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DIFFUSION OF PROTEIN RECEPTORS ON A CYLINDRICAL
DENDRITIC MEMBRANE WITH PARTIALLY ABSORBING TRAPS∗
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Abstract. We present a model of protein receptor trafficking within the membrane of a cylin-
drical dendrite containing small protrusions called spines. Spines are the locus of most excitatory
synapses in the central nervous system and act as localized traps for receptors diffusing within the
dendritic membrane. We treat the transverse intersection of a spine and dendrite as a spatially
extended, partially absorbing boundary and use singular perturbation theory to analyze the steady-
state distribution of receptors. We compare the singular perturbation solutions with numerical
solutions of the full model and with solutions of a reduced one-dimensional model and find good
agreement between them all. We also derive a system of Fokker–Planck equations from our model
and use it to exactly solve a mean first passage time (MFPT) problem for a single receptor traveling a
fixed axial distance along the dendrite. This is then used to calculate an effective diffusion coefficient
for receptors when spines are uniformly distributed along the length of the cable and to show how a
nonuniform distribution of spines gives rise to anomalous subdiffusion.
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1. Introduction. Neurons are amongst the largest and most complex cells in
biology. Their intricate geometry presents many challenges for cell function, in par-
ticular with regard to the efficient delivery of newly synthesized proteins from the
cell body or soma to distant locations on the axon or dendrites. The axon con-
tains ion channels for action potential propagation and presynaptic active zones for
neurotransmitter release, whereas each dendrite contains postsynaptic domains (or
densities) where receptors that bind neurotransmitter tend to cluster. At most exci-
tatory synapses in the brain, the postsynaptic density is located within a dendritic
spine, which is a small, submicrometer membranous extrusion that protrudes from
a dendrite. Typically spines have a bulbous head which is connected to the parent
dendrite through a thin spine neck. Given that hundreds or thousands of synapses
and their associated spines are distributed along the entire length of a dendrite, it
follows that neurons must traffic receptors and other postsynaptic proteins over long
distances (several 100μm) from the soma. This can occur by two distinct mechanisms:
either by lateral diffusion in the plasma membrane [8, 26, 1, 7] or by motor-driven
intracellular transport along microtubules followed by local insertion into the surface
membrane (exocytosis) [17, 20, 29]. It is likely that both forms of transport occur
in dendrites, depending on the type of receptor and the developmental stage of the
organism.
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Recently, we constructed a one-dimensional diffusion-trapping model for the sur-
face transport of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) re-
ceptors along a dendrite [6]. AMPA receptors respond to the neurotransmitter gluta-
mate and mediate the majority of fast excitatory synaptic transmission in the central
nervous system. Moreover, there is a large body of experimental evidence suggest-
ing that the fast trafficking of AMPA receptors into and out of spines contributes to
activity-dependent, long-lasting changes in synaptic strength [21, 22, 4, 8, 9, 16].
Single-particle tracking experiments suggest that surface AMPA receptors diffuse
freely within the dendritic membrane until they encounter a spine [13, 26]. If a
receptor flows into a spine, then it is temporarily confined by the geometry of the
spine and through interactions with scaffolding proteins and cytoskeletal elements
[4, 8]. A surface receptor may also be internalized via endocytosis and stored within
an intracellular pool, where it is either recycled to the surface via exocytosis or de-
graded [11]. Motivated by these experimental observations, we modeled the surface
transport of receptors along a dendrite as a process of diffusion in the presence of
spatially localized, partially absorbing traps [6]. One of the major simplifications of
our model was to reduce the cylindrical like surface of a dendrite to a one-dimensional
domain by neglecting variations in receptor concentration around the circumference
of the cable relative to those along the cable. We also neglected the spatial extent
of each spine by treating it as a homogeneous compartment that acts as a point-like
source/sink for receptors on the dendrite. This was motivated by the observation that
the spine neck, which forms the junction between a synapse and its parent dendrite,
varies in radius from 0.02–0.2μm [23]. This is typically an order of magnitude smaller
than the spacing between neighboring spines and the radius of the dendritic cable
(around 1μm). In the one-dimensional case, the introduction of point-like spines does
not lead to any singularities since the associated one-dimensional Green’s function for
diffusion is a pointwise bounded function. We were thus able to calculate explicitly
the steady-state distribution of receptors along the dendrite and spines, as well as
to determine the mean first passage time (MFPT) for a receptor to reach a certain
distance from the soma. This allowed us to investigate the efficacy of diffusive trans-
port as a function of various biophysical parameters such as surface diffusivity and
the rates of exo/endocytosis within each spine.

In this paper we extend our diffusion-trapping model to the more realistic case
of a two-dimensional cylindrical surface. However, since the two-dimensional Green’s
function has logarithmic singularities, we can no longer neglect the spatial extent of
a spine. Therefore, we proceed by solving the steady-state diffusion equation on a
finite cylindrical surface containing a set of small, partially absorbing holes, which
represent the transverse intersections of the spines with the dendrite. The solution
is constructed by matching appropriate “inner” and “outer” asymptotic expansions
[27, 25, 28, 24]. This leads to a system of linear equations that determines the den-
dritic receptor concentration on the boundary between the dendrite and each spine.
We numerically solve these equations and use this to construct the steady-state dis-
tribution of receptors along the dendrite. We compare our results with numerical
solutions of the full model and with a reduced one-dimensional model.

A brief outline of this paper is as follows: In section 2 we formulate our diffusion-
trapping model for receptor trafficking on the boundary of a cylindrical dendritic
cable. In section 3 we construct the steady-state solution to this model using singular
perturbation techniques in the limit of small spine radii. In section 4 we present
some numerical experiments for realistic physiological parameter values that compare
our asymptotic solution of section 3 with both full numerical solutions and with the
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solution of a one-dimensional approximation valid for a large aspect ratio dendritic
cable. Finally, in section 5 we asymptotically calculate the MFPT for the diffusion of
a single tagged receptor.

2. Diffusion-trapping model on a cylinder. Consider a population of N
dendritic spines distributed along a cylindrical dendritic cable of length L and radius
l as shown in Figure 2.1(A). Since protein receptors are much smaller than the length
and circumference of the cylinder, we can neglect the extrinsic curvature of the mem-
brane. Therefore, as shown in Figure 2.1(B), we represent the cylindrical surface of
the dendrite as a long rectangular domain Ω0 of width 2πl and length L so that

Ω0 ≡ {(x, y) : 0 < x < L , |y| < πl}.

The cylindrical topology is preserved by imposing periodic boundary conditions along
the circumference of the cylinder, that is, at y = ±πl. At one end of the cylinder
(x = 0) we impose a nonzero flux boundary condition, which represents a constant
source of newly synthesized receptors from the soma, and at the other end (x = L)
we impose a no-flux boundary condition. Each spine neck is assumed to intersect
the dendritic surface transversely such that the intersection is a circle of radius ερ
centered about the point rj = (xj , yj) ∈ Ω0, where j = 1, . . . , N labels the jth
spine. For simplicity, we take all spines to have the same radius. Since a dendrite is
usually several hundred μm in length, we will assume the separation of length scales
ερ � 2πl � L. We then fix the units of length by setting ρ = 1 such that 2πl = O(1)
and treat ε as a small dimensionless parameter. Finally, we denote the surface of the
cylinder excluding the small discs arising from the spines by Ωε so that

Ωε = Ω0 \
N⋃
j=1

Ωj , Ωj = {r : |r − rj | ≤ ε}.

Let U(r, t) denote the concentration of surface receptors within the dendritic
membrane at position r ∈ Ωε at time t ∈ R+. As a result of the small area of each
spine, we assume that the receptor concentrations within each spine are spatially
homogeneous. We let Rj(t) denote the concentration of surface receptors in the jth
spine. The dendritic surface receptor concentration evolves according to the diffusion
equation

(2.1)
∂U

∂t
= D∇2U, (r, t) ∈ Ωε × R+

for a homogeneous surface diffusivity D, with periodic boundary conditions at the
ends y = ±πl,

(2.2) U(x, πl, t) = U(x,−πl, t), ∂yU(x, πl, t) = ∂yU(x,−πl, t),

and nonzero or zero flux conditions at the ends x = 0, L,

(2.3) ∂xU(0, y, t) = −σ ≡ − σ0

2πlD
, ∂xU(L, y, t) = 0.

Here σ0 denotes the number of receptors per unit time entering the surface of the
cylinder from the soma. At each interior boundary ∂Ωj we impose the mixed boundary
condition

(2.4) ε∂nU(r, t) = − ωj

2πD
(U(r, t) −Rj), r ∈ ∂Ωj , j = 1, . . . , N,
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Fig. 2.1. Diffusion-trapping model of receptor trafficking on a cylindrical dendritic cable (dia-
gram not to scale). (A) A population of dendritic spines is distributed on the surface of a cylinder
of length L and radius l. Each receptor diffuses freely until it encounters a spine where it may be-
come trapped. Within a spine receptors may be internalized via endocytosis (END) and then either
recycled to the surface via exocytosis (EXO) or degraded (DEG); see the inset. Synthesis of new
receptors at the soma and insertion into the plasma membrane generates a surface flux σ0 at one end
of the cable. (B) Topologically equivalent rectangular domain with opposite sides y = ±πl identified.
(C) State transition diagram for a simplified one-compartment model of a dendritic spine. Here Rj

denotes the concentration of surface receptors inside the jth spine, Uj is the mean dendritic receptor
concentration on the boundary between the spine neck and dendrite, and Sj is the number of re-
ceptors within the corresponding intracellular pool. Freely diffusing surface receptors can enter/exit
the spine at a hopping rate ωj , be endocytosed at a rate kj , be exocytosed at a rate σrec

j , and be

degraded at a rate σdeg
j . New intracellular receptors are produced at a rate δj .

where ∂nU is the outward normal derivative to Ωε. The flux of receptors across the
boundary between the dendrite and jth spine is taken to depend on the difference in
concentrations on either side of the boundary with ωj an effective hopping rate. (This
rate is determined by the detailed geometry of the spine [2].) It follows that the total
number of receptors crossing the boundary per unit time is ωj [Uj(t) − Rj(t)], where
Uj(t) is the mean dendritic receptor concentration on the boundary ∂Ωj of the jth
spine of length 2πε:

(2.5) Uj =
1

2πε

∫
∂Ωj

U(r, t) dr.

Surface receptors within the jth spine can be endocytosed at a rate kj and stored
in an intracellular pool. Intracellular receptors are either reinserted into the surface
via exocytosis at a rate σrec

j or degraded at a rate σdeg
j . We also allow for a local

source of intracellular receptors with a production rate δj . Denoting the number of
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receptors in the jth intracellular pool by Sj(t), we then have the pair of equations

dRj

dt
=

ωj

Aj
[Uj −Rj ] −

kj
Aj

Rj +
σrec
j Sj

Aj
,(2.6)

dSj

dt
= −σrec

j Sj − σdeg
j Sj + kjRj + δj .(2.7)

The first term on the right-hand side of (2.6) represents the exchange of surface
receptors between the spine and parent dendrite. Since ωj [Uj −Rj ] is the number of
receptors per unit time flowing across the junction between the dendritic cable and
the spine, it is necessary to divide through by the surface area Aj of the spine in order
to properly conserve receptor numbers. Note that in our previous one-dimensional
model [6] we absorbed the factor of Aj into our definition of the rate of endocytosis kj .
(The precise variation of endocytic rate with spine area Aj will depend upon whether
or not endocytosis is localized to certain hotspots within the spine [4].) The various
processes described by (2.6) and (2.7) are summarized in Figure 2.1(C).

3. Steady-state analysis using asymptotic matching. In steady-state one
can solve (2.6) and (2.7) for Rj in terms of the mean concentration Uj to get

(3.1) Rj =
ωjUj

ωj + kj(1 − λj)
+

λjδj
ωj + kj(1 − λj)

,

where

(3.2) λj ≡
σrec
j

σrec
j + σdeg

j

, Sj =
λj

σrec
j

(kjRj + δj) .

Then Uj is determined from (2.5) and the steady-state version of (2.1):

(3.3) ∇2U = 0 , r ∈ Ωε,

with boundary conditions

(3.4) U(x, πl) = U(x,−πl) , ∂yU(x, πl) = ∂yU(x,−πl),

(3.5) ∂xU(0, y) = −σ, ∂xU(L, y) = 0,

where σ = σ0/(2πlD) from (2.3) and

(3.6) ε∂nU(r) = − ωj

2πD
(U(r) −Rj), r ∈ ∂Ωj , j = 1, . . . , N.

Since the radius of each spine is asymptotically small, we can make the simplification
that U(r) = Uj on ∂Ωj . The substitution of (3.1) into (3.6) then yields the following
reduced condition on the boundary of each spine:

(3.7) ε∂nU(r) = − ω̂j

2πD
(Uj − R̂j) , r ∈ ∂Ωj , j = 1, . . . , N,
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where ω̂j and R̂j are defined by

(3.8) ω̂j ≡
ωjkj(1 − λj)

ωj + kj(1 − λj)
, R̂j ≡

σrec
j

kj

δj

σdeg
j

.

Under steady-state conditions, one can view ω̂j as an effective spine-neck hopping

rate and R̂j as an effective receptor concentration within the spine.
Upon integrating the diffusion equation (3.3) over the domain Ωε and imposing

the boundary conditions (3.4), (3.5), and (3.7), we obtain the solvability condition

(3.9) σ0 =

N∑
j=1

ω̂j

[
Uj − R̂j

]
.

This expresses the condition that the rate at which receptors enter the dendrite from
the soma is equal to the effective rate at which receptors exit the dendrite into spines
and are degraded. Note that in the limit of negligible degradation of receptors in
the intracellular pools so that σdeg

j → 0, it follows from (3.2) and (3.8) that λj → 1,

ω̂j → 0, R̂j → ∞ with ω̂jR̂j → −δj . Consequently, in the limit σdeg
j → 0, (3.9)

reduces to σ0 → −
∑

j=1 δj , which has no solution for σ0 > 0 and positive production

rates δj > 0. This shows that there is no steady-state solution when σdeg
j = 0, as

the number of receptors in the dendrite would grow without bound as time increases.
A similar argument shows that there is also no steady-state solution in the limit of
infinite spine-neck resistances such that ωj → 0 for j = 1, . . . , N . In this limit, newly
synthesized receptors at the soma would not be able to diffuse from the dendrite to a
spine and be degraded.

Our method of solution for the boundary value problem given by (3.3), (3.4),
(3.5), and (3.7), which we denote by BVPI, proceeds in two steps. First, we solve a
related problem, denoted by BVPII, in which the mixed boundary conditions (3.7)
are replaced by the inhomogeneous Dirichlet conditions

(3.10) U(r) = Uj , r ∈ ∂Ωj , j = 1, . . . , N,

under the assumption that the Uj are known. In the singularly perturbed limit ε → 0,
the approximate solution for U valid away from each of the spines is shown below to
be determined up to an arbitrary constant χ. Then, by substituting our asymptotic
solution to BVPII into the N mixed boundary conditions (3.7) and upon satisfying
the conservation equation (3.9), we obtain N + 1 linear equations for the N + 1
unknowns χ and Uj , j = 1, . . . , N . This closed linear system of equations can be
solved numerically to generate the full solution to the original boundary value problem
BVPI. In order to solve BVPII asymptotically in the limit of small spine radii ε → 0,
we match appropriate “inner” and “outer” asymptotic expansions, following along
similar lines to previous studies of boundary value problems in domains with small
holes [27, 25, 28, 24].

3.1. Matching inner and outer solutions. Around each small circle ∂Ωj we
expect the solution of BVPII to develop a boundary layer where it changes rapidly
from its value Uj on ∂Ωj to another value that is required by the solution to the
steady-state diffusion equation in the bulk of the domain. Therefore, Ωε may be
decomposed into a set of j = 1, . . . , N “inner” regions, where |r− rj | = O(ε), and an
“outer” region, where |r−rj | 	 O(ε) for all j = 1, . . . , N . In the jth inner region, we
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introduce the stretched local variable s = ε−1(r − rj) and set V (s; ε) = U(rj + εs; ε)
so that to leading order (omitting far-field boundary conditions)

∇2
sV = 0 , |s| > 1,(3.11)

V = Uj , |s| = 1.

This has an exact solution of the form V = Uj + Bj log |s| with the unknown ampli-
tude Bj determined by matching inner and outer solutions. This leads to an infinite
logarithmic expansion of Bj in terms of the small parameter [27, 25, 28, 24]

(3.12) ν = − 1

log(ε)
.

Since the outer solution is O(1) as ν → 0 and V grows logarithmically at infinity,
we write Bj = νAj(ν), where the function Aj(ν) is to be found. The inner solution
becomes

(3.13) V = Uj + νAj(ν) log |s|.

In terms of the outer variable |r− rj |, we then obtain the following far-field behavior
of the inner solution:

(3.14) V ∼ Uj + Aj(ν) + νAj(ν) log |r − rj |.

This far-field behavior must then match with the near-field behavior of the asymp-
totic expansion of the solution in the outer region away from the N traps. The
corresponding outer problem is given by

∇2U = 0, r ∈ Ω0\{r1, . . . , rN},(3.15)

with boundary conditions

U(x, πl) = U(x,−πl) , ∂yU(x, πl) = ∂yU(x,−πl),

∂xU(0, y) = −σ, ∂xU(L, y) = 0,

together with the asymptotic singularity conditions

(3.16) U ∼ Uj + Aj(ν) + νAj(ν) log |r − rj | as r → rj , j = 1, . . . , N.

Equations (3.15) and (3.16) can be reformulated in terms of an outer problem with
homogeneous boundary conditions and a constant forcing term by decomposing

(3.17) U(r) = U(r) + u(r) , u(x, y) ≡ σ

2L
(x− L)2.

Then (3.15) becomes

∇2U = −σ

L
, r ∈ Ω0\{r1, . . . , rN} ,(3.18)

with boundary conditions

U(x, πl) = U(x,−πl) , ∂yU(x, πl) = ∂yU(x,−πl),

∂xU(0, y) = 0, ∂xU(L, y) = 0 ,
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and the asymptotic singularity conditions

(3.19) U ∼ −u(rj) + Uj + Aj(ν) + νAj(ν) log |r − rj | as r → rj , j = 1, . . . , N.

In order to treat the logarithmic behavior of the outer solution at rj , we introduce
the Neumann Green’s function G(r; r′), defined as the unique solution to

∇2G =
1

|Ω0|
− δ(r − r′) , r ∈ Ω0 ,(3.20)

G(x, πl; r′) = G(x,−πl; r′) , ∂yG(x, πl; r′) = ∂yG(x,−πl; r′),

∂xG(0, y; r′) = 0 , ∂xG(L, y; r′) = 0 ,∫
Ω0

G(r; r′) dr = 0.

Here |Ω0| = 2πLl is the area of the rectangular domain Ω0. This Green’s function
has a logarithmic singularity as r → r′ so that we can decompose G as

(3.21) G(r; r′) = − 1

2π
log |r − r′| + G(r; r′),

where G is the regular part of G. We will calculate G explicitly in section 3.3. This
property of G suggests that we replace (3.18) and (3.19) by the following single equa-
tion in Ω0:

(3.22) ∇2U = −σ

L
+

N∑
j=1

2πνAj(ν)δ(r − rj) , r ∈ Ω0.

Then, upon using the divergence theorem together with the homogeneous boundary
conditions for U , we obtain the solvability condition

(3.23)
σ

L
|Ω0| =

N∑
j=1

2πνAj(ν).

It readily follows that (3.22) has the solution

(3.24) U(r) = −
N∑
j=1

2πνAj(ν)G(r; rj) + χ,

where χ is a constant to be found. Since
∫
Ω0

Gdr = 0, it follows that χ can be

interpreted as the spatial average of U , defined by χ = |Ω0|−1
∫
Ω0

U dr. Then, as

r → rj , the outer solution for U given in (3.24) has the near-field behavior

(3.25) U ∼ −2πνAj(ν)

[
− 1

2π
log |r − rj | + G(rj ; rj)

]
−

N∑
i �=j

2πνAi(ν)G(rj ; ri) + χ

for each j = 1, . . . , N . Upon comparing the nonsingular terms in this expression and
that of (3.19), we obtain the following system of equations:

(3.26) (1 + 2πνGjj)Aj +

N∑
i �=j

2πνGjiAi = uj − Uj + χ , j = 1 , . . . , N ,

where uj ≡ u(rj), Gji ≡ G(rj ; ri), and Gjj ≡ G(rj ; rj).
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3.2. Calculation of boundary concentrations Uj. Equations (3.13) and
(3.24) are the inner and outer solutions of BVPII, respectively, where the N + 1
coefficients χ and Aj for j = 1, . . . , N are determined from the N linear equations
(3.26) together with the solvability condition (3.23). We can now generate the solu-
tion to the original problem BVPI by substituting the inner solution (3.13) into the
mixed boundary conditions (3.7). This gives

(3.27) 2πνAj(ν) =
ω̂j

D
[Uj − R̂j ] ≡ Vj .

Substituting (3.27) into the solvability condition (3.23) shows that the latter is equiv-
alent to the conservation equation (3.9). Furthermore, upon substituting (3.27) into
(3.26) we obtain the system of linear equations

(3.28)
[
(2πν)−1 + Gjj

] ω̂j

D
[Uj−R̂j ]+

N∑
i �=j

Gji
ω̂i

D
[Ui−R̂i] = uj−Uj+χ , j = 1, . . . , N.

This system, together with the conservation equation (3.9), gives N + 1 equations for
the N + 1 unknowns χ and Uj , j = 1, . . . , N . This system depends on the flux σ0 of
receptors from the soma, the number and the locations of the dendritic spines, and
the aspect ratio of Ω0. Upon solving this system for Uj and χ, the dendritic receptor
concentration in the bulk of the dendritic membrane, obtained from (3.17), (3.24),
and (3.27), is given by

(3.29) U(r) = u(r) −
N∑
j=1

ω̂j

D
[Uj − R̂j ]G(r; rj) + χ.

This approximate solution for U is valid for distances larger than O(ε) away from the
centers rj , for j = 1, . . . , N , of the spines. Moreover, the distribution Rj of receptors
within the spines is given in terms of Uj by (3.1).

There are two important remarks. First, we emphasize that the system (3.26)
together with (3.23) contains all of the logarithmic correction terms in the asymptotic
solution to BVPI. The error made in this approximation is transcendentally small of
order O(ε), which is asymptotically smaller than any power of ν. A precise estimate
of such transcendentally small terms for a related problem is given in Appendix A
of [25]. Second, we remark that in [6] we have previously derived one-dimensional
versions of (3.9), (3.28), and (3.29). In contrast to the two-dimensional case, the
one-dimensional Neumann Green’s function is nonsingular so that one can represent
the spines as point sources/sinks on the dendrite, and singular perturbation theory is
not needed.

It is convenient to introduce a matrix solution to (3.28). We first introduce the
matrix B with elements

(3.30) Bjj = 2π

(
D

ω̂j
+ Gjj

)
, Bji = 2πGji , j �= i.

Then (3.28) can be written in the compact form

N∑
i=1

(δi,j + νBji)Vi = 2πν[uj − R̂j + χ] ,
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where Vi is defined in (3.27). Defining M = (I+νB)−1, where I is the N×N identity
matrix, we have

(3.31) Vj = 2πν

N∑
i=1

Mji(ui − R̂i + χ).

The constant χ is then determined by substituting (3.31) into the solvability condition
(3.9). This yields

σ0

D
=

N∑
j=1

Vj = 2πν

N∑
i=1

N∑
j=1

Mji(ui − R̂i + χ).

Upon solving this equation for χ we get

(3.32) χ =
σ0

2πνD −
∑N

i=1

∑N
j=1 Mji(ui − R̂i)∑N

i=1

∑N
j=1 Mji

.

Since Mji = δi,j + O(ν), it follows that to leading order in ν

(3.33) χ =
σ0

2πNDν
+ O(1), Uj = R̂j +

σ0

Nω̂j
+ O(ν).

The singular nature of the constant χ as ν → 0, and hence the solution U(r), reflects
the fact that for fixed somatic flux σ0, the flux in the neighborhood of each spine
boundary ∂Ωj diverges as ε → 0. This is necessary in order to maintain the solvability

condition (3.9). Note, in particular, that ω̂j [Uj − R̂j ] gives the number of receptors
flowing across the boundary per unit time, and its size essentially remains fixed as
ε decreases. Thus, in this limit, the flux through the boundary increases, resulting
in a steeper concentration gradient in a neighborhood of the spine boundary. If the
hopping rate ω̂j decreases as ε decreases, then the boundary concentration Uj will
also diverge in order to maintain (3.9).

3.3. Evaluation of Green’s function. To evaluate the Green’s function G
satisfying (3.20), we begin by writing its Fourier series representation,

(3.34) G(r; r′) =
2

|Ω0|

∞∑
n=1

cos
(
πnx
L

)
cos

(
πnx′

L

)
(
πn
L

)2 +
2

|Ω0|

∞∑
m=1

cos
(

m(y−y′)
l

)
(
m
l

)2
+

4

|Ω0|

∞∑
m=1

∞∑
n=1

cos
(
πnx
L

)
cos

(
πnx′

L

)
cos

(
m(y−y′)

l

)
(
πn
L

)2
+
(
m
l

)2 .

Upon recalling the formula (cf. p. 46 of [12])

(3.35)
∞∑
k=1

cos(kθ)

k2 + b2
=

π

2b

cosh(b(π − |θ|))
sinh(πb)

− 1

2b2
, |θ| ≤ 2π ,
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we can sum the third term of (3.34) over the index n to obtain

(3.36)
1

2π

∞∑
m=1

cos
(

m(y−y′)
l

) [
cosh

(
m(L−|x−x′|)

l

)
+ cosh

(
m(L−|x+x′|)

l

)]
m sinh

(
Lm
l

)
− 2

|Ω0|

∞∑
m=1

cos
(

m(y−y′)
l

)
(
m
l

)2 .

Notice that the second sum of (3.36) cancels the second sum of (3.34). Then, using the
angle addition formula for hyperbolic cosine and the relation cosh(x)−sinh(x) = e−x,
we derive the following key identity for any constants a, b, and c:

(3.37)
cosh(a− b) + cosh(a− c)

sinh a
=

1

1 − e−2a

[
e−b + e−c + eb−2a + ec−2a

]
.

We use this identity to rewrite the first sum in (3.36) and then substitute the resulting
expression into (3.34). This yields
(3.38)

G(r; r′) =
H(x;x′)

2πl
+

∞∑
m=1

(
zm+ + z+

m + zm− + z−
m + ζm+ + ζ+

m
+ ζm− + ζ−

m
)

4πm(1 − qm)
,

where q ≡ e−2L/l. Here z± and ζ± are defined by z± ≡ er±/l and ζ± ≡ eρ±/l, where

r+ ≡ −|x + x′| + i(y − y′) , r− ≡ −|x− x′| + i(y − y′) ,(3.39)

ρ+ ≡ |x + x′| − 2L + i(y − y′) , ρ− ≡ |x− x′| − 2L + i(y − y′) ,(3.40)

and · denotes complex conjugate. Moreover, in (3.38), H(x;x′) is defined by

(3.41) H(x;x′) ≡ 2

L

∞∑
n=1

cos
(
πnx
L

)
cos

(
πnx′

L

)
(
πn
L

)2
=

L

12

[
h

(
x− x′

L

)
+ h

(
x + x′

L

)]
, h(θ) ≡ 3θ2 − 6|θ| + 2.

The function H(x;x′) is the one-dimensional Green’s function in the x-direction.
Since q = e−2L/l < 1, we can write (1 − qm)−1 =

∑∞
n=0(q

m)n for all m ≥ 1. In
this way, the sum in (3.38) can be written as

(3.42)

∞∑
m=1

∞∑
n=0

(qn)m

(
zm+ + z+

m + zm− + z−
m + ζm+ + ζ+

m
+ ζm− + ζ−

m
)

4πm
.

Notice that when z± �= 1 and ζ± �= 1 (i.e., when r± �= 0 and ρ± �= 0) this double sum
is absolutely convergent, so we can interchange the order of summation in (3.42) and
then perform the sum over the index m, yielding

(3.43) − 1

4π

∞∑
n=0

(
ln |1 − qnz+|2 + ln |1 − qnz−|2 + ln |1 − qnζ+|2 + ln |1 − qnζ−|2

)
= − 1

2π
ln |1 − z+||1 − z−||1 − ζ+||1 − ζ−| + O(q).
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The only singularity exhibited by (3.43) in Ω0 is at (x, y) = (x′, y′), in which case
z− = 1 and ln |1 − z−| diverges. Writing ln |1 − z−| = ln |r−| + ln(|1 − z−|/|r−|) and
noting that ln |r−| = ln |r − r′| and ln(|1 − z−|/|r−|) is regular, we find that

(3.44) G(r; r′) = − 1

2π
ln |r − r′| + G(r; r′) ,

where the regular part G of G is given explicitly by

(3.45) G(r; r′) =
H(x;x′)

2πl
− 1

2π
ln

|1 − z+||1 − z−||1 − ζ+||1 − ζ−|
|r−|

+ O(q).

This expression for G is valid in the large aspect ratio limit L/l 	 1 for which q � 1.

4. Numerics. In this section we compare the asymptotic solution U of (3.29)
and (3.31) with the full solution obtained by numerically solving (3.3)–(3.6). In
order to implement the boundary conditions (3.6) we use the steady-state solution
of Rj given by (3.1), with the mean boundary concentration Uj identified with the
corresponding solution of the singular perturbation problem as determined by (3.27)
and (3.1). We then check that the resulting numerical solution is self-consistent; that
is, the mean receptor concentration around the boundary is well approximated by
the assumed value for Uj . The two-dimensional numerical solutions are generated by
using the Partial Differential Equation Toolbox of MATLAB [30]. In Figure 4.1(A) we
plot the steady-state concentration U given by (3.29) and (3.31) for a cable of length
L = 100μm and radius l = (2π)−1μm having 99 identical spines spaced 1μm apart
along a single horizontal line (y = 0μm). In Figure 4.1(B) we plot the corresponding
values of Uj , Rj , and Sj , with Rj , Sj given by (3.1) and (3.2). Here the diffusivity
is D = 0.1μm2s−1 [13, 2], the somatic flux is σ0 = 0.1μm−1 s−1, and all spines are
identical with radius ερ = 0.1μm, A = 1μm, ω = 10−3μm2s−1, k = 10−3μm2s−1,
σrec = 10−3s−1, σdeg = 10−4s−1, and δ = 10−3s−1. We set ρ = 2πl = 1μm so that
ε = 0.1. While U decays significantly along the length of the cable, it varies very
little around the circumference of the cable. In Figure 4.1(C) we show the results of
numerically solving the original steady-state system for U described in (3.3)–(3.6).
This numerical solution agrees almost perfectly with the perturbation solution shown
in Figure 4.1(A).

We consider the parameter regime of Figure 4.1 physiological in the sense that pa-
rameter values were chosen from experimental data [2, 11, 13, 23] in conjunction with
previous modeling studies [5, 6]. Our results suggest that in this parameter regime
the dendrite can be treated as a quasi-one-dimensional system in which variations in
receptor concentration around the circumference of the cable can be neglected. This is
further reinforced by the observation that the solutions of the two-dimensional model
shown in Figure 4.1(A)–(C) are virtually indistinguishable from the corresponding so-
lution of the reduced one-dimensional model previously introduced in [6] (see Figure
4.1(D)). In the one-dimensional model, (2.1)–(2.4) are replaced by the inhomogeneous
diffusion equation

(4.1)
∂U

∂t
= D

∂2U

∂x2
−

N∑
j=1

ωj

2πl
[Uj −Rj ]δ(x− xj) ,

with boundary conditions Uj(t) = U(xj , t) and

(4.2) D
∂U

∂x

∣∣∣∣
x=0

= − σ0

2πlD
, D

∂U

∂x

∣∣∣∣
x=L

= 0.
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Fig. 4.1. Plot of receptor concentration profiles along a dendritic cable with a uniform collinear
distribution of dendritic spines. Cable and spine parameter values are given in the text. (A) Plot
of bulk dendritic concentration U given by the outer solution (3.29) of the matched asymptotic
expansion. Boundaries of spines are indicated by white lines. The dendritic cable is not drawn to
scale. (B) Corresponding plots of Uj , Rj , and Sj obtained from (3.27), (3.31), (3.1), and (3.2).
(Note that Sj is converted to a concentration by dividing through by the area Aj of a spine, which
is taken to be 1μm.) (C) Numerical solution of (3.3)–(3.6). (D) Plots of Uj , Rj , and Sj obtained
by solving the corresponding one-dimensional model [6].

As in the two-dimensional model, Rj evolves according to (2.6) and (2.7). The steady-
state solution of (4.1) can be obtained using the one-dimensional Green’s function H
such that

(4.3) U(x) = χ−
N∑
j=1

ω̂j [Uj − R̂j ]

2πlD
H(x, xj) +

σ

2πlD
H(x, 0) ,

where the constant χ is determined from the self-consistency condition (3.9). The
set of concentrations Uj can then be determined self-consistently by setting x = xi in
(4.3) and solving the resulting matrix equation along analogous lines to (3.28) (cf. [6]).
It is important to note that the excellent agreement between the two-dimensional and
one-dimensional models is not a consequence of taking the spines to all lie along a
one-dimensional line. This is illustrated in Figure 4.2 for a configuration of three
staggered rows of 33 spines. The receptor concentrations are indistinguishable from
the configuration consisting of a single row of 99 spines.

There is a simple heuristic argument to show why our original two-dimensional
diffusion problem can be reduced to a corresponding one-dimensional problem, at
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Fig. 4.2. Plot of receptor concentration profiles along a dendritic cable with three staggered
rows of spines. All other parameters are as in Figure 4.1. Left: Plot of bulk dendritic concentration
U given by the outer solution (3.29) of the matched asymptotic expansion. Boundaries of spines are
indicated by white lines. The dendritic cable is not drawn to scale. Right: Corresponding plots of Uj ,
Rj , and Sj obtained from (3.27), (3.31), (3.1), and (3.2). Concentration plots are indistinguishable
from Figure 4.1.

least in the parameter regime of Figure 4.1. Given a somatic flux σ0 = 0.1μm−1s−1,
a cable circumference of 1μm, and N = 100 spines, it follows that the mean num-
ber of receptors flowing through each spine boundary per second is 10−3. Thus a
rough estimate of the mean flux through each spine boundary of circumference 2πε
is J̄ = 10−3/(2πε)s−1m−1. Let ΔU represent the typical size of changes in receptor
concentration needed to generate such a flux over a length scale Δx comparable to
that of the dendritic circumference. Taking J̄ ∼ DΔU/Δx with Δx = 2πl = 1μm
and D = 0.1μm2s−1 then gives ΔU ∼ 10−2l/ε ≈ 1.6 × 10−3μm−2. Such a variation
is negligible compared to the variation in receptor concentration along the length of
the cable due to the source at the soma (see Figure 4.1), thus justifying a reduction
to a one-dimensional model.

The above argument shows that the relatively small variation of receptor con-
centration around the circumference of the cable is a consequence of two factors: the
large number of spines and the large aspect ratio (l � L) of the dendritic geometry;
the length scales L, l put upper bounds on the maximum variation of the concen-
tration in the x- and y-directions, respectively, for fixed σ0. Thus we expect the
two-dimensional nature of the spine’s surface to become significant in the case of a
few spines distributed on a short dendritic cable; such a situation could be relevant
in the case of immature neurons. The solution for the receptor concentration will
then be sensitive to the size of the spine radius ε. We illustrate this in Figure 4.3
in the case of a single spine centered at (x, y) = (1, 0) on the surface of a dendrite
of length L = 2μm. With this smaller value of L, the aspect ratio of the cable is
now L/l = 4π. We also choose ω = k = 1μm2s−1. In Figure 4.3(A)–(C) we show
the singular perturbation solution for U when ε = 0.01, 0.1, and 0.4, respectively. In
Figure 4.3(D)–(F) we show corresponding plots for the numerical solutions of U . It
can be seen that the effect of the logarithmic singularity in the vicinity of the spine
becomes prominent as ε decreases. Finally, in Figure 4.3(G) we plot the solution from
the one-dimensional model. Although this model contains no information about the
radius of the spine neck, and the aspect ratio of the system is now only moderately
large, it still provides an approximate solution that agrees quite well with the full
two-dimensional solutions.
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Fig. 4.3. Effect of spine radius ε on the solution U for a single spine centered at x = 1μm, y = 0
on a short dendritic cable of length L = 2μm. (A)–(C) Plots of bulk dendritic receptor concentration
U along the dendrite given by the outer solution (3.29) of the matched asymptotic expansion for
parameter values as specified in the text and ε = 0.01, 0.1, and 0.4μm, respectively. The shaded
region shows the range of values taken by the receptor concentration around the circumference of the
cable as a function of distance x from the soma. (D)–(F) Corresponding plots of numerical solutions
for U . (G) Plot of the one-dimensional solution [6].
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5. Mean first passage time (MFPT) for a single receptor. In this section
we calculate the MFPT for a single tagged receptor to travel an axial distance X from
the soma, X < L, assuming that the receptor does not undergo degradation. We then
use this to determine an effective diffusivity, which takes into account the effects of
trapping at spines. We proceed by reinterpreting the dendritic receptor concentration
as a probability density and the diffusion equation (2.1) as a Fokker–Planck (FP)
equation. The FP equation is defined on a spatial domain ΩX

ε , where

ΩX
ε = ΩX \

NX⋃
j=1

Ωj , Ωj = {r : |r − rj | ≤ ε}.

Here ΩX = {(x, y); 0 < x < X, |y| < πl} and NX is the number of spines within
the rectangular domain ΩX . We impose an absorbing boundary condition at x = X
so that the receptor is immediately removed once it reaches this boundary; i.e., we
are interested only in the time it takes for a receptor to first reach x = X from the
soma. Let u(r, t|r0, 0) denote the probability density that at time t ≥ 0 the receptor
is located at r ∈ ΩX

ε , given that it started at the point r0 = (0, y0). The probability
density u evolves according to the FP equation

(5.1)
∂u

∂t
= D∇2u, (r, t) ∈ ΩX

ε × R+ ,

with periodic boundary conditions at the ends y = ±πl,

(5.2) u(x, πl, t|r0, 0) = u(x,−πl, t|r0, 0), ∂yu(x, πl, t|r0, 0) = ∂yu(x,−πl, t|r0, 0) ,

and with

(5.3) ∂xu(0, y, t|r0, 0) = 0 , u(X, y, t|r0, 0) = 0.

At each interior boundary ∂Ωj we impose the mixed boundary condition
(5.4)

ε∂nu(r, t|r0, 0) = − ωj

2Dπ
(u(r, t|r0, 0) − rj(t|r0, t)), r ∈ ∂Ωj , j = 1, . . . , NX .

Here Ajrj(t|r0, t) denotes the probability that the receptor is located within the jth
spine at time t. Defining sj(t|r0, t) to be the corresponding probability that the
receptor is located within the jth intracellular pool, we have

Aj
drj
dt

= ωj [uj − rj ] − kjrj + σrec
j sj ,(5.5)

dsj
dt

= −σrec
j sj + kjrj .(5.6)

Since we are assuming that the tagged receptor has not been degraded over the time
interval of interest, we have set σdeg

j = 0 for all j. We also assume no production of
intracellular receptors so that δj = 0. The initial conditions are u(r, 0|r0, 0) = δ(r−r0)
and rj(0|r0, 0) = sj(0|r0, 0) = 0 for all j.
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5.1. MFPT. Let τ(X|r0) denote the time it takes for a receptor starting at
r0 = (0, y0) to first reach the boundary x = X. The function

(5.7) F (X, t|r0) ≡
∫

ΩX
ε

u(r, t|r0, 0) dr +

NX∑
j=1

[Ajrj(t|r0, 0) + sj(t|r0, 0)]

is the probability that t < τ(X|r0); i.e., the probability that a receptor which was
initially at the origin has not yet reached x = X in a time t. Notice that 1−F is the
cumulative density function for τ , and hence

(5.8)
∂(1 − F )

∂t
= −∂F

∂t

is its probability density function. Thus the MFPT, denoted by T , is

(5.9) T = −
∫ ∞

0

t
∂F

∂t
dt =

∫ ∞

0

F dt.

The last equality in (5.9) follows by integrating the first integral by parts and recalling
that F , being an L1 function in time, decays more rapidly to zero than t−1 as t
becomes large. Therefore, integrating (5.7) over time gives us the following expression
for T (X|r0):

(5.10) T (X|r0) = lim
z→0

⎛⎝∫
ΩX

ε

û(r, z|r0, 0)dr +

NX∑
j=1

[Aj r̂j(z|r0, 0) + ŝj(z|r0, 0)]

⎞⎠ ,

where ·̂ denotes the Laplace transform,

(5.11) f̂(z) ≡
∫ ∞

0

e−ztf(t)dt.

Upon Laplace transforming (5.1)–(5.6) and using the initial conditions, we can take
the limit z → 0 to obtain

(5.12) ûj(r0) = r̂j(0|r0, 0) =
σrec
j

kj
ŝj(0|r0, 0),

where

(5.13) ûj(r0) =
1

2πε

∫
∂Ωj

û(r; r0) dr.

Here we have set û(r; r0) = limz→0 û(r, z|r0, 0). Hence, we obtain the boundary value
problem

(5.14) D∇2û(r; r0) = −δ(r − r0), r ∈ ΩX
ε ,

with

(5.15) û(x, πl; r0) = û(x,−πl; r0) , ∂yû(x, πl; r0) = ∂yû(x,−πl; r0),

(5.16) ∂xû(0, y; r0) = 0, û(X, y; r0) = 0 ,
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and the mixed boundary condition

(5.17) ε∂nû(r; r0) = −βj

(
û− 1

2πε

∫
∂Ωj

û dr

)
, j = 1, . . . , NX ,

where βj is defined in terms of the hopping rate by βj ≡ ωj/(2Dπ).
As in section 3, we have a singularly perturbed boundary value problem, although

in a weaker sense than the previous case. Carrying out a matched asymptotic expan-
sion, the details of which are presented in the appendix, we find that there are no
logarithmic singularities and the dependence on the spine size is O(ε2). More specif-
ically, the outer solution has the asymptotic expansion

(5.18) û ∼ GX(r; r0)

D
+ 2πε2

NX∑
j=1

(
βj − 1

βj + 1

)
aj · ∇jGX(r; rj) ,

where ∇j denotes differentiation with respect to the source variable rj , and aj is
defined by

(5.19) aj ≡
∇GX(rj ; r0)

D
.

Here GX is the Green’s function on the rectangular domain ΩX with periodic bound-
ary conditions at the ends y = ±πl, a reflecting boundary at x = 0, and an absorbing
boundary at x = X. Thus,

(5.20) GX(r; r′) =
2

|ΩX |

∞∑
m=−∞

∞∑
n=0

cos
(

π(2n+1)x
2X

)
cos

(
π(2n+1)x′

2X

)
eim(y−y′)/l(

π(2n+1)
2X

)2

+
(
m
l

)2 .

Since GX has a logarithmic singularity, it follows that

(5.21) ∇jGX(r; rj) ∼ − 1

2π

(r − rj)

|r − rj |2
+ ∇jGX as r → rj ,

where GX is the regular part of GX . The average concentration ûj around the bound-
ary of the jth spine is obtained from the corresponding inner solution given in the
appendix; see (A.6) and (A.8). Thus

ûj =
GX(rj ; r0)

D
+

ε

2π

NX∑
k=1

(
2

βj + 1

)∫ 2π

0

aj · eρ dθ ,(5.22)

where eρ is the unit normal to the circular boundary ∂Ωj . Since aj is a constant vector,
it follows that

∫
aj · eρdθ = 0, and so the O(ε) term vanishes. Finally, substituting

(5.12), (5.18), and (5.22) into (5.10) shows that

(5.23) T (X|r0) =

∫
ΩX

GX(r; r0)

D
dr +

NX∑
j=1

ηj
GX(rj ; r0)

D
+ ε2J + · · · ,

where ηj = Aj + kj/σ
rec
j and

J = −π

NX∑
j=1

GX(rj ; r0)

D
+ 2π

NX∑
j=1

(
βj − 1

βj + 1

)
aj · ∇j

∫
ΩX

GX(r; rj) dr.(5.24)

In the following we will determine the zeroth-order expression for the MFPT by
dropping the O(ε2) terms.
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5.2. Evaluation of Green’s function. We wish to evaluate the Green’s func-
tion GX in (5.20). We begin by expressing the double sum as

(5.25) GX(r; r′) =
2

|ΩX |

∞∑
n=0

cos
(

π(2n+1)x
2X

)
cos

(
π(2n+1)x′

2X

)
(

π(2n+1)
2X

)2

+
4

|ΩX |

∞∑
m=1

∞∑
n=0

cos
(

π(2n+1)x
2X

)
cos

(
π(2n+1)x′

2X

)
cos

(
m(y−y′)

l

)
(

π(2n+1)
2X

)2

+
(
m
l

)2 .

Upon using the identity (derived from p. 46 of [12])

(5.26)

∞∑
k=0

cos((2k + 1)θ)

(2k + 1)2 + b2
=

π

4b

[
cosh(b(π − |θ|))

sinh(πb)
− cosh(b|θ|)

sinh(πb)

]
, |θ| ≤ π,

we can perform the sum over the index n in (5.25), yielding

(5.27)
1

2π

∞∑
m=1

cos
(

m(y−y′)
l

) [
cosh

(
m(2X−|x−x′|)

l

)
+ cosh

(
m(2X−|x+x′|)

l

)]
m sinh

(
2Xm

l

) + E ,

where E is defined by

(5.28) E ≡ − 1

2π

∞∑
m=1

cos
(

m(y−y′)
l

) [
cosh

(
m|x−x′|

l

)
+ cosh

(
m|x+x′|

l

)]
m sinh

(
2Xm

l

) .

Following arguments similar to those used in section 3.3, together with the identity
(3.37), the infinite sums in (5.27) and (5.28) can be represented as infinite sums of
logarithmic terms. Our calculations are greatly simplified if X is not too small (e.g.,
by assuming that X 	 l/2). In this large aspect ratio limit, the identity (3.37) yields
that

(5.29)
cosh

(
m(2X−|x−x′|)

l

)
+ cosh

(
m(2X−|x+x′|)

l

)
sinh

(
2Xm

l

)
≈ e−m|x−x′|/l + e−m|x+x′|/l + O(qX) ,

where qX ≡ e−2X/l. In addition, E = O(qX) � 1 and can be neglected to a first
approximation. Using these approximations for the large aspect ratio limit, we readily
derive that

(5.30) GX(r; r′) =
HX(x;x′)

2πl
− 1

2π
ln |1 − z+||1 − z−| + O(qX) ,

where (cf. p. 46 of [12])

(5.31) HX(x;x′) =
2

X

∞∑
n=0

cos
(

π(2n+1)x
2X

)
cos

(
π(2n+1)x′

2X

)
(

π(2n+1)
2X

)2

=
X

2

[
hX

(
x− x′

X

)
+ hX

(
x + x′

X

)]
, hX(θ) = 1 − |θ| ,
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is the one-dimensional Green’s function in the x-direction, and z± is as defined in
(3.39).

Suppose that r′ = r0 = (0, y0). Since x0 = 0,

(5.32) GX(r; r0) =
X − x

2πl
− 1

2π
ln
∣∣∣1 − e−x/lei(y−y0)/l

∣∣∣2 + O(qX).

If x is sufficiently large (e.g., x ≥ l), then the contribution of the logarithmic term in
(5.32) is of order qx = e−2x/l, and hence

(5.33) GX(r; r0) =
X − x

2πl
+ O(qx).

Since O(qx) is exponentially small, this term can be dropped from (5.33), yielding the
one-dimensional Green’s function used in [6]. The fact that these results are effectively
one-dimensional is again due to the large aspect ratio of our system.

5.3. Effective diffusivity and anomalous diffusion. Let us now evaluate
the zeroth-order contributions to the MFPT T (X|r0) given in (5.23). First, it follows
from integrating (5.20) that

∫
ΩX

GX(r; r0)dr = X2/2. Following the discussion of the

previous paragraph, we will assume that all xj are sufficiently large so that GX(rj ; r0)
is well approximated by the one-dimensional Green’s function (X−xj)/(2πl). Since we
are dropping any explicit dependence on y, y0, we simply denote the MFPT T (X|r0)
by T . In the case of a large number of identical spines uniformly distributed along
the length of the cable with spacing d (i.e., NX = X/d 	 1 and xj = jd for all j), we
can compute an effective diffusivity Deff . That is, substituting our one-dimensional
approximation for GX into (5.23) and dropping O(ε2) terms gives

(5.34) T ≈ X2

2D
+

η

2πlD

NX∑
j=1

(X − jd) =
X2

2D
+

η

2πlD

(
NXX − (NX + 1)NXd

2

)

≈ X2

2D
+

η

2πlD

(
NXX − N2

Xd

2

)
=

X2

2D

(
1 +

η

2πld

)
=

X2

2Deff
,

where η ≡ A + k/σrec. In (5.34), the effective diffusivity Deff is

(5.35) Deff = D
(
1 +

η

2πld

)−1

= D

(
1 +

A + k/σrec

2πld

)−1

.

As one would expect, the presence of traps reduces the effective diffusivity of a re-
ceptor. In particular, the diffusivity is reduced by increasing the ratio k/σrec of the
rates of endocytosis and exocytosis, by increasing the surface area A of a spine, or by
decreasing the spine spacing d. Interestingly, Deff does not depend on the hopping
rate ω, at least to lowest order in the spine size ε. At first sight this might seem
counterintuitive, since a smaller ω implies that a receptor finds it more difficult to
exit a spine. However, this is compensated by the fact that it is also more difficult
for a receptor to enter a spine in the first place. (For a more detailed analysis of
entry/exit times of receptors with respect to spines see [14, 15]).

In (5.34) the MFPT T is proportional to X2. This relationship is the hallmark
of Brownian diffusion, and here it is due to the fact that the spacing between spines
is independent of the index j. Now suppose that the spacing varies with j according
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to xj = d(ln(j) + 1). In this case NX = eX/d−1, and hence NX grows exponentially
with X [19]. Therefore, upon summing the series and using Stirling’s formula, we get

(5.36)

T ≈ X2

2D
+

η

2πlD

NX∑
j=1

(X − d(ln(j) + 1)) =
X2

2D
+

η

2πlD
(NXX − d(ln(NX !) + NX))

≈ X2

2D
+

η

2πlD
(NXX − dNX ln(NX)) =

X2

2D
+

ηd

2πlD
eX/d−1 =

X2

2Deff (X)
,

where the effective diffusivity is

(5.37) Deff (X) = D

(
1 +

A + k/σrec

2πld

eX/d−1

(X/d)2

2

)−1

.

The fact that the effective diffusivity is a function of X indicates anomalous diffusion,
which is to say that the relationship T ∝ X2 does not hold. Moreover, because eX/d−1

grows faster than (X/d)2, the anomalous behavior is subdiffusive.
Note that the above analysis reproduces results obtained previously for a simpli-

fied one-dimensional model [6]. However, our asymptotic analysis shows that there
are O(ε2) corrections to the one-dimensional results given by (5.24). In particular,
these higher-order corrections introduce a weak dependence of the MFPT on the size
of the spines and the hopping rates ωj via the parameters βj .

6. Discussion. In this paper we have used singular perturbation theory to deter-
mine the steady-state receptor concentration on the cylindrical surface of a dendritic
cable in the presence of small dendritic spines, which act as partially absorbing traps.
In the case of long, thin dendrites we have shown that the variation of the receptor
concentration around the circumference of the cable is negligible so that the concen-
tration profile along the cable can be determined using a simpler one-dimensional
model [6]. We have also shown that the MFPT for a single tagged receptor to travel
a certain distance along the cable is well approximated by considering a random walk
along a one-dimensional cable. In both cases, our perturbation analysis provides de-
tails regarding corrections to the one-dimensional results that depend on the size ε of
spines. Such corrections would be significant in the case of short dendrites with few
spines, which may occur in immature neurons. An important extension of our work
would be to consider a much more detailed model of receptor trafficking within each
spine [10]. This would take into account the fact that the spine is not a homogeneous
medium but contains a protein rich subregion known as the postsynaptic density
where receptors can bind and unbind to various scaffolding proteins [4]. Interestingly,
the coupling between the spine and the dendritic cable would not be affected by such
details so that our solutions for the dendritic receptor concentration within the cable
would carry over to more complex models.

The analysis presented in this paper provides a general mathematical framework
for taking into account the effects of the size of spines on the surface diffusion of
receptors (and other proteins) within the cell membrane. In the particular case of
spiny dendrites it allows us to establish rigorously the validity of a one-dimensional
reduction. This is important from a biological modeling perspective since the reduced
model provides a relatively simple system in which to explore the role of diffusion in
protein receptor trafficking along a dendrite. For example, one important biological
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issue is whether or not diffusion is sufficient as a mechanism for delivering protein
receptors to distal parts of the dendrite [1]. If one ignores the effects of trapping in
spines, then an estimate for the mean time a receptor takes to travel a distance X from
the soma via surface diffusion along a uniform cable is T = X2/2D. Even for a rela-
tively large diffusivity D = 0.45μm2s−1, the mean time to reach a proximal synapse
at 100μm from the soma is approximately 3 hrs., whereas the time to reach a distal
synapse at 1mm from the soma is around 300 hrs. The latter is much longer than the
average lifetime of a receptor, which is around 1 day. The one-dimensional formulae
for the MFPT in the presence of traps (see section 5) establishes that trapping within
spines increases the delivery time of receptors to synapses even further due to an
effective reduction in the diffusivity. Indeed, if the density of spines grows sufficiently
fast towards distal ends of the dendrite, then this increase in the MFPT could be
significant due to the emergence of anomalous subdiffusive behavior. Interestingly,
there is experimental evidence for an enhanced spine density at distal locations [18].

Finally, it would be interesting to consider protein receptor trafficking across a
population of synapses with other geometric configurations. In this study we focused
on synapses located within dendritic spines that are distributed along a dendritic
cable, since most excitatory neurons in the central nervous system have such struc-
tures. However, there are some classes of neurons that have synapses located directly
on the cell body or soma. One striking example is the chick ciliary ganglion, which
supplies motor input to the iris of the eye; the ganglion has nicotinic receptors that
are distributed across the surface of the cell body within somatic spines [3]. Thus the
basic mathematical approach presented here could be extended to other biologically
relevant examples of surface diffusion in the presence of partially absorbing traps,
including diffusion on the surface of a spherical cell body, where a reduction to a
one-dimensional problem would not be possible.

Appendix. In this appendix we present the singular perturbation analysis used
to obtain the outer solution (5.18). First, let û0 be the solution to the boundary value
problem without traps given by (5.14), (5.15), and (5.16). Then

(A.1) û0(r) =
GX(r; r0)

D
,

where GX is the Green’s function of (5.20). For the problem with traps, we write the
outer expansion as

(A.2) û =
GX(r; r0)

D
+ σ(ε)û1 + · · · ,

where σ(ε) is to be found. In order to determine the inner solution near the jth hole,
we introduce the scaled coordinates s = ε−1(r− rj) and set V (s) = û(rj + εs). Then
V satisfies (omitting the far-field condition)

∇2
sV = 0 , s ≡ |s| ≥ 1 ,(A.3)

∂sV = βj

(
V − 1

2π

∫ 2π

0

V dθ

)
on s ≡ |s| = 1.(A.4)

Notice that any constant V0 satisfies this problem. We therefore write V = V0 +
μ(ε)V1 + · · · . The inner and outer solutions must satisfy the matching condition

(A.5)
1

D
[GX(rj ; r0) + ∇GX(rj ; r0) · (rj − r) + · · · ] + σ(ε)û1 ∼ V0 + μ(ε)V1 + · · · .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIFFUSION OF PROTEIN RECEPTORS IN DENDRITES 1245

This implies that μ(ε) = ε and that the constant V0 is given by

(A.6) V0 =
GX(rj ; r0)

D
.

In addition, V1 is the solution to the inner problem (A.3) and (A.4) with the far-field
behavior

(A.7) V1 ∼ aj · s , aj ≡
∇GX(rj ; r0)

D
.

A simple separation of variables calculation gives the exact solution

(A.8) V1 = aj · s −
(
βj − 1

βj + 1

)
aj ·

s

|s|2 .

Substituting this into the matching condition (A.5) gives σ(ε) = ε2 and that û1

satisfies the asymptotic singularity conditions

(A.9) û1 ∼ −
(
βj − 1

βj + 1

)
aj ·

(r − rj)

|r − rj |2
as r → rj .

The function û1 is to satisfy Laplace’s equation, the boundary conditions (5.15) and
(5.16), and the singularity conditions (A.9) for j = 1, . . . , N .

Since the two-dimensional Green’s function GX has the logarithmic singularity
1
2π log |r − rj | for r → rj , it follows that ∇GX(r; rj) has the dipole singularity

(A.10)
1

2π

(r − rj)

|r − rj |2
as r → rj .

Unfortunately, ∇GX(r; rj) does not satisfy the boundary conditions (5.15) and (5.16),
so it cannot be used to construct an outer solution with the correct near-field behavior.
On the other hand, we can construct a solution using ∇jGX(r; rj), where ∇j is the
gradient operator with respect to the singular point rj . That is, −∇jGX(r; rj) has the
same singular behavior as ∇GX(r; rj) and also satisfies the boundary conditions (5.15)
and (5.16). The latter follows from the observation that the boundary conditions for
GX do not involve rj so that the boundary and Laplace operators commute with ∇j .
Finally, using linearity and superposition over the NX holes, we readily obtain that
the outer approximation is given explicitly by

(A.11) û ∼ GX(r; r0)

D
+ 2πε2

NX∑
j=1

(
βj − 1

βj + 1

)
aj · ∇jGX(r; rj).
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