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We present a stochastic model of filament growth driven by the motor-assisted transport of particles along
the filament. We show how the growth can be analyzed in terms of a sequence of first passage times for a
particle hopping between the two ends of the filament, and use this to calculate the mean and variance of the
length as a function of time. We determine how the growth depends on the waiting time density of the
underlying hopping process, and highlight differences in the growth generated by normal and anomalous
transport, for which the mean waiting time is finite and infinite, respectively. In the case of normal transport,
we determine the length at which there is a balance between particle-driven assembly and particle-independent
disassembly of the filament. The existence of such a balance point is thought to provide a mechanism for
flagellar length control.
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I. INTRODUCTION

A major unanswered question in cell biology is how cells
regulate the size of their organelles �1�. Size control mecha-
nisms, which are critical for proper cell function, can be
distinguished according to whether the underlying structure
is static or dynamic. Static structures are those that remain
intact once assembled, only undergoing further assembly and
disassembly if they are regenerating in response to damage.
One suggested mechanism for static size control involves a
molecular ruler, in which the organelle size is fixed by the
physical extent of an individual molecule. This occurs for
example in the case of bacteriophage tails �2�. A second type
of static mechanism is sensor-based size control, in which a
signal transduction pathway monitors organelle size and
modulates assembly accordingly. An interesting example of
this has recently been suggested in a model of length control
for salmonella flagellar motor filaments �3�. In this model, a
length-dependent diffusive flux of secretory molecules is
transduced into a chemical signal by means of a negative
feedback circuit involving the secretant. Dynamic structures,
on the other hand, are constantly turning over so that in order
for them to maintain a fixed size, there must be a balance
between the rates of assembly and disassembly. If these rates
depend on the size in an appropriate way then there will be a
unique balance point that stabilizes the size of the organelle.
Recent experimental work suggests that such a dynamic
mechanism may occur in eukaryotic flagella �4,5�. These are
microtubule-based structures that extend to about 10 �m
from the cell and are surrounded by an extension of the
plasma membrane. They are at least an order of magnitude
longer than bacterial flagella.

Flagellar length control is a particularly convenient sys-
tem for studying organelle size regulation, since a flagellum
can be treated as a one-dimensional structure whose size is
characterized by a single length variable. The length of a
eukaryotic flagellum is important for proper cell motility, and
a number of human diseases appear to be correlated with
abnormal length flagella �6�. Radioactive pulse labeling has
been used to measure protein turnover in the flagella of
Chlamydomonas, a unicellular green alga with genetics simi-

lar to budding yeast �4�. Such measurements have suggested
that turnover of tubulin occurs at the distal+end of flagellar
microtubules, and that the assembly part of the turnover is
mediated by intraflagellar transport �IFT�. This is a motor-
assisted motility within flagella in which large protein com-
plexes move from one end of the flagellum to the other �7,8�.
Particles of various size travel to the flagellar tip �antero-
grade transport� at 2.0 �m/s, and smaller particles return
from the tip �retrograde transport� at 3.5 �m/s after drop-
ping off their cargo of assembly proteins at the � end. A
schematic diagram of IFT transport is shown in Fig. 1. Im-
munoflourescence analysis indicates that the number of IFT
particles �estimated to be in the range of 1–10� is indepen-
dent of length �4,5�. If a fixed number of transport complexes
M move at a fixed mean speed v̄, then the rate of transport
and assembly should decrease inversely with the flagellar
length L. On the other hand, measurements of the rate of
flagellar shrinkage when IFT is blocked indicate that the rate
of disassembly is length independent. This has motivated the
following simple deterministic model for length control �4�

dL

dt
=

av̄M

2L
− V , �1�

where a is the effective size of the precursor protein trans-
ported by each IFT particle and V is the speed of disassem-
bly. Clearly, Eq. �1� has a unique stable equilibrium given by

FIG. 1. Schematic diagram of IFT, in which IFT particles travel
with speed v± to the � end of a flagellum. When an IFT particle
reaches the � end it releases its cargo of protein precursors that
contribute to the assembly of the flagellum. Disassembly occurs
independently of IFT transport at a speed V.
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L*=av̄M /2V. Using the experimentally based values M
=10, v̄=2.5 �m/s, L*=10 �m, and V=0.01 �m/s, the ef-
fective precursor protein size is estimated to be a�10 nm. In
the case of a single IFT particle �M =1�, the same equilib-
rium length would be obtained for a disassembly speed of
V=0.001 �m/s. Alternatively, a single particle could unload
M precursor proteins whenever it reaches the distal end of
the filament.

At the microscopic level the motion of molecular motors
is stochastic rather than deterministic. Therefore, it is inter-
esting to investigate the dynamics of filament growth driven
by stochastic particle transport. In this paper we consider a
very simple stochastic model in which a single particle hops
unidirectionally along a single filament track, reversing di-
rection whenever it hits the � ends of the filament. In addi-
tion, whenever the particle reaches the � end, the length of
the filament is increased by a fixed amount. Thus the growth
of the filament can be described in terms of a sequence of
first passage times for a particle hopping between the two
ends of the filament. In the case of pure growth �no disas-
sembly� we calculate the mean and variance of the filament
length as a function of time, and show how these quantities
depend on the waiting time density of the hopping process.
In particular, we highlight the differences in growth gener-
ated by normal transport �finite mean waiting time� and by
anomalous transport �infinite mean waiting time�. In the case
of normal transport, we determine the expected length at
which there is a balance between particle-driven assembly
and particle-independent disassembly.

II. PARTICLE HOPPING MODEL

Consider a particle hopping along a single filament track
as shown in Fig. 2. The track is modeled as a discrete one-
dimensional lattice with lattice spacing �. Suppose that there
are initially N0+1 lattice sites labeled n=0, . . . ,N0, with n
=0 corresponding to the � end and n=N0 to the � end. The
initial length of the filament is thus L0=N0�. Starting at the
� end at time t=0, the particle steps towards the � end. The
times � between successive steps are taken to be indepen-

dent, identically distributed random variables with a com-
mon waiting time density �+���. When the particle reaches
the current � end, the length of the filament is increased by
one lattice site to form the new � end. Once the particle has
reached this new lattice site, the hopping process reverses
direction with a corresponding waiting time density �−�t�.
Two distinct waiting time densities are introduced in order to
allow for an asymmetry in the anterograde and retrograde
motions. After returning to the � end the particle reverses
direction again and the process continues iteratively. For
simplicity, we ignore additional delays associated with the
particle reversing direction at either end.

Denoting the successive times at which the particle re-
turns to the � end by Tj

± , j�1, there is the following se-
quence of events: the particle travels a distance L0+ j� from
� to � over the time interval �Tj−1

− ,Tj
+� and then a distance

L0+ j� from � to � over the time interval �Tj
+ ,Tj

−� for j
�1 with T0

−=0. Each time the particle makes a return trip to
the � end, the length of the filament is increased by �. Let
f j

±�t�dt be the probability that t�	Tj
±� t+dt with 	Tj

+=Tj
+

−Tj−1
− and 	Tj

−=Tj
−−Tj

+. Then f j
+�t� is the first passage time

density for a particle to travel a distance L0+ j� starting from
the � end �anterograde portion of jth roundtrip�, and f j

−�t� is
the first passage time density for a particle to travel a dis-
tance L0+ j� from the � end �retrograde portion of jth
roundtrip�. Let L�t� be the length of the flagellum at time t
and introduce the length probability Pj�t�=Prob�L�t�=Lj�,
where Lj =L0+ j�. It follows that L�t�=Lj if and only if Tj

+


 t�Tj+1
+ . Hence,

Pj�t� = �
0

t

Fj+1�t − t��gj�t��dt�, �2�

where gj�t�� is the probability density that the particle has
just made the jth visit to the � end at time t� and Fj+1�t
− t�� is the probability that the particle has not made the �j
+1�th visit during the time interval t− t�. In terms of the first
passage time densities

Fj�t� = �
t

� ��
0

t�
f j

+�t� − t��f j−1
− �t��dt��dt� �3�

and

gj�t� = �
0

t �
0

t�
f j

+�t − t��f j−1
− �t� − t��gj−1�t��dt�dt� �4�

for j�2 with g1�t�= f1
+�t�. We solve the iterative equation for

gj�t� using Laplace transforms and substitute the result into

the Laplace transform of Eq. �2�. Since F̂j�s�= �1
− f̂ j

+�s� f̂ j−1
− �s�� /s, it follows that

P̂j�s� =
ĝj�s� − ĝj+1�s�

s
, �5�

with

FIG. 2. Particle hopping along a one-dimensional filament that
is modeled as a discrete lattice. When the particle reaches the � end
of the filament, a lattice site is added to form the new � end and the
particle reverses its direction. The particle also reverses direction at
the � end.
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ĝj�s� = f̂ j
+�s�	

k=1

j−1

� f̂ k
+�s� f̂ k

−�s�� . �6�

Note that 
 j=0
� P̂j�s�=s−1, which reflects the normalization

condition 
 j=0
� Pj�t�=1.

It remains to determine f̂ j
±�s� and, hence, ĝj�s� in terms of

the waiting time densities �±�t�. Suppose that the particle has
just reached the � end at time t=0. Let �n

±�t� be the prob-
ability density for making the nth step towards the � end at
time t. This satisfies the iterative equation

�n
±�t� = �

0

t

�±����n−1
± �t − ��d� , �7�

with �1
±���=�±���. Laplace transforming this equation gives

�̂n
±�s� = ��̂±�s��n. �8�

It follows that the Laplace transforms of the first passage
time densities are

f̂ k
±�s� = ��̂±�s��N0+k. �9�

Substituting into Eq. �6� and evaluating the product over k
yields the result

ĝj�s� = ��̂+�s�� jN0+j�j+1�/2��̂−�s�� jN0+j�j−1�/2. �10�

We have restricted our analysis to the case of unidirec-
tional transport, since we are interested in the particular
problem of intraflagellar transport �see Sec. IV�. Note, how-
ever, that it is straightforward to generalize our analysis to
allow for bidirectional transport, in which the particle under-
goes a �biased� random walk around the filament. The deliv-
ery of cargo to the � end is now formulated in terms of a
first passage time problem on a ring. It is still necessary to
keep track of the times the particle returns to the � end,
since a particle returning to the � end cannot deliver any
cargo proteins unless it has first “refilled” at the � end.

III. MEAN AND VARIANCE OF FILAMENT
LENGTH

A useful way to characterize the stochastic growth of the
filament is in terms of the mean and variance of the length
L�t�. Let n�t�=
 j=0

� jnPj�t� denote the nth moment of the
distribution Pj�t�. Then

L� = L0 + �1�t�, 	L2� = �2�2�t� − 1�t�2� . �11�

We will determine the large-t behavior of the mean and vari-
ance in terms of the small-s behavior of the Laplace trans-
forms ̂n�s�. First, note from Eq. �5� that

̂1�s� =
1

s


j=1

�

ĝj�s�, ̂2�s� =
1

s


j=1

�

�2j − 1�ĝj�s� . �12�

For the sake of simplicity, we evaluate these sums in the
symmetric case �+=�−=�, and set L0=0, since the leading
order large-t behavior will be independent of L0. Then
ĝj�s�=e−j2��s� with

��s� = − ln �̂�s� . �13�

From the definition of the Laplace transform

�̂�s� = �
0

�

e−st��t�dt = �
0

�

�1 − st + s2t2/2 − ¯ ���t�dt ,

�14�

so that in the small-s limit

�̂�s� = 1 − �s + �̂2s2/2 ¯ , �15�

provided that mean �and variance� of the waiting time be-

tween steps is finite, that is, �=�0
�t��t�dt�� and �̂2

=�0
�t2��t�dt��. We will refer to this case as normal particle

transport along the filament. We will also consider a form of
anomalous transport, in which the mean waiting time is in-
finite and the Laplace transform of the waiting time density
has noninteger power-law behavior in the small-s expansion
�9�

�̂�s� = 1 − Bs� + ¯ , 0 � � � 1. �16�

In the limit s→0, the function ��s� has the asymptotic ex-
pansion ��s���s for normal transport and ��s��Bs� for
anomalous transport.

In order to evaluate the sums in Eq. �12�, we use the
Poisson summation formula to derive the identity �after res-
caling�

�n,0 + 2

j=1

�

jne−j2��s� = � 1

��s���n+1�/2

��cn�0� + 2

p=1

�

cn�p/���s���
�17�

with

cn�z� = �
−�

�

�y�n cos�2�zy�e−y2
dy .

In the limit s→0, z= p /���s�→� for p�0 and the oscilla-
tory integral cn�z� can be evaluated by performing the change
of variables �=y /z and using steepest descents. This shows
that cn�z��zne−�2z2

in the limit z→�, which is exponentially
small compared to cn�0�. Therefore, in the small-s limit, we
keep only the term cn�0� in Eq. �17� and use the asymptotic
expansion of ��s�. Let us first consider the case of normal
transport with ��s���s. Evaluating Eq. �17� in the limit s
→0 for n=0,1 and substituting into Eq. �12� shows that

̂1�s� �
1

2s
��

�s
, ̂2�s� �

1

�s2 . �18�

Using a Tauberian theorem �9�, we can then invert the
Laplace transforms to obtain
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1�t� � �t/�, 2�t� � t/� . �19�

It follows from Eq. �11� that L����t /� and 	L2��0. Dif-
ferentiating L� with respect to t, we find that in the large-t
limit, the mean length evolves according to Eq. �1� with V
=0 �no disassembly�, Ma=� and v̄=� /�. The mean velocity
v̄ of the particle is simply equal to the length � of a single
step along the filament divided by the mean waiting time �.
If the variance of the waiting times is also finite then one can
expand ��s� to second order in s and show that 	L2�
=O�1� with �	L2� / L�� t−1/2 as t→�.

The above analysis can be repeated for anomalous trans-
port using the asymptotic expansion ��s��Bs� for 0��
�1. In this case

̂1�s� �
1

2s
� �

Bs� , ̂2�s� �
1

Bs1+� . �20�

Applying a Tauberian theorem �9� gives

1�t� �
t�/2

2��1 + �/2�
��

B
, 2�t� �

t�

B��1 + ��
, �21�

where ��z�=�0
�tz−1e−tdt is the gamma function. Equation

�11� implies that L�� t�/2 and 	L2�� t�. Thus the growth
of the filament can no longer be characterized in terms of the
simple deterministic Eq. �1�, and fluctuations become signifi-
cant.

IV. MOTOR-ASSISTED TRANSPORT

We now consider a particular model of particle hopping
that relates more directly to motor-assisted transport along a
filament �10�. In the case of Chlamydomonas, anterograde
IFT is driven by a kinesin-based motor complex whereas
retrograde IFT is dynein based �8�. For concreteness, we
construct the master equation for kinesin-based transport and
extract from this the anterograde waiting time density �+ for
the equivalent hopping model. An identical analysis can be
carried out for dynein-based transport and the associated ret-
rograde waiting time density �−. As in the previous section
we set �+=�−=�.

A single kinesin motor, which has an approximate step
length size l=10 nm, typically makes around 100 steps be-
fore it unbinds from a microtubule filament �11�. This im-
plies an unbinding probability of �0=1/100 per step. Given a
motor speed v=2 �m s−1, the unbinding rate is �̄+
� l / ��0v�=0.5 s−1. However, IFT particles are large protein
complexes that are probably pulled by several molecular mo-
tors simultaneously. Suppose that there are m motors per IFT
particle and that each motor has the same unbinding prob-
ability �0. Also assume that the speed of the IFT particle is
independent of how many motors are bound to the microtu-
bule, provided at least one is bound. If the motor particles are
uncorrelated then the unbinding probability per step is of the
order �0

m and the unbinding rate becomes �+� l / ��0
mv� �10�.

In fact, a more detailed model of cooperative cargo transport
by several molecular motors shows that there is a distribution
of unbinding rates �12�. We will ignore this additional source

of stochasticity here and consider a single effective unbind-
ing rate. The effective binding rate �− of an IFT particle is
given by the binding rate of a single motor, since once one
motor is bound to the microtubule the particle moves with
the speed v. Finally, whenever an IFT particle unbinds from
a microtubule, in principle, it can diffuse within the cyto-
plasm of the cell. However, the presence of several intracel-
lular filaments and organelles strongly restricts the motion of
the unbound IFT particle, so that to a first approximation it
will stay in close proximity to its point of detachment. There-
fore, the motion of an IFT particle is characterized by di-
rected motion along the microtubule interspersed with pauses
when it unbinds. The basic model is illustrated in Fig. 3.

Given the above simplifications, we can write down a
master equation for motor-assisted transport along a one-
dimensional filament track. Since we are interested in ex-
tracting the corresponding waiting time density, it is suffi-
cient to consider an infinite lattice. Let pn�t� be the
probability that the particle is at the lattice site n at time t and
is in the bound �mobile� state. Denote by qn�t� the corre-
sponding probability that the particle is in the unbound �im-
mobile� state. Suppose that the particle starts at site n=0 in a
bound state at time t=0. We then have the system of equa-
tions

dpn

dt
= − �+pn + �−qn + K�pn−1 − pn� , �22�

dqn

dt
= − �−qn + �+pn, �23�

where K is the rate of anterograde hopping �for retrograde
hopping K→−K�. The initial conditions are pn�0�=�n,0 and
qn�0�=0. Laplace transforming Eqs. �22� and �23� gives

sp̂n�s� − �n,0 = − �+p̂n�s� + �−q̂n�s� + K�p̂n−1�s� − p̂n�s��

sq̂n�s� = − �−q̂n�s� + �+p̂n�s� ,

which can be solved iteratively to yield the result

p̂n�s� =
1

K
� 1

1 + ��s�/K�n+1

, q̂n�s� =
�+

s + �−
p̂n�s� , �24�

where

FIG. 3. Two-state particle hopping model. At each lattice site n
a particle can undergo transitions between a bound state �filled
circle� and an unbound state �unfilled circle� at rates �±. In the
bound state the particle hops to neighboring sites n±1 at a rate K±,
whereas in the unbound state it is immobile. For anterograde mo-
tion K+=K, K−=0, whereas for retrograde motion K+=0, K−=K.
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��s� =
s�s + �+ + �−�

s + �−
�25�

The next step is to reformulate the model in terms of a
particle hopping with a waiting time density ��t�. Let rn�t�
= pn�t�+qn�t� be the total probability that the particle is at site
n at time t. For this event to occur, the particle has to have
made n steps in some time interval �0, t�� and then have
made no further steps in the interval �t� , t�. Thus

rn�t� = �
0

t

�n�t����t − t��dt�, �26�

where �n�t� is the probability density for the time of occur-
rence of the nth step and

��t� = �
t

�

��t��dt� �27�

is the probability that the particle has not left the nth site at
time t. In terms of Laplace transforms,

r̂n�s� =
�̂�s�n�1 − �̂�s��

s
. �28�

From Eqs. �24� and �25�, it can be seen that

r̂n�s� =
��s�
sK

� 1

1 + ��s�/K�n+1

, �29�

which implies that

�̂�s� =
1

1 + ��s�/K
. �30�

Having obtained the waiting time density, the analysis of
Secs. II and III can now be applied. In particular, Taylor
expanding Eq. �30� as a power series in s using Eq. �25�

�̂�s� = 1 − s
�+ + �−

K�−
+ s2� �+

K�−
2 + ��+ + �−

K�−
�2� + ¯ ,

�31�

the mean waiting time distribution for the two state hopping
process can be extracted as �= ��++�−� /K�−. This can then
be substituted into Eq. �19� to determine the mean rate of
growth of the filament in the large-t limit. The relationship
between master equations such as �22� and �23� and particle-
hopping models with a corresponding waiting time density is
of course well known within the context of continuous time
random walks �9,13,14�. The major point of our analysis is to
show how this can be incorporated into a theory of motor-
assisted filament growth. One of the observations that arose
in early studies of continuous-time random walks is that
when there exist multiple states of a particle arising, for ex-
ample, from multiple traps, anomalous transport can occur at
large but finite times, with normal transport being recovered
in the large-t limit �13,14�. It is likely that the complex sys-
tem of proteins and motors involved in intraflagellar trans-
port also exist in more than two states with different degrees
of mobility. Such systems could, therefore, also potentially
exhibit anomalous behavior at intermediate time scales. It

should be emphasized that experimental observations of IFT
particles suggest that their motion is quite regular, at least
under normal conditions �8�. However, defects in IFT trans-
port, which are thought to occur in a number of diseases �6�
might result in more disordered behavior.

V. FLAGELLAR LENGTH CONTROL

So far we have ignored spontaneous, particle-independent
disassembly of a filament, which occurs in intraflagellar
transport. Incorporating this into the above analysis is non-
trivial, since one now has to keep track of the random times
at which the particle returns to the � end and the random
amount of material lost during each return trip. However, in
the case of normal transport, we can determine the balance-
point and estimate fluctuations about the balance point using
the following approximation. Suppose that L*=N*� is the
equilibrium length of the flagellum. Let f*�t� be the first pas-
sage density for a particle to make one round trip to the
� end given the length L*. In the symmetric case, f*�t� is

given by the inverse Laplace transform of e−2L*��s�/�. We de-
fine the balance point to be when the rate of disassembly V
times the mean first passage time is equal to the increase M�
in filament length generated by the IFT particle on each visit
to the � end: VT�=M�, where T�=�0

�tf*�t�dt. Fluctuations
about this equilibrium are then estimated according to �2

=V2�T2�− T�2� with T2�=�0
�t2f*�t�dt. Both the mean and

variance of the first passage times can be extracted from
Taylor expanding the Laplace transform of f*�t�

f̂*�s� = �̂�s�2N*

= �1 − �s + �̂2s2/2 + ¯ �2N*

= 1 − 2N*�s + �N*�̂2 + N*�2N* − 1��2�s2 + ¯ .

�32�

We have assumed that both the mean and variance of the
waiting times are finite. It follows that:

T� = 2N*�, T2� − T�2 = 2N*��̂2 − �2� . �33�

Thus the expected length at the balance point is

L* =
�v̄
2V

, �34�

with v̄=� /�, and the estimated relative size of fluctuations
about the balance point is

	 �
�

L* = V�2��̂2 − �2�
�L* . �35�

In the particular case of the two-state model discussed in

Sec. IV, the term �̂2 can be obtained from Eq. �31�

�̂2 = 2� �+

K�−
2 + �2� . �36�

Substituting into Eq. �35� gives
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	 =
2V

K�
� �

L*� K

�−

�+

�−
+

�2K2

2
� . �37�

Also

v̄ =
K��−

�+ + �−
. �38�

Under normal conditions, the motion of IFT particles appears
processive, which suggests that in the two-state model A
��+ /�−�1 and B�K /�−�1, that is, the particle spends
most of its time in the mobile state. Taking v̄�K�
=2.5 �m/s, L*=10 �m, �=10 nm, and V=0.01 �m/s, we
obtain the estimate 	�2�10−4�AB+1/2. Thus the relative
size of the length fluctuations, which depends on the product
AB, is expected to be small. However, defects in IFT trans-
port that result in an increase in the rate �+ of transitions to
an immobile state could lead to a reduced mean velocity v̄, a
reduction in the length L* at the balance point and an in-
crease in the relative size of length fluctuations.

VI. DISCUSSION

In this paper we have shown how the stochastic dynamics
of intraflagellar transport, an important component of flagel-
lar length control, can be formulated in terms of a first pas-
sage time problem. We have derived expressions for the
mean and variance of the length during a growing phase,
where disassembly is neglected, and estimated the size of
fluctuations when the flagellum is at its balance point. It
should be possible to measure these fluctuations experimen-
tally, thus providing another test for the IFT model of flagel-
lar length control �4,5�. Although recent experimental studies
have obtained results that are consistent with such a model, it
is possible that other control mechanisms are involved �15�.
For example, there must be some mechanism for regulating
the number of IFT particles so that the IFT protein content

per flagellum is maintained at a constant, length-independent
level. When a flagellum is severed some of these particles
are lost and must be replaced in order to recover the original
length. Thus the problem of flagellar length control reduces
to a counting problem. In our analysis we assumed that there
is only a single IFT particle, which would mean that the
system only has to detect the presence or absence of the
particle following damage.

The presence of more than one IFT particle leads to a
potentially interesting extension of our work, namely, incor-
porating the effects of crowding, which could be important
when there are several IFT particles moving on a short fla-
gellum. That is, if the mutual exclusion or hardcore repulsion
of the IFT particles is taken into account, then the resulting
particle interactions can lead to cooperative effects such as
the buildup of traffic jams on the filament. One way to ad-
dress this issue would be to consider a totally asymmetric
exclusion process �16�, in which particles can hop unidirec-
tionally to neighboring sites on a one-dimensional lattice,
provided that these sites are unoccupied. Recently such an
exclusion process has been combined with a kinetic model of
binding and unbinding of particles to the lattice, which is
directly applicable to the problem of analyzing the unidirec-
tional motion of motor proteins on cytoskeletal filaments
�17–19�. One of the difficulties in taking into account exclu-
sion effects in our model is that interactions between the IFT
particles means that we can no longer analyze the growth
process in terms of an independent sequence of first passage
times for a single tagged particle. That is, one has to keep
track of all the particles since their motions are correlated.
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