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WEAKLY INTERACTING PULSES IN SYNAPTICALLY COUPLED
NEURAL MEDIA∗

PAUL C. BRESSLOFF†

Abstract. We use singular perturbation theory to analyze the dynamics of N weakly interacting
pulses in a one-dimensional synaptically coupled neuronal network. The network is modeled in
terms of a nonlocal integro-differential equation, in which the integral kernel represents the spatial
distribution of synaptic weights, and the output activity of a neuron is taken to be a mean firing rate.
We derive a set of N coupled ordinary differential equations (ODEs) for the dynamics of individual
pulses, establishing a direct relationship between the explicit form of the pulse interactions and the
structure of the long-range synaptic coupling. The system of ODEs is used to explore the existence
and stability of stationary N -pulses and traveling wave trains.
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1. Introduction. Synaptically coupled neuronal networks provide an important
example of spatially extended excitable systems with nonlocal interactions. The net-
work dynamics is usually modeled in terms of an integro-differential equation, in which
the integral kernel represents the spatial distribution of synaptic weights and the out-
put activity of a neuron is taken to be a mean firing rate [41, 12]. As in the case of
nonlinear PDE models of diffusively coupled excitable systems [23], neuronal networks
can exhibit a variety of coherent pulse-like structures including both stationary and
traveling solitary pulses. Traveling pulses tend to occur when synaptic connections are
predominantly excitatory and there is some form of slow local adaptation or recovery
[34, 7], whereas stationary pulses occur in the presence of lateral inhibition [1, 35, 40].
Analogous solutions are found in integrate-and-fire networks, where the output of a
neuron is taken to be a sequence of spikes rather than a firing rate [13, 4, 24]. The
formation of localized activity states can be used to model a number of neurobiologi-
cal phenomena. For example, traveling pulses have been observed in disinhibited slice
preparations [6, 20, 42] using voltage-sensitive dyes and multiple electrodes. An indi-
vidual pulse is generated by a brief current stimulus, whereas a train of pulses occurs
in the case of repeated stimulation. A second example is given by a delayed response
task, in which an animal is required to retain information about a sensory cue across a
delay period between the stimulus and behavioral response. Physiological recordings
in prefrontal cortex have shown that spatially localized groups of neurons fire during
the recall task and then stop firing once the task has finished [18, 39]. Thus persis-
tent localized states of activity are thought to be neural correlates of spatial working
memory. An interesting question then concerns the nature of the interactions between
multiple regions of localized activity induced by more complex stimuli.

Although there are an increasing number of studies regarding the behavior of soli-
tary pulses in excitable neural media, there is relatively little known about multipulse

∗Received by the editors October 5, 2004; accepted for publication (in revised form) April 13,
2005; published electronically October 3, 2005.

http://www.siam.org/journals/siap/66-1/61637.html
†Department of Mathematics, University of Utah, 155 S. 1400 E, Salt Lake City, UT 84112

(bressloff@math.utah.edu).

57



58 PAUL C. BRESSLOFF

solutions. One approach to studying stationary N -pulse solutions in rate models is
to convert the integro-differential equation into a corresponding fourth-order PDE by
an appropriate choice of weight distribution, and then to search for global homoclinic
connections [25, 26, 7] or bifurcations from single-pulse solutions [27]. This approach
has established, for example, that stable N -pulse solutions can occur when lateral
inhibition is modulated by a spatially oscillating component.

In this paper we analyze multipulse solutions of a one-dimensional neuronal net-
work with a Heaviside firing rate function, under the assumption that the individual
pulses are well separated so that their mutual interactions are weak. We use singular
perturbation theory to derive equations of motion for the pulse positions, in order to
investigate the existence and stability of stationary and traveling N -pulse solutions.
Our analysis provides a nontrivial extension of previous studies of weakly interact-
ing pulses in nonlinear PDE models of diffusively coupled excitable media and fluids
[9, 10, 2, 3, 37, 33]. First, it applies to a nonlocal integro-differential equation that
cannot be reduced to a finite-order PDE except for very specific choices of the synap-
tic weight distribution. Second, using a Heaviside firing rate function, it is possible to
obtain exact solutions for single-pulse profiles and to carry out explicit calculations in
the derivation of the dynamical equations for weakly interacting pulses. Third, and
most significantly from a biological perspective, there is a direct relationship between
the nature of the pulse interactions and the form of the long-range synaptic coupling.

We focus in this paper on three distinct but related models that correspond to
three distinct experimental paradigms. In section 2, we analyze stationary pulses in
a network with symmetric lateral inhibition, which can be interpreted as a simple
model of persistent working memory. Assuming that the weights decay exponentially
at large distances, the corresponding single-pulse profile also decays exponentially so
that widely separated pulses interact weakly. Using singular perturbation theory, we
show how the existence and stability of stationary N -pulses reduces to the problem
of finding fixed points of a set of N coupled ODEs describing the motion of individual
pulses. This is considerably simpler than looking for multipulse solutions of the full
nonlocal equation [25, 26, 7]. Consistent with these other studies, we find that in the
presence of pure lateral inhibition well separated pulses repel each other, so that a
stable N -pulse solution cannot exist. On the other hand, in the case of a spatially
decaying oscillatory weight distribution, stable N -pulses can occur. In section 3,
we extend our analysis to the case of a network with asymmetric lateral inhibition,
which has been proposed as a model of direction selective neurons in visual cortex
[38, 30, 32, 43]. Localized activity pulses now tend to propagate unidirectionally rather
than remain stationary. Extending the analysis of section 2 by working in the moving
frame of a single traveling pulse, we derive the corresponding system of ODEs for
N weakly interacting traveling pulses. These equations are then used to explore the
existence and stability of traveling wave trains, with the separation between successive
pulses characterized by a lattice map [10]. In the case of spatially oscillatory weights,
such a map could potentially exhibit both regular and chaotic behavior. In section 4,
we consider an excitatory network with an additional adaptation variable, which has
been used to model wave propagation in disinhibited cortical slices [34]. In contrast
to the asymmetric lateral inhibition network, waves can now travel in both directions.
The resulting system of ODEs for N interacting pulses is identical in form to the
previous case, but the asymptotic behavior of a single pulse profile is different. In
particular, the leading edge of the pulse decays much more rapidly than the trailing
edge, which also typically holds for traveling pulses in diffusively coupled excitable
systems [23]. This difference in decay rates can be used to reduce the dynamics to a
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kinematic form [11, 33].

2. Stationary pulses in symmetric lateral inhibition networks. Let u(x, t)
represent the local activity of a population of neurons at position x ∈ R in a one-
dimensional neuronal network. Suppose that u evolves according to the integro-
differential equation

τm
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)H[u(x′, t) − κ]dx′,(2.1)

where τm is a membrane or synaptic time constant, κ is a threshold, H(u) denotes
the output firing rate, and w(x−x′) is the strength of connections from neurons at x′

to neurons at x. We assume that w is a continuous function satisfying w(−x) = w(x)
and

∫∞
−∞ w(x) < ∞. The nonlinearity H is taken to be the Heaviside function

H[u] =

{
0 if u ≤ 0,
1 if u > 0.

(2.2)

In the following we treat length and time in dimensionless units. First, we set τm = 1
so that the unit of time is of the order 10msec. Second, the range of the synaptic
coupling introduces a fundamental length scale, which we use to set the unit of length
to be of the order 200μm.

Equation (2.1) was first analyzed in detail by Amari [1], who showed that there
exist stationary solitary pulse solutions when the weight distribution w(x) is given by
a Mexican hat function:

(i) w(x) > 0 for x ∈ [0, x0) with w(x0) = 0,
(ii) w(x) < 0 for x ∈ (x0,∞),
(iii) w(x) is decreasing on [0, x0],
(iv) w(x) has a unique minimum on R+ at x = x1 with x1 > x0 and w(x) strictly

increasing on (x1,∞).
More recently, it has been established that (2.1) can also support stable stationary
N -pulse solutions, provided that the weight distribution has additional zeros, which
would occur if there were an oscillatory modulation of the long-range connections
[25, 26, 27]. We will refer to any network that has long-range inhibition (possibly
alternating with long-range excitation) as a lateral inhibition network. In this section
we use singular perturbation theory to analyze the dynamics of N -pulse solutions of
(2.1), under the assumption that the interactions between pulses are weak. We show
that in the case of a Mexican hat weight distribution, the pulses mutually repel each
other so that stable N -pulse solutions cannot occur. On the other hand, when the
weight distribution consists of decaying spatial oscillations, there exist configurations
of the pulse locations (up to a global translation) corresponding to stable N -pulse
bound states. This result is consistent with the findings of Laing et al. [25] and Laing
and Tray [26, 27].

2.1. Stationary solitary pulses. Suppose that U(x) is a stationary solution
of (2.1): u(x, t) = U(x) with

U(x) =

∫ ∞

−∞
w(x− x′)H[U(x′) − κ]dx′.(2.3)

Let M[U ] = {x|U(x) > κ} be the region over which the activity U is excited (su-
perthreshold). Equation (2.3) can then be rewritten as

U(x) =

∫
M[U ]

w(x− x′)dx′.(2.4)
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Fig. 2.1. Construction of stationary pulses for a Mexican hat weight distribution. (a) Plot of
w(x) given by the difference-of-exponentials (2.8) with σE = 1.8, σI = 1.0, and Γ = 0.5. (b) Plot of
corresponding function W (x). Horizontal line shows the threshold κ whose intersections with W (2a)
determine the allowed pulse widths.

We define a single pulse solution of width 2a to be one that is excited over the interval
(−a, a); any pulse solution can be arbitrarily translated so that it is centered at the
origin. If we set

W (x) =

∫ x

0

w(y)dy,(2.5)

then (2.4) reduces to the form

U(x) = W (a + x) −W (x− a).(2.6)

Note that W (0) = 0 and W (−x) = −W (x). Since U(±a) = κ, we obtain the following
necessary condition for the existence of a stationary pulse of width 2a:

W (2a) = κ.(2.7)

Amari [1] showed that in the case of a Mexican hat weight distribution this condition
is also sufficient. He also established that a stationary pulse is stable, provided that
W ′(a) ≡ w(a) < 0; otherwise it is unstable.

The stable and unstable pulses can be determined graphically, as illustrated in
Figure 2.1 for a Mexican hat function w given by the difference-of-exponentials

w(x) = e−σE |x| − Γe−σI |x|,(2.8)

with σE > σI > 0 and 0 < Γ < 1. Here σ−1
E and σ−1

I determine the range of excitatory
and inhibitory synaptic coupling, respectively. If one neglects long-range horizontal
connections (see below), then such coupling tends to extend up to around 0.8mm in
cortex [29]. Integrating (2.8), we have

W (x) =
1

σE

[
1 − e−σEx

]
− Γ

σI

[
1 − e−σIx

]
(2.9)

for x ≥ 0. The existence of single-pulse solutions depends on the relative sizes of
Wm,W∞, and κ, where

Wm = max
x>0

W (x), W∞ = lim
x→∞

W (x) =
1

σE
− Γ

σI
.(2.10)
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Fig. 2.2. Construction of a stationary pulse for a spatially decaying oscillatory weight distribu-
tion. (a) Plot of w(x) given by (2.11) with σ = 0.25. (b) Plot of corresponding function W (x). The
horizontal line shows the threshold κ whose intersections with W (2a) determine the allowed pulse
widths.

If 0 < W∞ < κ < Wm, then there exists an unstable pulse of width a1 and a
stable pulse of width a2 with a2 > a1, whereas there is only an unstable pulse when
0 < κ < W∞. In the latter case the network is in a bistable regime, where the
unstable pulse acts as a separatrix between a stable uniform resting state (U ≡ 0)
and a traveling front. If W∞ < κ < 0 < Wm, then there is a stable pulse but no
unstable pulse. Outside these parameter regimes there are no pulses.

In Figure 2.2, we illustrate the corresponding graphical construction for a spatially
decaying oscillatory weight distribution of the form [25]

w(x) = e−σ|x| [cos(x) + σ sin |x|] .(2.11)

Integrating (2.11), we have

W (x) =
2σ

1 + σ2

[
1 − e−σx cos(x)

]
+

1 − σ2

1 + σ2
e−σx sin(x), x ≥ 0,(2.12)

with W (−x) = −W (x). It can be seen from Figure 2.2 that, as κ is reduced below Wm,
an increasing number of stable/unstable pairs of pulses are generated, assuming that
condition (2.7) is sufficient to ensure U(x) > κ for |x| < a and U(x) < κ for |x| > a.
This has not been proven analytically for the weight distribution (2.11), although
the existence of stable pulses has been confirmed numerically by Laing et al. [25].
These authors have also suggested that an anatomical substrate for the oscillatory
weight distribution (2.11) might be the long-range horizontal connections found in
superficial layers of cortex. Such connections extend several millimeters across cortex
and are broken into discrete patches with a very regular size and spacing [36, 19, 28].
Although the horizontal connections arise almost exclusively from excitatory neurons,
20% of them terminate on interneurons that can generate significant inhibition [31].
Whether the horizontal connections have a net inhibitory or excitatory effect does not
appear to be a simple function of cortical separation, however, since it also depends
on the local level of activity of neurons innervated by the long-range connections [29].
Therefore, certain care has to be taken in the biological interpretation of the weight
distribution (2.11).

2.2. Singular perturbation theory. Suppose that (2.1) has a stable stationary
pulse solution U(x) of width 2a centered at the origin such that in the large-|x| limit,
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the activity of the pulse decays exponentially, |U(x)| ∼ e−ρ|x|. For example, ρ = σI

in the case of the Mexican hat function (2.8), and ρ = σ in the case of the spatially
decaying oscillatory function (2.11). This suggests that if two or more such pulses are
placed on the real line such that the characteristic separation d between the centers
of any two pulses satisfies e−ρd = ε � 1, then the interactions between the pulses will
be weak. In the weakly interacting regime, we can carry out a perturbation analysis
of the dynamics along lines analogous to those used by Elphick, Meron, and Spiegel
[10] by treating ε as a small parameter.

Following [10], we look for an N -pulse solution with individual pulses having
centers at xn = nd + φn(τ), where φn(τ) is a slowly varying phase and τ = εt. That
is, we consider a train of pulses

u(x, τ) =

N∑
n=1

U(x− nd− φn(τ)) + εR(x, τ).(2.13)

The remainder term εR takes into account the fact that a superposition of widely
separated pulses cannot be an exact solution, even when we allow for slowly drifting
phases φn. Substituting (2.13) into (2.1) with ∂t → ∂t + ε∂τ , and using (2.3), gives

ε2∂τR− ε

N∑
n=1

φ̇nU
′
n = −εR + w ∗H

(
N∑

n=1

Un + εR− κ

)
− w ∗

N∑
n=1

H(Un − κ),

(2.14)

where Un(x) = U(x− nd− φn(τ)) and w ∗ g denotes the convolution

w ∗ g =

∫ ∞

−∞
w(x− x′)g(x′)dx′.(2.15)

We now carry out a perturbation expansion in ε by formally Taylor expanding with
respect to εR inside the convolution integral:

w ∗H
(

N∑
n=1

Un − κ + εR

)
= w ∗

[
H

(
N∑

n=1

Un − κ

)
+ εδ

(
N∑

n=1

Un − κ

)
R + O

(
ε2
)]

,

(2.16)

where δ is the Dirac delta function. This formal series expansion can be interpreted
along the following lines. First, we assume that in the case of widely separated
pulses, the multibump function V ≡

∑
n Un(x) has N pairs of threshold crossing

points x±
m ≈ xm ± a such that V (x) > κ for x−

m < x < x+
m, V (x±

m) = κ and V (x) < κ
otherwise. It follows that

δ(V (x) − κ) =

N∑
m=1

[
δ(x− x+

m)

|V ′(x+
m)|

+
δ(x− x−

m)

|V ′(x−
m)|

]
.(2.17)

Similarly, the function V + εR is assumed to have threshold crossing points at x±
m +

εΔ±
m. The convolution integral then has the explicit form

w ∗H
(

N∑
n=1

Un − κ + εR

)
(x) =

N∑
n=1

∫ x+
n+εΔ+

n

x−
n +εΔ−

n

w(x− x′)dx′

=

N∑
n=1

∫ x+
n

x−
n

w(x− x′)dx′(2.18)

+ ε
[
w(x− x+

n )Δ+
n − w(x− x−

n )Δ−
n

]
+ O(ε2),
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Fig. 2.3. Illustrative sketch of a multibump solution in which the nth activity bump (region
above threshold κ) is localized within the domain Λn. In a neighborhood of the mth activity bump
we assume that Un(x) ∼ ε|m−n| for m �= n, where Un(x) = U(x − xn) and xn is the center of the
nth bump.

where we have Taylor expanded with respect to the perturbations εΔ±
m in the locations

of the activity bump boundaries. Substituting (2.17) into (2.16) shows that the latter
is equivalent to (2.18) with Δ+

m = R(x+
m)/|V ′(x+

m)| and Δ−
m = −R(x−

m)/|V ′(x−
m)|.

Substituting (2.16) into (2.14) and collecting first-order terms in ε leads to the
following inhomogeneous equation for R:

L̂R =

N∑
n=1

φ̇nU
′
n +

1

ε
w ∗

[
H

(
N∑

n=1

Un − κ

)
−

N∑
n=1

H(Un − κ)

]
,(2.19)

where L̂ is the linear operator

L̂ψ = ψ − w ∗
(
δ

(
N∑

n=1

Un − κ

)
ψ

)
(2.20)

for any function ψ ∈ L2(R). We now show that the term in square brackets on the
right-hand side of (2.19) is O(ε). First, partition the real line into nonoverlapping
domains such that the mth activity bump lies entirely in the domain Λm, as illustrated
in Figure 2.3. More specifically, take R = ∪N

m=1Λm with Λm = [x̄m−1, x̄m) for
m = 2, . . . , N − 1, Λ1 = (−∞, x̄1), and ΛN = (x̄N−1,∞). Here x̄m = (xm+1 − xm)/2
is the midpoint between neighboring bumps. The characteristic pulse separation d is
assumed to be sufficiently large such that Un(x) ∼ ε|m−n| in a neighborhood of the
mth activity bump for m 
= n. The given partition then allows us to carry out a
formal perturbation expansion along lines similar to (2.16):∫ ∞

−∞
w(x− x′)H

(∑
n

Un(x′) − κ

)
dx′ =

∞∑
m=−∞

∫
Λm

w(x− x′)H

(∑
n

Un(x′) − κ

)
dx′

=

∞∑
m=−∞

∫
Λm

w(x− x′)H

⎛⎝Um(x′) +
∑
n �=m

Un(x′) − κ

⎞⎠ dx′

=

∞∑
m=−∞

∫
Λm

w(x− x′)

(
H(Um(x′) − κ) + δ(Um(x′) − κ)

∑
n=m±1

Un(x′) + O(ε2)

)
dx′.

(2.21)
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Only nearest neighbor bumps contribute to the O(ε) term. The delta function
δ(Um(x) − κ) can be simplified using the threshold condition Um(±a + xm) = κ:

δ(Um(x) − κ) =
δ(x− a− xm)

|U ′(a)| +
δ(x + a− xm)

|U ′(−a)| .(2.22)

Since Um(x) < κ for all x /∈ Λm, we can replace the integral domain Λm in each of
the integrals in (2.21) by the whole real line (−∞,∞). Thus we find

w ∗H
(

N∑
n=1

Un − κ

)
= w ∗

[
N∑

n=1

H(Un − κ) +

N∑
n=1

δ(Un − κ)[Un+1 + Un−1] + O(ε2)

]
(2.23)

with UN+1, U0 ≡ 0.
In order for the above perturbation expansion to be valid, we require that the

correction term R be finite everywhere. Following Elphick, Meran, and Spiegel [10],
we will show how this implies a set of solvability conditions on (2.19), which in turn
determine the leading-order dynamics of the phases φn or, equivalently, the pulse
positions xn. In order to gain insights into the analytical properties of the linear
operator L̂ it is useful to consider the simpler operator L̂n, where

L̂nψ = ψ − w ∗ [δ(Un − κ)ψ].(2.24)

The latter has zero as an eigenvalue with corresponding eigenfunction Q = U ′
n, which

can be seen by differentiating (2.3). Therefore, the eigenvalue equation L̂Q = λQ

has approximate solutions of the form Q =
∑N

i=1 cnU
′
n, where cn are constants, with

associated eigenvalues λ = O(ε). Assuming the standard inner product of functions
P,Q on R,

〈P |Q〉 =

∫ ∞

−∞
P (x)Q(x)dx,(2.25)

we define the adjoint operator L̂† according to

〈P |L̂Q〉 = 〈L̂†P |Q〉,(2.26)

so that

L̂†ψ = ψ − δ

(
N∑

n=1

Un − κ

)
w ∗ ψ.(2.27)

The existence of N null vectors of L̂n suggests that its adjoint should also have N
null vectors, which can then be used to construct eigenfunctions of L̂† with O(ε)

eigenvalues. However, since the operator L̂n is not self-adjoint, one cannot assume a
priori that it has index zero. The situation is further complicated by the fact that L̂†

involves distributions. Therefore, we will proceed by searching for weak solutions P
of the equation

〈L̂†P |Q〉 = O(ε)(2.28)

for any bounded function Q.
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Comparison of (2.17) and (2.22) shows that in the weakly interacting regime,∫
ψ(x)δ

(∑
n

Un(x) − κ

)
dx =

∫
ψ(x)

N∑
n=1

δ (Un(x) − κ) dx + O(ε)(2.29)

for arbitrary ψ. This leads to the formal decomposition of the adjoint operator given
by

L̂†ψ = L̂†
nψ −

∑
j �=n

δ(Uj − κ)w ∗ ψ + O(ε)(2.30)

for any n = 1, . . . , N , with δ(Un − κ) satisfying (2.22). Without loss of generality, set

x0 = 0 and look for solutions of L̂†
0P = 0, which can be written as

P(x) =

[
δ(x + a)

U ′(−a)
+

δ(x− a)

|U ′(a)|

] ∫ ∞

−∞
w(x− x′)P(x′)dx′.(2.31)

The formal solution is P(x) = p1δ(x−a)−p2δ(x+a), with coefficients p1, p2 satisfying
the pair of algebraic equations

p1 =
1

|U ′(a)| [p1w(0) − p2w(2a)] ,

p2 = − 1

U ′(−a)
[p1w(2a) − p2w(0)] .

Differentiating (2.6) shows that

U ′(−a) = −U ′(a) = w(0) − w(2a),(2.32)

and hence p1 = p2. This establishes that L̂†
0 has the null vector

P(x) = δ(x− a) − δ(x + a).(2.33)

From translation symmetry, it follows that L̂†
n has the null vector Pn(x), where

Pn(x) ≡ P(x− xn).(2.34)

Hence, using the decomposition (2.30) and the result L̂†
nPn = 0, we have

〈L̂†Pn|Q〉 = −
∑
j �=n

〈δ(Uj − κ)w ∗ Pn|Q〉 + O(ε)(2.35)

for any bounded function Q. Since w(x) decays as e−ρ|x| for large |x|, we see that
w(xn − xj) ∼ ε|n−j| for n 
= j, so that the inner product on the right-hand side of
(2.35) is also O(ε). We conclude that (2.28) has the set of solutions Pn, n = 1, . . . , N .
Interestingly, these solutions are independent of the choice of weight function w.

We now take the inner product of (2.19) with respect to Pm and use (2.23).
Keeping only leading-order terms in ε then yields the following solvability condition:

φ̇m 〈Pm |U ′
m〉 +

1

ε
〈Pm |w ∗ δ(Um − κ)[Um+1 + Um−1]〉 = O(ε).(2.36)
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Substituting (2.33) into (2.36) and using (2.22), (2.32) shows that

〈Pm |w ∗ δ(Um − κ)[Um+1 + Um−1]〉= U(a + xm − xm+1) + U(a + xm − xm−1)

− U(−a + xm − xm+1) − U(−a + xm − xm−1)

(2.37)

and

〈Pm |U ′
m〉 = [U ′

m(a + xm) − U ′
m(−a + xm)] = −2|U ′(a)|.(2.38)

We thus obtain the following system of differential equations for the pulse positions
xm(t) = md + φm(εt):

ẋm = f(xm+1 − xm) − f(xm − xm−1), 1 < m < N,

(2.39)

ẋ1 = f(x2 − x1), ẋN = −f(xN − xN−1)

with

f(x) =
1

2|U ′(a)| [U(x− a) − U(x + a)] .(2.40)

2.3. Stationary N-pulses. Equations (2.6) and (2.40) show that the explicit
form of the interaction function f(x) for large x is determined by the asymptotic
behavior of the weight distribution w. In the case of the Mexican hat function (2.8),
equations (2.6), (2.9), and (2.40) imply that for large x

f(x) = −Γ cosh(σIa)

σI |U ′(a)|

[
e−σI(x−a) − e−σI(x+a)

]
= −Ae−σIx(2.41)

with

A =
Γ sinh(2σIa)

σI |U ′(a)| > 0.(2.42)

Similarly, in the case of a spatially decaying oscillatory function (2.11), we find that
for large x,

f(x) =
2e−σx

(1 + σ2)|U ′(a)| [A1(a, σ) cos(x) + A2(a, σ) sin(x)](2.43)

with

A1(a, σ) = (1 − σ2) sinh(σa) sin(a) + 2σ cosh(σa) cos(a) − 2σ,(2.44)

A2(a, σ) = 2σ sinh(σa) sin(a) − (1 − σ2) cosh(σa) cos(a) + 1 − σ2.(2.45)

The function f can be written in the more compact form

f(x) = Be−σx cos(x− Φ)(2.46)
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Fig. 2.4. Plot of phase separation Φ for a pair of pulses as a function of pulse width a in the
case of the spatially decaying oscillatory weight distribution (2.11) with σ = 0.25.

with

Φ = tan−1 A2

A1
, B =

2
√

A2
1 + A2

2

(1 + σ2)|U ′(a)| .(2.47)

The dependence of the phase Φ on pulse width for fixed decay rate σ is shown in
Figure 2.4. Note that for σa � 1 we have Φ ≈ a− φ with tanφ = (1 − σ2)/2σ.

The existence and stability of stationary N -pulse solutions can now be investi-
gated in terms of the fixed point solutions of (2.39) for a given weight distribution.
Let us first consider a pair of pulses, whose positions satisfy the pair of equations

ẋ1 = f(x2 − x1), ẋ2 = −f(x2 − x1).(2.48)

Defining the separation variable Δ = x2 − x1, we have

Δ̇ = −2f(Δ).(2.49)

It immediately follows from (2.41) that mutual interactions between pulses are repul-
sive for a Mexican hat weight function, since f(Δ) < 0 for all Δ. Hence, the pulses
repel each other and cannot form a bound 2-pulse state. A similar result holds for more
than two pulses. Note that Amari [1] originally suggested that pulses were attractive
at short distances, repulsive at intermediate distances, and neutral at sufficiently large
distances. Our analysis suggests that repulsion actually persists to arbitrarily large
distances, but that the rate of separation is slow since f(Δ) ∼ e−σIΔ � 1. Following
the results of Laing and colleagues [25, 27] and analogous results for PDEs [2], one
expects a stable N -pulse solution to exist when the weights have an oscillatory tail.
This is easily seen in the case for a pair of pulses by substituting (2.46) into (2.49):

Δ̇ = −2Be−σΔ cos(Δ − Φ).(2.50)

Such an equation has a countable set of stable/unstable pairs of fixed point solutions:
Δ = Δ±(p) = Φ ± π/2 + 2πp for integers p � 1 (so that pulses are well separated)
with Δ−(p) stable and Δ+(p) unstable.
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Higher-order N -pulse solutions can be constructed by taking the separations
Δm = xm − xm−1 to be zeros of f for all m = 2, . . . , N . Stability is determined
by the eigenvalues of the tridiagonal matrix

AN =

⎛⎜⎜⎜⎜⎜⎝
−2f ′(Δ2) f ′(Δ3) 0 . . . 0
f ′(Δ2) −2f ′(Δ3) f ′(Δ4) 0 . . .

0 f ′(Δ3) −2f ′(Δ4) f ′(Δ5) 0
...

...
...

...
...

0 . . . 0 f ′(ΔN−1) −2f ′(ΔN )

⎞⎟⎟⎟⎟⎟⎠ .(2.51)

Note that the matrix coefficients satisfy ai,i+1 = ai+1,i > 0 for all i so that the
eigenvalues are all real and simple. Moreover, by the Gerschgorin disk theorem (see
[22]), the eigenvalues of AN are contained in the union of disks defined according to
∪i{|λ− aii| ≤

∑
j �=i |aij |}. Consider the simplest case in which all pulse spacings are

equal, Δm = Δ for all m = 2, . . . , N . We then obtain the pair of conditions

|λ + 2f ′(Δ)| ≤ f ′(Δ), |λ + 2f ′(Δ)| ≤ 2f ′(Δ).(2.52)

These are circles contained within the left-half complex plane, provided that f ′(Δ) >
0. One can also show that there are no zero eigenvalues by noting that in the uniform
case the determinant DN = det[AN − λI] satisfies the iterative equation

Dm(λ) = (−2f ′(Δ) − λ)Dm−1 − f ′(Δ)2Dm−2, 2 ≤ m ≤ N,(2.53)

with D1 = 1 and D0 = 0. This has the solution

DN (λ) =
ΛN

+ − ΛN
−

Λ+ − Λ−
,(2.54)

where

Λ± =
1

2

(
−2f ′ − λ±

√
λ2 + 4f ′λ

)
.(2.55)

Since DN (0) 
= 0, it follows that zero is not an eigenvalue. Therefore, there exists a
stable uniformly spaced stationary N -pulse solution if f(Δ) = 0 and f ′(Δ) > 0.

One can also analyze the stationary states of N pulses arranged on a ring of
length L. Now the dynamics is described by the cyclic system of ODEs

ẋm = f(xm+1 − xm) − f(xm − xm−1), m = 1, . . . , N,(2.56)

with x0 = xN and xN+1 = x0. The evenly spaced solution Δ = L/N is automatically
a fixed point of the dynamics, and its stability can be determined by linearizing (2.56)
with xm = mΔ + θm:

θ̇m = −f ′(Δ) [2θm − θm−1 − θm+1] .(2.57)

This has eigensolutions of the form θm(t) = eλ(k)teimk with wavenumber k = 2πp/N
for p = 1, . . . , N and

λ(k) = −2f ′(Δ)[1 − cos(k)].(2.58)

The zero eigenvalue at k = 0 reflects the translation invariance of the system. Hence,
the N -pulse solution on the ring is (marginally) stable if f ′(Δ) > 0; otherwise it is
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unstable. It then follows from (2.41) and (2.46) that a ring network with a Mexican
hat weight distribution supports stable N -pulse solutions independently of the length
L of the ring, whereas a spatially decaying oscillatory distribution supports such a
solution only for certain ranges of L. This example illustrates how the existence and
stability of multipulse solutions depends on the topology of the network as well as its
weight distribution.

3. Traveling pulses in asymmetric lateral inhibition networks. In section
2 we considered a lateral inhibition network with a weight distribution that is sym-
metric, w(−x) = w(x). Although this is usually a reasonable modeling assumption
regarding the large-scale anatomy of cortical circuits, there are some examples of more
specialized circuits where lateral inhibition may be asymmetric. In particular, asym-
metric coupling has been suggested as providing a possible mechanism for direction
selective neurons in the visual cortex [38, 30, 32, 43]. Networks with asymmetric lat-
eral inhibition support unidirectional wave propagation rather than stationary activity
pulses. If a moving external stimulus is presented to a one-dimensional network, then
a superthreshold response is elicited only if the velocity of the stimulus approximately
matches the direction and speed of the intrinsic waves. Here we extend the singu-
lar perturbation theory of stationary pulses in order to investigate traveling N -pulse
solutions of (2.1) in the case of asymmetric lateral inhibition.

3.1. Traveling solitary pulses. Suppose that (2.1) with asymmetric w has a
right-moving traveling pulse solution of the form u(x, t) = U(x − ct), c > 0, where
U(±∞) = 0 and U(−a) = U(0) = κ. Substituting into (2.1) with ξ = x− ct gives

−c∂ξU(ξ) + U(ξ) =

∫ ∞

−∞
w(ξ − ξ′)H(U(ξ′) − κ)dξ′

= W (ξ + a) −W (ξ),(3.1)

with W defined by (2.5). Multiplying both sides of (3.1) by the integrating factor
−c−1e−ξ/c and integrating from −a to ξ using the threshold condition U(−a) = κ
leads to the result

U(ξ) = eξ/c

[
κea/c − 1

c

∫ ξ

−a

[W (ξ′ + a) −W (ξ′)]e−ξ′/cdξ′

]
.(3.2)

Finiteness of the solution in the limit ξ → ∞ requires that the term in square brackets
vanish. Hence, we can rewrite the solution for U(ξ) as

U(ξ) =
1

c

∫ ∞

0

(W (ξ′ + ξ + a) −W (ξ′ + ξ))e−ξ′/cdξ′.(3.3)

Enforcing the threshold conditions U(0) = κ and U(−a) = κ then generates a pair of
equations that determine existence curves relating the speed c to the pulse width a
for a given threshold κ.

A typical way to model asymmetric lateral inhibition is to take w(x) = w0(x−x0)
with w0 a symmetric weight distribution such as a Mexican hat function. If x0 > 0,
then short-range coupling is predominantly excitatory to the right and inhibitory to
the left, which leads to right-propagating waves, as illustrated in Figure 3.1. The
function W (x) of (2.9) may be expressed in terms of w0 as

W (x) = W0(x− x0) + W0(x0), W0(x) =

∫ x

0

w0(y)dy,(3.4)
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Fig. 3.1. (a) Shifted weight distribution w(x) = w(x − x0) in the case of asymmetric lateral
inhibition. (b) Illustration of a right-moving traveling pulse of width a.

so that the wave profile becomes

U(ξ) =
1

c

∫ ∞

0

(W0(ξ
′ + ξ + a− x0) −W0(ξ

′ + ξ − x0))e
−ξ′/cdξ′.(3.5)

Equation (3.5) can be used to determine the asymptotic behavior of the solitary pulse
for any exponentially decaying weight distribution. In particular, suppose that

w0(x) = e−σ|x|g(x),

with g(x) bounded for all x and limx→±∞ g(x) = g±∞. If ξ > x0, then there is a
common factor of e−σξ on the right-hand side of (3.5), which can be taken outside
the integral. Hence, in the limit ξ → ∞,

U(ξ) ∼ g∞
c

∫ ∞

0

(e−σ(ξ′+ξ+a−x0) − e−σ(ξ′+ξ−x0))e−ξ′/cdξ′ ∼ −e−σξ.(3.6)

On the other hand, when ξ < x0, we have to partition the integral of (3.5) into the
separate domains ξ′ > ξ + x0, ξ + x0 − a < ξ′ < ξ + x0, and ξ′ < ξ + x0 − a so that
in the limit ξ → −∞,

U(ξ) ∼ −
[
U1e

σξ + U2e
ξ/c
]
.(3.7)

Therefore, the leading edge of the pulse profile decays at the rate σ determined by
the weight distribution w0, whereas the trailing edge decays at the rates σ and c−1.
The activity profile U(ξ) of both the leading and trailing edges is negative due to the
effects of inhibition; see Figure 3.1b. If g(x) is taken to be an oscillatory function,
then the asymptotic terms e−σ|ξ| will also be oscillatory.

In Figure 3.2 we show existence curves for a traveling pulse of width a and speed
c with w0 given by the difference-of-exponentials (2.8). The pulse profile is given by
U(ξ) = UσE

(ξ) − ΓUσI
(ξ) with

σUσ(ξ) =
e−(ξ−x0)σ

cσ + 1
− e−(ξ+a−x0)σ

cσ + 1

for ξ > x0,

σUσ(ξ) = 2 − e−(ξ+a−x0)σ

cσ + 1
−
[(

2c2σ2

c2σ2 − 1

)
e−(x0−ξ)/c − e−(x0−ξ)σ

cσ − 1

]
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Fig. 3.2. Existence of right-moving traveling pulses in the case of a shifted weight distribution
w(x) = w0(x − x0) with w0(x) given by the difference-of-exponentials (2.8) for σE = 1.8, σI =
1.0,Γ = 0.5, and x0 = 0.5. (a) Plot of pulse width a against threshold κ. (b) Plot of wave speed c
against threshold κ. Black (gray) curves denote stable (unstable) branches.

for x0 − a < ξ < x0, and

σUσ(ξ) =

[(
2c2σ2

c2σ2 − 1

)
e−(x0−ξ−a)/c − e−(x0−ξ−a)σ

cσ − 1

]
−
[(

2c2σ2

c2σ2 − 1

)
e−(x0−ξ)/c − e−(x0−ξ)σ

cσ − 1

]
for ξ < x0−a. Note that there are two existence branches corresponding, respectively,
to narrow fast waves and wide slow waves. Given that wide pulses are stable in the
stationary case (see Figure 2.1), we expect the slow branch to be stable, as can be
confirmed numerically. This should be contrasted with traveling pulses in excitatory
networks, where the fast branch is stable (see section 4). For the parameter values
chosen in Figure 3.2, a stable pulse has a speed lying within the interval 0.6 < c < 0.8
so that σI < c−1 < σE . Thus the dominant rate of decay for both the leading and
trailing edges is σI . Note that if the units of length and time are taken to be 200μm
and 10ms, respectively, then c = 1 corresponds to a wave speed of 2cms−1, which is
consistent with the range of speeds observed experimentally in cortical slices [20].

3.2. Singular perturbation theory. Suppose that there is a set of well sep-
arated exponentially decaying right-moving pulses. Following Elphick, Meron, and
Spiegel [10], we now extend the singular perturbation theory of stationary pulses by
working in the moving frame ξ = x−ct, where c is the speed of an isolated pulse. That
is, we search for a traveling N -pulse solution with individual pulses having centers at
ξn = nd + φn(τ), where τ = εt and ε = e−ρd with ρ = min{σ, c−1}:

u(ξ, τ) =
N∑

n=1

U(ξ − nd− φn(τ)) + εR(ξ, τ).(3.8)

Substituting (3.8) into (2.1) with ∂t → ∂t + ε∂τ , and performing an expansion in ε
along lines identical to those of section 2, leads to the inhomogeneous equation (2.19),
with the modified linear operator

L̂ψ = ψ − c∂ξψ − w ∗
[
δ

(
N∑

n=1

Un − κ

)
ψ

]
.(3.9)



72 PAUL C. BRESSLOFF

The corresponding adjoint operator is now

L̂†ψ = ψ + c∂ξψ − δ

(
N∑

n=1

Un − κ

)
wT ∗ ψ,(3.10)

where wT (ξ) = w(−ξ) 
= w(ξ), since w is asymmetric. By differentiating (3.1), it can
be seen that for largely separated pulses the functions U ′

n are O(ε) null vectors of the

operator L̂. This motivates us to seek O(ε) null vectors of the adjoint operator (3.10).

Proceeding along lines identical to those of section 2, we first decompose L̂†

according to (2.30) with

L̂†
nψ = ψ + c∂ξψ − δ(Un − κ)wT ∗ ψ(3.11)

and

δ(Un − κ) =
δ(ξ + a)

U ′(−a)
+

δ(ξ)

|U ′(0)| .(3.12)

We then look for null vectors P of L̂†
0 with ξ0 = 0:

P(ξ) + c∂ξP(ξ) =

[
δ(ξ + a)

U ′(−a)
+

δ(ξ)

|U ′(0)|

] ∫ ∞

−∞
w(ξ′ − ξ)P(ξ′)dξ′.(3.13)

This has the formal solution

P(ξ) = p1H(ξ + a)e−(ξ+a)/c − p2H(ξ)e−ξ/c,(3.14)

with

p1c =
1

U ′(−a)

[
p1

∫ ∞

0

w(ξ)e−ξ/cdξ − p2

∫ ∞

0

w(ξ + a)e−ξ/cdξ

]
and

p2c = − 1

|U ′(0)|

[
p1

∫ ∞

0

w(ξ − a)e−ξ/cdξ − p2

∫ ∞

0

w(ξ)e−ξ/cdξ

]
.

Up to a scalar multiplication, the pair of algebraic equations for the coefficients p1, p2

has the solution

p1 =

∫ ∞

0

w(ξ + a)e−ξ/cdξ, p2 =

∫ ∞

0

w(ξ − a)e−ξ/cdξ.(3.15)

In order to prove this, differentiate (3.3) with respect to ξ using (2.5):

U ′(ξ) =
1

c

∫ ∞

0

(w(ξ′ + ξ + a) − w(ξ′ + ξ))e−ξ′/cdξ′.(3.16)

Setting ξ = 0 and ξ = −a then leads to the following equations for U ′(−a) and |U ′(0)|:

U ′(−a) =
1

c

∫ ∞

0

[w(ξ) − w(ξ − a)] e−ξ/cdξ,

|U ′(0)| =
1

c

∫ ∞

0

[w(ξ) − w(ξ + a)] e−ξ/cdξ.(3.17)
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It is now straightforward to verify (3.15).

Following the same arguments as section 2, we conclude that (2.28) has solutions
of the form Pn(ξ) = P(ξ − ξn), with P given by (3.14) and (3.15). A dynamical
equation for the pulse positions ξn can then be derived by taking the inner product of
(2.19) with Pn, which yields an equation of the form (2.36). Substituting (3.14) and
(3.12) into (2.36), we find that

〈Pm |w ∗ δ(Um − κ)[Um+1 + Um−1]〉
= p1c (U(−a + ξm − ξm+1) + U(−a + ξm − ξm−1))

− p2c(U(ξm − ξm+1) + U(ξm − ξm−1)),(3.18)

and 〈Pm|U ′
m〉 = 〈P|U ′〉 = K, where

K = p1

∫ ∞

0

e−ξ/cU ′(ξ − a)dξ − p2

∫ ∞

0

e−ξ/cU ′(ξ)dξ.(3.19)

Hence, (2.36) reduces to the form

ξ̇m = fR(ξm+1 − ξm) + fL(ξm − ξm−1),(3.20)

for ξm(t) = nd + φm(εt), with

fR(ξ) =
c

K
[p2U(−ξ) − p1U(−ξ − a)] , fL(ξ) =

c

K
[p2U(ξ) − p1U(ξ − a)] ,

(3.21)

and U(ξ) determined from the underlying weight distribution according to (3.5).

3.3. Traveling wave trains. Lattice equations of the form (3.20) have been
studied in considerable detail within the context of diffusive excitable systems and
fluids [10, 2, 37]. Here we illustrate some of the basic results by explicitly calculating
the interaction functions fL, fR. We define a traveling wave train as an N -pulse
solution of (3.20) in which ξ̇m = δc independently of m, where δc is a constant
velocity in the frame of an isolated pulse. The spacings between pulses are then fixed,
and we obtain the so-called pattern map [10]

δc = fR(Δm+1) + fL(Δm), Δm = ξm − ξm−1.(3.22)

As a further simplification, we impose periodic boundary conditions by taking the
pulses to be moving on a ring of length L with ξ0 = ξN and ξN+1 = ξ0. The
simplest solution of (3.22) is then the fixed point Δm = Δ = L/N for all m. The
fixed point equation δc = fR(Δ) + fL(Δ) determines the relationship between the
total speed of the wave train c + δc and the uniform spacing Δ between neighboring
pulses. Linearizing (3.20) about the uniformly spaced wave train by setting ξm =
mΔ + δct + θm gives

θ̇m = f ′
R(Δ) [αθm−1 − (1 + α)θm + θm+1](3.23)

with α = −f ′
L(Δ)/f ′

R(Δ). This has eigensolutions of the form θm(t) = eλ(k)teimk
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Fig. 3.3. Plot of δc = fL(Δ) + fR(Δ) against Δ (thick curves) in the case of a shifted weight
distribution w(x) = w0(x − x0), with w0(x) given by the difference-of-exponentials (2.8) for σE =
1.8, σI = 1.0,Γ = 0.5. Also shown are the plots of fL(Δ) (dashed curves) and fR(Δ) (thin curves).
(a) x0 = 0.5, a = 5, and c = 0.65. (b) x0 = 1, a = 4, and c = 1.58. In both cases, the pulse width
and speed of an isolated pulse are chosen to lie on the stable existence branch.

with wavenumber k = 2πp/N for p = 1, . . . , N and

λ(k) = −f ′
R(Δ) [(1 + α)(1 − cos(k)) ± i(1 − α) sin(k)] .(3.24)

The condition for (marginal) stability of the uniformly spaced wave train is thus
f ′
R(Δ) > f ′

L(Δ). For the sake of illustration, consider the case of an asymmetric
Mexican hat weight distribution w(x) = w0(x− x0), with w0 given by the difference-
of-exponentials (2.8). Let the unperturbed pulse width a and speed c correspond to
a solitary wave on the stable slow branch; see Figure 3.2. Two examples of dispersion
curves δc versus Δ are shown in Figure 3.3. In (a), one sees that there exists a finite
range of separations Δ for which f ′

R(Δ) > f ′
L(Δ), corresponding to a finite band of

stable wave trains. Similarly, (b) shows an example of a semi-infinite band of stable
wave trains. In both examples, a given wave train moves more slowly than an isolated
pulse, since δc = fL(Δ) + fR(Δ) < 0. Which wave train is actually selected will
depend on initial conditions.

Suppose that we now allow for the possibility of an oscillatory weight distribution
such as (2.11). If σI < c−1, then the leading and trailing edges both consist of
exponentially decaying spatial oscillations, so that for widely separated pulses the
lattice dynamics takes the form

ξ̇m = ARe−σ(ξm+1−ξm) cos(ω(ξm+1 − ξm) − ΦR)

+ALe−σ(ξm−ξm−1) cos(ω(ξm − ξm−1) − ΦL).(3.25)

In the case of oscillatory interaction functions, the associated pattern map (3.22) can
generate nontrivial sequences of pulse intervals {. . .Δm−1,Δm,Δm+1, . . . }, including
possibly chaotic sequences [17]. From a dynamical systems perspective, such wave
trains can be reinterpreted in terms of nearly homoclinic orbits [2].

4. Traveling pulses in excitatory networks with adaptation. As our final
example, let us return to the case of a symmetric weight distribution w, but now take
w to be purely excitatory, as in the case of a disinhibited cortical slice [34]. In the
absence of lateral inhibition, the scalar equation (2.1) no longer supports localized
persistent states of activity but does exhibit traveling front solutions. In order to
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obtain traveling localized pulses, it is necessary to introduce some form of adaptation.
Therefore, following Pinto and Ermentrout [34], we extend the basic Amari model by
considering the following system of equations:

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)H(u(x′, t) − κ)dx′ − βv(x, t),

∂v(x, t)

∂t
= γ[−v(x, t) + u(x, t)],(4.1)

where v(x, t) represents some form of negative feedback mechanism such as spike fre-
quency adaptation or synaptic depression, with β, γ determining the relative strength
and rate of feedback. We will extend the singular perturbation theory of section 3
in order to investigate traveling N -pulse solutions of (4.1) in the case of a positive
exponentially decaying weight distribution w.

4.1. Traveling solitary pulses. In contrast to the asymmetric lateral inhibi-
tion network of section 3, the excitatory network given by (4.1) supports bidirec-
tional wave propagation. Without loss of generality, let us consider a right-moving
traveling pulse solution of the form (u(x, t), v(x, t)) = (U(x − ct), V (x − ct)) with
U(±∞), V (±∞) = 0 and U(−a) = U(0) = κ. Substituting into (4.1) with ξ = x− ct
gives

−c∂ξU(ξ) + U(ξ) + βV (ξ) =

∫ ∞

−∞
w(ξ − ξ′)H(U(ξ′) − κ)dξ′,

−c∂ξV (ξ) + γ[V (ξ) − U(ξ)] = 0.(4.2)

It is useful to rewrite (4.2) in the matrix form(
1 β
−γ γ

)(
U
V

)
− c∂ξ

(
U
V

)
= [W (ξ + a) −W (ξ)]

(
1
0

)
.(4.3)

We proceed by diagonalizing the left-hand side of (4.3) using the right eigenvectors v
of the matrix

M =

(
1 β
−γ γ

)
.(4.4)

These are given by

v± =

(
γ − λ±

γ

)
,(4.5)

with corresponding eigenvalues

λ± =
1

2

[
1 + γ ±

√
(1 + γ)2 − 4γ(1 + β)

]
.(4.6)

Note that v±eλ±ξ/c are the corresponding null vectors of the linear operator on the
left-hand side of (4.3); that is, they generate the complementary solution. Performing
the transformation (

Ũ

Ṽ

)
= T−1

(
U
V

)
, T =

(
v+ v−

)
,(4.7)
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then gives the pair of equations

−c∂ξŨ + λ+Ũ = η+[W (ξ + a) −W (ξ)],

−c∂ξṼ + λ−Ṽ = η−[W (ξ + a) −W (ξ)],(4.8)

with η± = ∓1/(λ+ − λ−). Integrating the equation for Ũ from −a to ∞, we have

Ũ(ξ) = eλ+ξ/c

[
Ũ(−a)eaλ+/c − η+

c

∫ ξ

−a

e−λ+ξ′/c[W (ξ′ + a) −W (ξ′)]dξ′

]
.(4.9)

Finiteness of Ũ in the limit ξ → ∞ requires that the term in square brackets cancel.
Hence, we can eliminate Ũ(−a) to obtain the result

Ũ(ξ) =
η+

c

∫ ∞

0

e−λ+ξ′/c[W (ξ′ + ξ + a) −W (ξ′ + ξ)]dξ′.(4.10)

Similarly,

Ṽ (ξ) =
η−
c

∫ ∞

0

e−λ−ξ′/c[W (ξ′ + ξ + a) −W (ξ′ + ξ)]dξ′.(4.11)

Performing the inverse transformation U = (γ − λ+)Ũ + (γ − λ−)Ṽ , we have

U(ξ) =
1

c

∫ ∞

0

[
χ+e−λ+ξ′/c + χ−e−λ−ξ′/c

]
[W (ξ′ + ξ + a) −W (ξ′ + ξ)]dξ′,(4.12)

with χ± = (γ − λ±)η±. Using λ+ + λ− = 1 + γ, we can rewrite χ± as

χ+ =
1 − λ−
λ+ − λ−

, χ− =
λ+ − 1

λ+ − λ−
.(4.13)

The threshold conditions U(−a) = κ and U(0) = κ then yield a pair of equations
whose solutions determine existence curves relating the speed c and width a of a
pulse to the threshold κ [34].

For the sake of illustration, let w be given by the exponential function (2.8) with
Γ = 0 and σE = σ; that is, w(x) = e−σ|x|. In the domain ξ > 0, there is a common
factor of e−σξ in the integrand of (4.12) so that U(ξ) = κe−σξ for ξ > 0, provided
that

κ =
(cσ + γ)(1 − e−aσ)

c2σ2 + cσ(1 + γ) + γ(1 + β)
.(4.14)

On the other hand, when ξ < 0, one has to partition the integral of (4.12) into the
separate domains ξ′ > |ξ|, |ξ| − a < ξ′ < |ξ|, and ξ′ < |ξ| − a. This then determines
the second threshold condition as well as the asymptotic behavior of U(ξ) in the limit
ξ → −∞:

U(ξ) = U+eλ+ξ/c + U−eλ−ξ/c + U0e
σξ,(4.15)

where the amplitudes U± and U0 can be determined from matching conditions at the
threshold crossing points [34, 15]. Note that the leading edge of the pulse is positive,
whereas the trailing edge is negative due to the effects of adaptation. One finds that
for sufficiently slow negative feedback (small γ) and large β there exist two pulse
solutions, one narrow and slow and the other wide and fast. This is illustrated in
Figure 4.1. Numerically, the fast solution is found to be stable [34]. Its stability can
also be established analytically using Evans function techniques [44, 8, 16].
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Fig. 4.1. Existence of right-moving traveling pulses in the case of the excitatory network (4.1)
for an exponential weight distribution with w(x) = e−σ|x|. Here σ = 1, γ = 0.01, and β = 2.5.
(a) Plot of pulse width a against threshold κ. (b) Plot of wave speed c against threshold κ. Stable
(unstable) branches indicated by black (gray) curves.

4.2. Singular perturbation theory. Suppose that (4.1) has a stable right-
moving pulse solution U(ξ) of width a and speed c. Following the model set by
section 3, we search for a traveling N -pulse solution with individual pulses having
centers at ξn = nd + φn(τ), where τ = εt and ε = e−ρd with ρ = min{c−1λ±, σ}:

u(ξ, τ) =

N∑
n=1

U(ξ − nd− φn(τ)) + εR(ξ, τ),

v(ξ, τ) =

N∑
n=1

V (ξ − nd− φn(τ)) + εR(ξ, τ).(4.16)

Substituting (4.16) into (4.1) with ∂t → ∂t + ε∂τ , and using (4.2), gives

− cε∂ξR + ε2∂τR− ε

N∑
n=1

φ̇nU
′
n

= −ε(R + βR) + w ∗H
(

N∑
n=1

Un + εR− κ

)
− w ∗

N∑
n=1

H(Un − κ),

− cε∂ξR + ε2∂τR− ε

N∑
n=1

φ̇nV
′
n = −εγ(R−R).(4.17)

Performing an expansion to O(ε) along lines identical to section 2 leads to the inho-
mogeneous equation

L̂

(
R
R

)
=

N∑
n=1

φ̇n

(
U ′
n

V ′
n

)
+

1

ε
w ∗

[
H

(
N∑

n=1

Un − κ

)
−

N∑
n=1

H(Un − κ)

](
1
0

)
,

(4.18)



78 PAUL C. BRESSLOFF

with the linear operator L̂ given by

L̂ψ =

(
1 β
−γ γ

)
ψ − c∂ξψ − w ∗

[
δ

(
N∑

n=1

Un − κ

)(
1 0
0 0

)
ψ

]
,(4.19)

where ψ now denotes a two-vector rather than a scalar. Differentiating (4.2) and
using arguments similar to those of section 2, it is straightforward to show that
L̂(U ′

n, V
′
n)tr = O(ε) for all n = 1, . . . , N . This again motivates us to seek O(ε)

null vectors of the adjoint operator.
In order to determine the corresponding solvability conditions on (4.18), we seek

weak solutions (P, P ) of the equation〈
L̂†
(

P
P

) ∣∣∣∣( Q
Q

)〉
= O(ε)(4.20)

for arbitrary bounded functions Q,Q, where L̂† is the adjoint operator

L̂†ψ =

(
1 −γ
β γ

)
ψ + c∂ξψ − δ

(
N∑

n=1

Un − κ

)
w ∗

[(
1 0
0 0

)
ψ

]
.(4.21)

The inner product is defined by first taking the dot product of the two vectors and
then integrating over R. Using the perturbation expansion (2.29) with δ(Un − κ)
given by (3.12), we obtain the following formal decomposition:

L̂†ψ = L̂†
nψ −

∑
j �=n

δ(Uj − κ)w ∗
[(

1 0
0 0

)
ψ

]
+ O(ε)(4.22)

for any n = 1, . . . , N , with

L̂†
nψ =

(
1 −γ
β γ

)
ψ + c∂ξψ − δ(Un − κ)w ∗

[(
1 0
0 0

)
ψ

]
.(4.23)

We now look for null vectors of L̂†
0 with ξ0 = 0. We proceed by partially diagonalizing

L̂†
0 using the left eigenvectors ṽ of the matrix M (see (4.4)):

ṽ± =

(
γ

1 − λ±

)
.(4.24)

Introducing the transformation(
Q
Q

)
= T̃−1

(
P
P

)
, T̃ =

(
ṽ+ ṽ−

)
,(4.25)

then leads to the following pair of equations:

c∂ξQ + λ+Q = χ+δ(U − κ)w ∗ [Q + Q],(4.26)

c∂ξQ + λ−Q = χ−δ(U − κ)w ∗ [Q + Q],(4.27)

with χ± defined by (4.13). Using an analysis similar to that of section 3, we obtain
the solution

Q(ξ) = χ+

[
p1H(ξ + a)e−λ+(ξ+a)/c − p2H(ξ)e−λ+ξ/c

]
,

Q(ξ) = χ−

[
p1H(ξ + a)e−λ−(ξ+a)/c − p2H(ξ)e−λ−ξ/c

]
,(4.28)
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with p1, p2 given by (3.15) and U ′(0), U ′(−a) satisfying the self-consistency conditions

c =
1

U ′(−a)

∫ ∞

0

[w(ξ) − w(ξ − a)]
[
χ+e−λ+ξ/c + χ−e−λ−ξ/c

]
dξ,

c =
1

U ′(0)

∫ ∞

0

[w(ξ + a) − w(ξ)]
[
χ+e−λ+ξ/c + χ−e−λ−ξ/c

]
dξ.(4.29)

The latter follow immediately from differentiating (4.12) and setting ξ = 0,−a. Fi-
nally, we perform the inverse transformation on Q,Q to obtain P,P:(

P(ξ)
P(ξ)

)
= χ+

(
γ

1 − λ+

)[
p1H(ξ + a)e−λ+(ξ+a)/c − p2H(ξ)e−λ+ξ/c

]
(4.30)

+χ−

(
γ

1 − λ−

)[
p1H(ξ + a)e−λ−(ξ+a)/c − p2H(ξ)e−λ−ξ/c

]
.

From translation symmetry, it follows that L̂†
n has the null vector (Pn, Pn) with

Pn(ξ) = P(ξ − ξn), Pn(ξ) = P(ξ − ξn).(4.31)

Hence, applying the decomposition (4.22), we see that〈
L̂†
(

Pn

Pn

) ∣∣∣∣( Q
Q

)〉
= −

∑
j �=n

〈δ(Uj − κ)w ∗ Pn|Q〉 + O(ε).(4.32)

Equations (4.30) and (4.31) imply that Pn, Pn are zero for ξ < ξn−a and exponentially
decaying for ξ > ξn−a. Evaluating the inner product on the right-hand side of (4.32)
establishes that it is also O(ε). We conclude that (4.20) has the set of solutions
(Pn, Pn), n = 1, . . . , N . We now take the inner product of (4.18) with respect to the
vector (Pm, Pm) for some integer m,m = 1, . . . , N , and use (2.23):

φ̇m

〈(
Pm

Pm

) ∣∣∣∣( U ′
m

V ′
m

)〉
+

1

ε
〈Pm |w ∗ δ(Um − κ)[Um+1 + Um−1]〉 = O(ε).(4.33)

Evaluating the various inner products using (4.30) and (3.12) leads to the same (3.20)
and (3.21) as the scalar case, with

K = γ−1

〈(
P
P

) ∣∣∣∣( U ′

V ′

)〉
.(4.34)

However, there is a significant difference in the asymptotic behavior of the interaction
functions fL, fR when compared to the scalar case. This is due to the fact that adap-
tation is slow (γ � 1) so that λ− ≈ 0, and thus the leading edge decays much faster
than the trailing edge; see (4.6) and (4.15). Hence, we can neglect the interaction
term fL in (3.20) to obtain

ξ̇m = fR(ξm+1 − ξm)(4.35)

with fR(Δ) ∼ −e−λ−Δ/c. In this case the dynamics of the pulse position ξm depends
only on the distance to the proceeding pulse Δm = ξm+1 − ξm and can thus be
reformulated within a kinematic framework [11, 33]. This is based on the observation
that the function fR directly determines the dispersion relation between the speed
C and the pulse separation Δ of a uniformly spaced wave train, C(Δ) = fR(Δ) + c.
Thus

˙ξm = C(Δm) − c.(4.36)

The condition for stability of a uniform wave train on a ring is then f ′
R(Δ) > 0.
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5. Discussion. In this paper we have used perturbation methods to develop a
theory of weakly interacting pulses in one-dimensional neuronal networks. We have
shown how the pulse interactions explicitly depend on the form of the long-range
synaptic coupling, and investigated how this determines the existence and stability of
multipulse solutions. For simplicity, we have assumed throughout that the network
is homogeneous: the coupling depends only on the distance between interacting el-
ements in the network, and external inputs have been ignored. In a recent series of
papers, we have shown that introducing a localized inhomogeneous input can gener-
ate oscillatory coherent states in the form of standing and traveling breathing pulses
[5, 15, 16]. It would be interesting to develop a theory of weakly interacting breathers
and to determine under what conditions long-range synaptic coupling can provide a
mechanism for synchronizing the oscillations between breathers. This would provide
an alternative way of thinking about stimulus-induced coherent oscillations in cortex,
which are observed in vivo during periods of sensory processing [21, 14].
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