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In this Letter we show how nontrivial forms of spatially localized oscillations or breathers can occur
in two–dimensional excitable neural media with short-range excitation and long–range inhibition.
The basic dynamical mechanism involves a Hopf bifurcation of a stationary pulse solution in the
presence of a spatially localized input. Such an input could arise from external stimuli or reflect
changes in the excitability of local populations of neurons as a precursor for epileptiform activity.
The resulting dynamical instability breaks the underlying radial symmetry of the stationary pulse,
leading to the formation of a nonradially symmetric breather. The number of breathing lobes is
consistent with the order of the dominant unstable Fourier mode associated with perturbations of
the stationary pulse boundary

PACS numbers: 87.19.La, 87.10.+e, 05.45.-a

Analysis of the dynamical mechanisms underlying spa-
tially structured activity states in neural tissue is cru-
cially important for understanding a wide range of neu-
robiological phenomena, both naturally occurring and
pathological. For example, neurological disorders such
as epilepsy are characterized by spatially localized os-
cillations and waves propagating across the surface of
the brain [1], whilst traveling waves can be induced in
vitro by electrically stimulating disinhibited cortical slices
[2, 3]. Spatially coherent activity states are also preva-
lent during the normal functioning of the brain, encoding
local properties of visual stimuli [4], representing head di-
rection [5], and maintaining persistent activity states in
short–term working memory [6]. One of the major chal-
lenges in neurobiology is understanding the relationship
between spatially structured activity states and the un-
derlying neural circuitry that supports them. This has
led to considerable recent interest in studying reduced
neural field models [7–10], in which the large–scale dy-
namics of populations of neurons is described in terms
of a nonlinear integrodifferential equation whose associ-
ated integral kernel represents the spatial distribution of
neuronal synaptic connections. Such models provide an
important example of spatially extended excitable sys-
tems with nonlocal interactions.

In this Letter we show how nontrivial forms of spa-
tially localized oscillations or breathers can occur in neu-
ral field models in the presence of spatially localized sta-
tionary inputs. Such inputs could arise from external
stimuli or reflect changes in the excitability of local popu-
lations of neurons as a precursor for epileptiform activity.
Previously, we have shown that breathers can arise in a
purely excitatory network (with a positive integral ker-
nel) through a Hopf bifurcation of a stationary pulse cen-
tered about the input [11, 12]. An analogous mechanism
occurs in nonlinear PDE models of diffusively coupled
excitable media, which is consistent with the observation
that an excitatory neural network can be reduced to an
equivalent PDE model for certain choices of the interac-

tion kernel [13]. Here we investigate the occurrence of
breathers in a two–dimensional network with excitatory
and inhibitory interactions, both of which are present
in the intact cortex. We show that nonlocal inhibition
leads to a new form of symmetry breaking dynamical in-
stability, whereby a two-dimensional radially symmetric
stationary pulse bifurcates to a nonradially symmetric
breather with an integral number of lobes. We also es-
tablish using linear stability analysis that the number
of breathing lobes corresponds to the dominant unstable
Fourier mode associated with perturbations of the sta-
tionary pulse boundary.

We proceed by considering neural field equations of the
form [9]

τ
∂u

∂t
= −u+ w ∗ f(u) − β�+ I

1
ε

∂�

∂t
= −�+ u. (1)

where
(
w ∗ f(u)

)
(r, t) =

∫
R2
w(|r − r′|)f(u(r′, t))dr′

where r = (r, θ) and r′ = (r′, θ′). The neural field u(r, t)
represents the local activity of a population of neurons at
position r, while �(r, t) represents a local negative feed-
back mechanism, such as spike-rate adaptation, with ε, β
determining the relative rate and strength of feedback.
τ is a synaptic or membrane time constant, I is an ex-
ternal input, and f denotes an output firing rate func-
tion. The homogeneous weight distribution w(|r − r′|)
defines the strength of the synaptic connections between
neurons at r and r′. Two common forms of the weight
function are excitatory, i.e., a positive, monotonically de-
creasing function, or Mexican hat, i.e., short–range ex-
citation (positive) and long–range inhibition (negative),
often represented by a difference of Gaussians or expo-
nentials. Let us consider the existence and stability of
a radially-symmetric, stationary pulse of Eq. (1) for a
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homogeneous Mexican hat weight w. We proceed by ex-
panding our previous analysis of excitatory networks [12].
As a simplification we take f(u) = H(u−κ) where H de-
notes the Heaviside function and κ a threshold, and for
concreteness we consider radially symmetric Gaussian in-
puts I(r) = Ie−r2/σ2

. We fix the units of time by setting
τ = 1 (typically τ = 10 ms). From symmetry argu-
ments we expect the existence of a radially symmetric,
stationary pulse (u(r, t), �(r, t)) = (U(r), Q(r)), satisfy-
ing Q = U , with U(a) = κ, κ < U(r) < ∞ for r ∈ [0, a),
U(r) < κ for r ∈ (a,∞). The profile of the pulse is

(1 + β)U(r) = M(a, r) + I(r)

where

M(a, r) =
∫ 2π

0

∫ a

0

w(|r − r′|)r′dr′dθ. (2)

For a given weight distribution w, we can determine pulse
existence curves by imposing the self-consistency (thresh-
old) condition U(a) = κ, which implies that

(1 + β)κ = M(a, a) + I(a), (3)

This defines the nonlinear relationship between the input
strength I and the pulse width a. In Fig. 1-b we plot
existence curves for the Mexican hat weight function

w(r) =
ae

σe
2
wK(r/σe) − ai

σi
2
wK(r/σi) (4)

where wK(r) = (2/3π)[K0 (rs) −K0 (2rs)] and Kν is the
modified Bessel function of the second kind; see Fig. 1-a .
This choice allowsM(a, r) to be expressed as a finite sum
of modified Bessel functions, and the coefficient 2/3π fits
wK(r) to the exponential function e−r/(2π) [12].

Linear stability of the stationary pulse is determined
by the evolution of small time-dependent perturbations
u(r, t) = U(r)+ ϕ̄(r, t) and �(r, t) = Q(r)+ ψ̄(r, t) which,
to first order in ϕ̄, ψ̄, satisfy the linearized system

∂ϕ̄

∂t
= −ϕ̄+ w ∗ [

H ′(U − κ)ϕ̄
] − βψ̄

1
ε

∂ψ̄

∂t
= −ψ̄ + ϕ̄. (5)

We investigate saddle-node and Hopf bifurcations
thereof, by relating the eigenvalues to the gradient of the
input I. Taking ϕ̄(r, t) = ϕ(r)eλt and ψ̄(r, t) = ψ(r)eλt

and using the identity H ′(U(r) − κ) = δ(r − a)/|U ′(a)|
leads to the spectral problem in λ

µϕ(r) =
∫ 2π

0

w(|r − a′|)ϕ(a, θ′)dθ′ (6)

where a′ = (a, θ′), and µ relates to λ by

λ+ 1 +
εβ

λ+ ε
=

µ

|U ′(a)| .

FIG. 1: (a) Plot of the Mexican hat weight function w for
ae = 1, σe = 1, ai = 1.4, σi = 1.8. (b) Corresponding
pulse existence curves with black (gray) indicating stability
(instability) of the stationary pulse solution. S and H indicate
saddle-node and Hopf bifurcation points, respectively. Other
parameters are κ = 0.15, β = 2.25, ε = 0.03, σ = 2.4.

The essential spectrum, associated with the set of func-
tions ϕ for which the integral in (6) vanishes, is always
negative and does not incur instability. Stability thus de-
pends upon the point spectrum, which is associated with
functions ϕ satisfying

µϕ(a, θ) = a

∫ 2π

0

w
(
2a sinφ

)
ϕ(a, θ − φ)dφ (7)

By requirement of periodicity, solutions of this equation
are exponential functions einθ, where n ∈ Z, with corre-
sponding spatial eigenvalues

µn(a) = 2a
∫ π

0

w
(
2a sinφ

)
cos(2nφ)dφ,

which are real and depend on the pulse width a. The
eigenvalues associated with the linearization (5) are then

λ±n =
1
2

(
−Λn ±

√
Λ2

n − 4ε(1 + β)(1 − Γn)
)
, n ≥ 0,

where

Λn = 1 + ε− Γn(1 + β), Γn =
µn(a)

(1 + β) |U ′(a)| .

Stability of the stationary pulse is determined by the gra-
dient of the current input D(a) = |I ′(a)| according to

ε > β : D(a) > µn(a) −Mr(a) ≡ DSN(a) (8)

ε < β : D(a) >
(

1 + β

1 + ε

)
µn(a) −Mr(a) ≡ Dn

c (a) (9)

where Mr(a) = −∂M(a, r)/∂r|r=a. The modified Bessel
weight wK allows Mr(a) and µn(a), for all n, to be
expressed as finite sums of modified Bessel functions.
Points of equality in (8) are associated with saddle-node
bifurcations, while that of (9) correspond to Hopf bifur-
cations of the stationary pulse. Note, conditions (8)-(9)
are valid when Mr(a) > 0, which is always true for an
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FIG. 2: Plot of the the functions D(a) (black curve) and
Dn

c (a) (blue curves) for different values of n with σ = 5.2; see
Fig. 1 for other parameters. The stationary pulse is stable if
D(a) > Dn

c (a) for all n, with a Hopf bifurcation occurring at
the first value of a for which this is no longer true. The largest
Dn

c (a) determines the mode that dominates the instability for
pulse width a, e.g., a value of I = 0.53 corresponds to a = 2,
in which case the n = 1 mode should dominate the instability.

excitatory weight and is valid in large regions of param-
eter space for a Mexican hat. Otherwise the absolute
value |U ′(a)| must be treated more carefully. Since the
input strength I and pulse width a are related by (3),
we eliminate the explicit dependence of D(a) on I for a
Gaussian input by

D(a) =
2a
σ2
I(a) =

2a
σ2

(
κ(1 + β) −M(a, a)

)
. (10)

The pulse width a, determined by I, is a bifurcation
parameter of the system, with a Hopf bifurcation occur-
ring at a transverse intersection point of the graphs of
D(a) and Dn

c (a) where D(a) > Dn
c (a) fails to hold for all

n; see Fig. 2. The spatial extent of the current input σ
controls the steepness of D(a) (see (10)), thereby deter-
mining which mode destabilizes in the Hopf bifurcation.
Importantly, the relative values of Dn

c (a) preserve the
ordering of linear dominance of each Fourier mode, in-
dicating which mode should dominate the linear growth.
Our analysis thus establishes that a Mexican hat net-
work can undergo a Hopf bifurcation corresponding to
excitation of a nonzero Fourier mode (n > 0). As we
confirm numerically below, this leads to the formation of
non radially symmetric breathers. Such behavior should
be contrasted with a purely excitatory network, for which
the Hopf bifurcation is always associated with excitation
of the n = 0 mode, thus generating radially symmetric
breathers [12]. The latter result follows from equation
(9) and the fact that for positive w(r),

µn(a) ≤ 2a
∫ π

0

w
(
2a sin φ

)∣∣ cos(2nφ)
∣∣dφ

≤ 2a
∫ π

0

w
(
2a sin φ

)
dφ ≡ µ0(a),

FIG. 3: Small perturbations in terms of Fourier modes (light
curves) associated with general perturbations of the threshold
boundary of a stationary pulse (dark curves).

The basic structure of the emerging breathers can be
predicted by noting that a small perturbation ϕ of the
stationary pulse U results in a small perturbation δ =
(δr(θ), θ) of the threshold boundary a = (a, θ). The cor-
responding threshold condition is

κ = u(a + δ) = U(a+ δr(θ)) + ϕ(a + δ),

= U(a) + U ′(a)δr(θ) + ϕ(a, θ) + O(|δ|2).

Using that U(a) = κ, we find δr(θ) = ϕ(a,θ)
|U ′(a)| + O(|δ|2).

Since ϕ may be decomposed into Fourier modes in the
linear regime, we illustrate in Fig. 3 the perturbative
effect of each mode on the threshold boundary. Fur-
thermore, if one mode dominates the linear growth of
an instability, we expect the boundary of the breather
to develop similar structure. We note that nonradially
symmetric instabilities have also been found in a study
of homogenous networks, where concentric ring solutions
can destabilize into multiple bump solutions, the number
of which corresponds to the Fourier mode dominating the
instability [14].

Numerical simulations were performed using a Runge-
Kutta (RK4) scheme, with a fast-Fourier transform to
handle the integral on a rectangular grid and quadrature
on an irregular polar grid. The polar grid consists of
concentric rings, with each ring increasing the grid point
count by one more than the neighboring inner ring. The
ring spacing is chosen so that each area element con-
tributes equal weight to the integral. Selecting I so that
the system is positioned beyond the bifurcation point
with mode n dominating the instability, the system is
evolved from a small random perturbation of the corre-
sponding exact (unstable) stationary pulse solution. Our
simulations reveal many types of spatially localized, peri-
odic solutions that are generated by the Mexican hat net-
work. In all cases the periodic solution exhibits a lobed
structure, the number of which corresponds to the dom-
inant Fourier mode. Breathers take the general form of
emerging and retracting lobes, which often rotate about
the input in mirror symmetry, as shown in Fig. 4. On
the rectangular grid it is possible to generate breathers
for n = 1, 2, 4, 8 which exhibit strictly radially expand-
ing/contracting lobes, that do not rotate about the input,
as shown in Fig. 5-a. It is likely that such breathers are
observed because they are commensurate with the grid.
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FIG. 4: Breathers for the Mexican hat weight function. Light
colors denote suprathreshold values, with the number of lobes
corresponding to the dominating unstable Fourier mode.

FIG. 5: (a) Strictly expanding/contracting four-fold breather
on a rectangular grid. (b) Three-fold rotor.

Interestingly, when the initial transient is sufficiently ir-
regular, or if a sufficiently large initial perturbation with
n-fold symmetry is applied, spatially localized rotating
solutions (or rotors) emerge, see Fig. 5-b.

One of the predictions of our analysis is that breathers
may be observed in tangential slices (an effective two-
dimensional medium) when a persistent localized input
is applied. In the case of disinhibited cortical slices,
a radially symmetric input should produce roughly ra-
dially symmetric breathers of activity, whereas, if in-
hibitory connections are maintained, nonradially sym-

metric breathers should be observed. There are a number
of experimental challenges to overcome, however, includ-
ing the destruction of neurons due to persistent current
input and the control of the structure of the input. The
use of electric fields by Richardson et al. [2] may be one
feasible approach. Experimental verification of breathers
may reveal that some form of slow, negative feedback is
playing a strong role in the dynamics of neural popula-
tions, lending support for the use of rate-based neural
network models. Since breathers continue to exist in the
presence of inhibition, our work also identifies a mech-
anism for the generation of stimulus–induced coherent
oscillations, which have been suggested to play an impor-
tant role in the processing of sensory stimuli [15]. From
a more general dynamical systems perspective, we have
shown how complex spatially localized oscillations can
arise in two–dimensional excitable media with nonlocal
Mexican hat interactions. This then raises the interesting
question as to whether or not analogous dynamical insta-
bilities can occur in diffusively coupled excitable media.
Indeed, it has recently been shown that Mexican hat net-
works exhibit a range of dynamical phenomena also found
in three–component reaction-diffusion systems [16].
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