted curve. (b) Corresponding plot of minimum search time 7,
(with respect to variation in «) as a function of the hitting probabil-
ity II. Unidirectional case (dotted curve) is plotted for ayay
=0.5 s7l.

probability and MFPT as a function of the distance of the
target from the primary terminal node (soma). Given the ac-
curacy of our analytical approximations over physiologically
reasonable parameter ranges, we now use Egs. (3.32), (3.34),
(4.7), (4.8), and (4.15) to compare the efficiency of unidirec-
tional and bidirectional search strategies by fixing the hitting
probability IT and determining the corresponding MFPT T.
‘We will show that unlike a random search on a finite interval,
there are two different regimes where different search strat-
egies are more effective. Note that our Green’s function
analysis of the scalar FP Eq. (2.20) generates expressions for
IT and T that depend on the diffusivity D, drift velocity V,
and absorption rate A. In order to express our results in terms
of the transition rates «, 8+ of the original three-state Mar-
kov model described by Eq. (2.1), we substitute for D,V ,\
using Egs. (2.21)-(2.23).

In the case of a one-dimensional random search, a unidi-
rectional strategy will always find the target faster on aver-
age than a bidirectional search strategy [8]. In order to char-
acterize the efficiency of the random search, we fix the
hitting probability to some value I, and numerically solve
the equation I1(«, B,, B_) =11, for B,. We then determine the
MFPT T(a,B,(a,Ily,B.),B.) as a function of a,B_. The
efficiency of the random search is characterized by minimiz-
ing the resulting MFPT as a function of « for different values
of B_. As we increase B_ while keeping S, fixed the amount
of time spent in the backward moving state is decreased and
the bidirectional search becomes more unidirectional. As in
our previous work [8], we find that for B_<c the MFPT
exhibits a unique minimum value as a function of «, and this
minimum value decreases as B_ increases (see Fig. 5). Thus
a unidirectional search strategy outperforms a comparable
bidirectional search strategy in the one-dimensional case.

The unidirectional search strategy becomes less effective
on a tree structure (with coordination number) because each
time a searcher encounters a branch node, the maximum
probability of finding its target is reduced by a factor of p
=1/(z—1). If 7 is the number of branch nodes between the
starting position and the target, then the hitting probability

for a unidirectional searcher is H=1:[p’7, where IT is the hit-
ting probability for unidirectional search along a single line
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FIG. 6. (Color online) MFPT on a semi-infinite Cayley tree with
coordination number z=3 and branch length L=10 um. Target is
located at a distance X=5 um along a branch adjacent to the pri-
mary branch (ii=1). (a) Plot of MFPT T as a function of « for fixed
hitting probability [1=0.4 and various values of B_. Other param-
eter values are k=0.1 s™' and v.=0.1 um/s. (b) Corresponding
plots of 7 for [1=0.5. The minimum MFPT for each fixed value of
B_ is indicated by the black “o” mark, and the corresponding value
of the MFPT obtained from Monte Carlo simulations is shown by
the “x.”

of the same effective length. It follows that the unidirectional
hitting probability decays exponentially as a function of 7i. In
order to investigate whether or not bidirectional search miti-
gates the effects of branching, we determine the MFPT for
bidirectional search on a Cayley tree with a fixed hitting
probability II,. First, taking I1,<p", we find that as in the
one-dimensional case, the efficiency of the random search
increases as the parameter B_ is increased, see Fig. 6(a). This
reflects the fact that the hitting probability is within reach of
the unidirectional strategy. However, when the hitting prob-
ability crosses the critical value pﬁ, I1,> p’Y, so that a unidi-
rectional search is no longer possible, there is a dramatic
shift in the behavior of the random search, see Fig. 6(b).
Now the MFPT exhibits a minimum value as a function of «
and the minimum value increases rather than decreases with
B_. This observation is also confirmed by Monte Carlo simu-
lations of the full three-state system using the transition rates
corresponding to the minimum of each curve shown in Fig.
6(b). The switch between the two types of optimal behavior
is further illustrated in Fig. 7.

There is another important difference between the one-
dimensional case and the Cayley tree, namely, that an unbi-
ased random walk on the tree is nonrecurrent. That is, there
is a nonzero probability that even an unbiased random
walker will not return to its starting point. In terms of bidi-
rectional search biased in the forward or anterograde direc-
tion, this implies that on the Cayley tree there exists an upper
bound to the hitting probability, IT=II.<1, where II. is the
hitting probability for an unbiased bidirectional search. Tak-
ing the backward and forward velocities of the searcher in
the three-state model (2.1) to be the same, v.=v, an unbi-
ased search corresponds to the condition 8,=£_. In the re-
duced scalar model given by the FP Eq. (2.20), the unbiased
case corresponds to a zero drift velocity V=0. In order to
have II1>11, it would be necessary for the search to be bi-
ased in the backward or retrograde direction (V<<0), which
is not consistent with motor-driven cargo transport in den-
drites.
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FIG. 7. (Color online) Two phases of behavior for directed in-
termittent search on a semi- infinite Cayley tree with coordination
number z=3 and branch length L=10 um. Target is located at a
distance X=5 um along a branch that is one generation away from
the primary branch (7i=1). Each thin solid curve is a parameterized
plot of [T1(B,),T(B,)] for fixed B_ which terminates at the point
IT=TI, where the search is unbiased. [Since the accuracy of the
quasi-steady-state reduction breaks down in the unbiased limit, we
determine the termination points using Monte Carlo simulations
(closed circles). Other points obtained from simulations are indi-
cated by crosses.] The thick black curve represents the limiting
envelope of unidirectional search. Other parameter values are «
=2 sl k=1 s7!, and v+=0.1 um/s.

The above results may explain why both unidirectional
and bidirectional search strategies are observed in dendritic
transport [13—16]. If time to target is the foremost constraint
then the cell may overcome the decrease in hitting probabil-
ity by inserting more resources into the dendrite. On the
other hand, if production of those resources is too costly then
the cell may sacrifice delivery time for more efficient local-
ization. Thus, the two conflicting constraints are average de-
livery time and production cost. Even though a bidirectional
search strategy can raise the hitting probability, it is clear that
the hitting probability is still an exponentially decreasing
function of 7i. As many dendrites are highly branched it fol-
lows that distal synapses would be extremely difficult to tar-
get from the soma. This raises the issue of whether or not the
cell employs other methods to overcome this constraint. One
possibility is that there are local intracellular pools of pro-
teins and other products stored at various points along the
dendrite. Interestingly, clusters of immobile transport
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vesicles are found at branch nodes along the dendritic tree
[13-16], consistent with the notion that the dendritic tree is
partitioned into smaller sub trees within which a more effi-
cient local search strategy is performed.

VI. DISCUSSION

In this paper, we have extended our previous model of
directed intermittent search [8,9] to account for the effects of
branching. By using Green’s function methods to derive an
analytical approximation for the moment generating func-
tion, we showed that on a tree structure there are certain
regimes where a bidirectional search strategy is more effec-
tive than a unidirectional one. Our results thus offer a pos-
sible explanation for the different dynamical behaviors ob-
served in neuronal microtubular cargo transport [13-16]. We
also established that branching leads to an exponential reduc-
tion in the probability of finding a distant target, suggesting
that more local search strategies are necessary. This is con-
sistent with the finding that clusters of immobile transport
vesicles are found at branch nodes along the dendritic tree.

In future work we will investigate more detailed biophysi-
cal models of cargo transport, in order to take into account
possible local signaling mechanisms between the target and
molecular motor complex; some form of signaling could
mitigate the effects of branching. Elsewhere, we have ap-
plied the quasi-steady-state reduction to a multiple motor
model of bidirectional transport, in which opposing motors
compete in a “tug-of-war” [35], and showed how adenosine
triphosphate concentration might regulate the delivery of
cargo to synaptic targets [9]. Other possible signaling mol-
ecules include microtubule associated proteins and calcium
[36]. Finally, it would be interesting to develop a population-
level model of the transport and delivery of cargo to multiple
targets on a tree network, and the resulting competition for
resources. Incorporating both global and local signaling
mechanisms from synaptic targets would then allow us to
explore the role of motor transport in synaptic plasticity [37]
and synaptogenesis [38], for example.
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