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Abstract We derive an activity-based developmental model of ocular domi-
nance column formation in primary visual cortex that takes into account cortical
growth. The resulting evolution equation for the densities of feedforward affer-
ents from the two eyes exhibits a sequence of pattern forming instabilities as the
size of the cortex increases. We use linear stability analysis to investigate the na-
ture of the transitions between successive patterns in the sequence. We show that
these transitions involve the splitting of existing ocular dominance (OD) columns,
such that the mean width of an OD column is approximately preserved during the
course of development. This is consistent with recent experimental observations
of postnatal growth in cat.

Keywords Cortical development · Ocular dominance · Pattern formation ·
Growing domain

1. Introduction

The primary visual cortex (V1) is characterized by a number of spatially dis-
tributed feature maps, in which local populations of neurons respond preferen-
tially to stimuli with particular properties such as orientation and spatial frequency.
Neurons also tend to respond more strongly to stimuli presented in one eye rather
than the other, that is, they exhibit ocular dominance. Neurons sharing the same
ocular dominance are grouped together into non-overlapping regions that form an
alternating pattern of right and left eye preference across V1. Such regions have
a characteristic periodicity and morphology that is species-dependent. For exam-
ple, in the adult macaque monkey ocular dominance regions consist of branching
stripes that have an approximately uniform width of 0.4 mm (Hubel and Wiesel,
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Fig. 1 Reconstruction of ocular dominance columns in primary visual cortex (V1) of macaque
monkey shown in tangential section. Regions receiving input from one eye are shaded black and
regions receiving input from the other eye are unshaded. The dashed line signifies the border
between areas V1 and V2 (taken from Hubel and Wiesel, 1977).

1977) whereas in cat they are more patchy. An example of the ocular dominance
pattern in macaque is shown in Fig. 1. In the case of cats (and ferrets), ocular
dominance columns can be visualized at a very early postnatal stage (Crowley and
Katz, 2000; Crair et al., 2001), during which the cortex is still undergoing significant
growth. Indeed, Duffy et al. (1998) have shown that the surface area of adult cat
V1 is more than double that of 1-week-old kittens, with the shape of V1 remain-
ing unaltered. Although ocular dominance columns in macaque are fully formed
at birth, the macaque brain undergoes a much smaller degree of postnatal growth
(around 16%) (Purves and LaMantia, 1993). On the other hand, since ocular dom-
inance columns are now formed prenatally, it is possible that they exist during a
period of significant prenatal growth.

The large amount of postnatal growth in cat could have two very different effects
on the spatial arrangement of ocular dominance columns. One possible scenario is
that the ocular dominance map simply expands with the cortex, analogous to the
expansion of a pattern drawn on the surface of a balloon. This would imply that the
width of an ocular dominance column in an adult cat V1 is approximately one and a
half times larger than that of a neonatal kitten. However, recent work by Rathjen
et al. (2003) indicates that the spacing of adjacent ocular dominance columns in
adults and kittens are approximately equal. This supports an alternative scenario in
which new ocular dominance columns are added during postnatal growth in order
to occupy the enlarged cortical surface. Since neurogenesis, neuronal migration
and the ingrowth of thalamocortical afferents into the cortex have all ended by the
third postnatal week in cats (Shatz and Luskin, 1986), it is likely that the addition
of new columns would be achieved by the segregation of existing columns, rather
than by the formation of completely new columns.

1 Springer



Bulletin of Mathematical Biology (2006)

In this paper, we present an activity-based developmental model of ocular
dominance column formation that takes into account cortical growth. In the
case of a fixed cortical domain, our model reduces to the well-known Swindale
model (Swindale, 1980, 1996), in which lateral cortical interactions consisting
of short-range excitation and longer-range inhibition mediate a pattern forming
instability with respect to the spatial distribution of feedforward afferents from the
two eyes, resulting in alternating left and right eye dominated columns. The basic
mechanism for the formation of ocular dominance columns in the Swindale model
is analogous to the Turing instability in reaction–diffusion systems (Turing, 1952;
Murray, 2002). That is, an initial spatially homogeneous state becomes unstable
with respect to the growth of certain spatially periodic eigenmodes such that the
period of the fastest growing mode determines the wavelength of the resulting
pattern. It follows that the wavelength only depends on intrinsic properties of
the system, such as the diffusion coefficients in a reaction–diffusion model or
the range of lateral excitation and inhibition in the Swindale model. In the case
of reaction–diffusion equations, the role of domain growth in pattern formation
has recently been investigated by a number of authors (Painter et al., 1999;
Varea et al., 1999; Chaplain et al., 2001). Much of this work has been inspired
by experimental observations concerning the skin pigmentation of the marine
angelfish (Kondo and Asai, 1995). In juvenile fish, the skin color is initially grey
and then develops alternating white stripes on a dark blue background. New white
stripes are inserted between the existing older stripes resulting in a doubling of
the number of stripes each time the fish doubles in size. The nature of frequency-
doubling transitions between quasi-steady-state reaction–diffusion patterns in a
one-dimensional growing domain has been studied in some detail by Crampin
et al. (1999, 2002). They show that frequency-doubling can occur either through
activator peak insertions or through peak splitting. Moreover, a combination of
the two in the form of frequency-tripling has been observed in a piecewise linear
reaction–diffusion model with an additional inversion symmetry (Crampin et al.,
2002). Motivated by the work on reaction–diffusion systems, we show in this paper
that incorporating domain growth into a one-dimensional version of the Swindale
model generates a sequence of quasi-steady-state patterns, in which existing
ocular dominance columns segregate so that the approximate width of an OD
column is preserved. We determine the transition points analytically by linearizing
about the steady-state patterns, and show how this predicts very well the sequence
of transitions observed numerically. The sequence of transitions appears similar
in form to the frequency-tripling transitions identified by Crampin et al. (2002),
although the mechanism for transitions between steady-state patterns is very
different from the reaction–diffusion case. The occurrence of frequency-tripling
rather than frequency-doubling reflects the underlying exchange symmetry
between left and right ocular dominance columns.

An important implication of our analysis is that in order for new ocular domi-
nance columns to occur, it is necessary that the lateral interactions are themselves
nontrivially modified during cortical growth. That is, a simple elongation of the lat-
eral interactions as the cortex grows will not induce any pattern transitions. Inter-
estingly, this observation is consistent with recent experimental studies concerning
the development of patchy long-range connections in cortex (Schmidt et al., 1999).
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These connections form a reciprocal system of axon collaterals that arborize at reg-
ular distances of about 1 mm and link cells with similar feature preferences such as
ocular dominance. It follows that if the approximate size of an ocular dominance
column is preserved during postnatal cortical growth, then the distance between
patches should also be preserved, most likely through the refinement of existing
clusters. There is experimental evidence that the long-range connections do un-
dergo both elongation and refinement postnatally (Luhmann et al., 1990; Callaway
and Katz, 1991). For simplicity, rather than explicitly modeling the refinement of
long-range connections, we introduce a scaling rule for the lateral interactions.

Finally, note that independently of the issue of cortical growth, this paper
presents for the first time analytical results regarding the stability of ocular dom-
inance patterns. Our analysis not only applies to the original Swindale model but
also to the well-known correlation-based Hebbian model of Miller et al. (1989),
which exhibits very similar behavior. Previous analytical studies of these and re-
lated models have focused on the linear eigenmodes associated with the growth
from a binocular state rather than the stability of the final nonlinear pattern (Swin-
dale, 1980, 1996; Miller et al., 1989). It is generally not possible to analyze the sta-
bility of the patterns by carrying out a perturbation expansion about the binocular
state, since the Turing instability appears to be subcritical, in the sense that large
amplitude patterns are formed just beyond the bifurcation point. However, clas-
sical bifurcation techniques could be applicable to other classes of developmental
model that exhibit smooth transitions to ocular dominance column patterns (see,
e.g., Harris et al., 2000), with stripe insertions occurring via secondary bifurcations
(Ermentrout and Cowan, 1980).

2. Developmental model on a growing domain

In this section, we construct an extension of the Swindale model of ocular domi-
nance column formation (Swindale, 1980) that takes into account cortical growth.
We proceed along analogous lines to the recent study of reaction–diffusion sys-
tems on a growing domain by Crampin et al. (1999, 2002). The Swindale model
treats input layer 4 of cortex as a two-dimensional sheet of neural tissue and con-
siders competition between the synaptic densities of feedforward afferents from
the left and right eyes that are relayed from the lateral genciculate nucleus (LGN)
of the thalamus. Such competition is mediated by lateral interactions across cor-
tex. Let nL(r, t) and nR(r, t) denote the densities of left and right eye synaptic
connections to a point r = (x, y) on cortex at time t . For the moment we treat the
two-dimensional cortical domain � as fixed (no cortical growth). The feedforward
synaptic weights evolve according to the equation (Swindale, 1980)

∂ni (r, t)
∂t

=
 ∑

j=R,L

∫
�

w j i (|r′ − r|)nj (r′, t) dr′

 F(ni (r, t)) (1)

for i = R, L. The logistic function F(ni ) = ni (N − ni ) ensures that the growth of ni

terminates at a maximum density N and that the weights remain positive, that is,
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0 ≤ ni ≤ N. Same-eye lateral interactions wRR and wLL are assumed to be positive
for small cortical separations |r − r′| (short-range excitation) and negative for large
cortical separations (long-range inhibition). The opposite-eye interactions wRL

and wLR are assumed to be anti-correlated, in the sense that they consist of short-
range inhibition and long-range excitation.1 As a further simplification, suppose
that the total synaptic weight at any point in cortex is constant with nL + nR = N.
This condition implies ∂nR/∂t = −∂nL/∂t , which is guaranteed if the eyes are
symmetrically anti-correlated, wRR = −wRL and wLL = −wLR. We introduce a
new normalized density variable n = (nL − nR)/N, which determines the ocular
dominance at each point r. In particular, n = 0 corresponds to a binocular state
and n = 1 (n = −1) corresponds to a monocular state with complete left (right)
eye dominance. The system (1) then reduces to the scalar integro-differential
equation

∂n(r, t)
∂t

= [1 − n(r, t)2]
[∫

�

w(|r − r′|)n(r′, t) dr′ + K(r)
]

, (2)

where w = (N/2)2[wRR + wLL] and K(r) = (N/2)2
∫
�

[wLL(|r′ − r|) − wRR(|r′ −
r)|] dr′, which reduces to a constant in the unbounded domain � = R

2. We will
assume that the interactions are symmetric with respect to interchange of the
two eyes (wLL = wRR) so that K = 0. Swindale (1980) showed how competition
between short-range excitation and long-range inhibition can induce a Turing-like
instability of the binocular equilibrium solution of Eq. (2), leading to the sponta-
neous formation of ocular dominance columns. Moreover, the morphology of the
resulting stripe pattern is consistent with experimentally determined ocular domi-
nance columns in primates.

In order to extend the Swindale model to the case of a growing cortex, we rewrite
it in the integral form

d
dt

∫
�t

n(r, t) dr =
∫

�t

Ft [n](r, t) dr, (3)

where �t is the cortical domain at time t and (for K = 0)

Ft [n](r, t) = [1 − n(r, t)2]
[∫

�t

wt (|r − r′|)n(r′, t) dr′
]

. (4)

1The lateral interactions in the Swindale model are a phenomenological representation of a num-
ber of different forms of interaction. These include statistical correlations between feedforward
inputs from the thalamus, short-range and long-range intracortical synaptic connections, and pos-
sibly the diffusion of secondary messenger molecules. The reversal in sign of opposite eye inter-
actions is supposed to reflect negative statistical correlations between left and right eye inputs.
However, the existence of negative correlations is difficult to justify from a neurobiological per-
spective. The problem of negative correlations can be avoided by using a linear Hebbian model
with subtractive normalization instead of the Swindale model (Miller et al., 1989). It turns out that
both models exhibit very similar behavior and can be analyzed in almost an identical fashion. The
relationship between the two models will be discussed further in Section 5.
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The subscript t indicates that the lateral interaction function wt may vary with the
size of the cortex. Using the Reynolds transport theorem to evaluate the left-hand
side,

d
dt

∫
�t

n(r, t) dr =
∫

�t

[
∂n
∂t

+ ∇ · (u(t)n(r, t))
]

dr, (5)

where u(t) is the flow of the domain at time t , we obtain the evolution equation

∂n
∂t

+ ∇ · (un) = Ft [n]. (6)

The growing domain �t introduces an advection term u · ∇n, indicating that the
feedforward afferents attached to the cortex move with the cortex, and a dilution
term n∇ · u that takes into account changes in surface area of cortex. Following
Crampin et al. (1999), we specify the growth of the cortex using a Lagrangian de-
scription:

r = �(R, t), r ∈ �t , R ∈ �0, (7)

where R is the point at time t = 0 that maps to the point r at time t according to the
growth function �. Note that �(R, 0) = R. The velocity field for the flow is then
given by

u(r, t) = ∂r
∂t

= ∂�

∂t
(8)

for fixed R. On the basis of the experimental work of Duffy et al. (1998), who
showed that between postnatal weeks 3 and 6 cat V1 undergoes a uniform ex-
pansion in which it approximately doubles in size, we assume that the growth is
slow and isotropic. It should be noted that our extension of the Swindale model
is formulated in terms of the normalized synaptic density n = (nL − nR)/N where
N = nL + nR is the fixed total density at each point in cortex. This implies that
the total number of synapses is itself time-dependent, growing in proportion to
the total surface area of cortex. That is, NTot(t) ≡ ∫

�t
[nL(r) + nR(r)] dr = N�t . It

is usually assumed that the development of ocular dominance columns involves
the rearrangement or pruning of existing connections, which would imply that the
total number of afferent connections remains the same or actually decreases. On
the other hand, it is also possible that the strength or efficacy of the remaining con-
nections actually increases through the formation of more extensive arborizations.
Since our simple developmental model does not distinguish between the number
of synapses and their strength, it is not clear how best to model any variation of N
with cortical growth. Given that such a variation simply introduces an additional
slowly varying term in the dynamical equations and this does not affect the basic
pattern formation process, we will treat N as fixed.

In this paper, we further restrict ourselves to the simpler case of a one-
dimensional cortical domain �t = [0, L(t)] where L(t) is the size of the cortex at
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time t . Isotropic flow can then be written in the form

�(X, t) = Xρ(t), ρ(0) = 1 (9)

with corresponding velocity field

u(x, t) = Xρ̇ = x
ρ̇

ρ
. (10)

The size of cortex grows as L(t) = L0ρ(t). Substitution into the one-dimensional
version of Eq. (6) gives

∂n
∂t

+
(

ρ̇

ρ

) (
x

∂n
∂x

+ n
)

= Ft [n], (11)

with

Ft [n](x, t) = [1 − n(x, t)2]

[∫ L(t)

0
wt (|x − x′|)n(x′, t) dx′

]
. (12)

Following Crampin et al. (1999), we transform Eq. (11) to the fixed interval [0, L0]
by performing the change of variables

(x, t) → (x̄, t̄) =
(

x
ρ(t)

, t
)

. (13)

Under this transformation the advection term in Eq. (11) is eliminated, since

∂n
∂ t̄

= ∂n
∂t

+ x
ρ̇

ρ

∂n
∂x

.

On dropping the overbars, we obtain the modified evolution equation

∂n
∂t

= F̂t [n] − n
ρ̇

ρ
, (14)

where

F̂t [n](x, t) = ρ(t)[1 − n(x, t)2]
[∫ L0

0
wt (|x − x′|ρ(t))n(x′, t) dx′

]
. (15)

It remains to specify more explicitly the form of the lateral interaction function
wt and how it scales with time t . As in the original Swindale model (Swindale,
1980), we require that the lateral interactions mediate competition through short-
range excitation and long-range inhibition. Therefore, we introduce a “Mexican
hat” function given by a difference-of-exponentials
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W(x) = A
[
e−σE|x| − βe−σI|x|] (16)

with A> 0, 0 < β < 1 and σE > σI. Here σE, σI are space constants that determine
the range of excitation and inhibition. (One could equally well take W(x) to be
a difference-of-Gaussians; we consider exponential functions for analytical conve-
nience.) Given the function W(x), we assume the following scaling behavior for
the lateral interaction function wt :

wt (x) = γ1(t)W(γ2(t)x) (17)

If the lateral interactions simply grow with the cortex (the “balloon effect”) then
γ1(t) = γ2(t) = 1/ρ(t), which takes into account both the local expansion of cortex
and the increase in the range of interactions, that is, σE,I → σE,I/ρ(t). Equation
(14) then reduces to the form

∂n
∂t

= F0[n] − n
ρ̇

ρ
.

In this case, the only effect of cortical growth is the addition of a dilution term
nρ̇/ρ, which will be small for slow growth. If this term is dropped then we re-
cover the original Swindale model on a fixed domain of size L0; this cannot ex-
hibit a sequence of pattern forming instabilities in which new ocular dominance
columns are added as the cortex grows. Therefore, we require that the lateral in-
teractions undergo some refinement as the cortex grows that is beyond simple ex-
pansion. It is difficult to determine from first principles the form of such a refine-
ment, since the lateral interactions in the Swindale model are a phenomenological
representation of a number of different forms of interaction. Here we make the
ansatz that γ1(t) = γ2(t) = 1, which corresponds to taking the distribution of lat-
eral interactions to be invariant with respect to cortical growth. Equation (14) then
becomes

∂n
∂t

= ρ(t)[1 − n(x, t)2]
[∫ L0

0
W(|x − x′|ρ(t))n(x′, t) dx′

]
− n

ρ̇

ρ
. (18)

In order to simplify our analysis we will drop the dilution term nρ̇/ρ, which is
motivated by the fact that ρ̇ is small for slow growth. This then allows us to consider
the existence and stability of steady-state solutions of the form n(x) = ±1 for all
0 ≤ x ≤ L0 (see Section 3). Numerically, we find that such an approximation does
not alter our main results (see Section 4). Incorporating an explicit dynamics for
the growth rate ρ, we finally obtain the pair of equations

∂n
∂t

= [1 − n(x, t)2]
[∫ L0

0
Wρ(|x − x′|)n(x′, t) dx′

]
, (19)

∂ρ

∂t
= ε f (ρ), (20)
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where

Wρ(x) = ρW(ρx). (21)

Since the growth of cortex saturates in the adult, we assume logistic growth by
taking (Crampin et al., 1999)

f (ρ) = ρ (1 − ρ/ξ) , (22)

so that

ρ(t) = eεt

1 + ξ−1(eεt − 1)
. (23)

Here ξ is the ratio of initial to final lengths, that is, limt→∞ ρ(t) = ξ . Equations
(19) and (20) generate a sequence of patterns in time. For slow growth ε 
 1,
we can identify two distinct dynamical regimes along analogous lines to the re-
action diffusion system of Crampin et al. (1999). If ∂n/∂t 
 1/ε then n evolves
to a quasi-steady-state pattern of alternating ocular dominance columns that is
modulated by the slowly varying parameter ρ. However, when ∂n/∂t = O(1/ε)
quasi-stationarity is lost, signaling the onset of a fast transition to the next pat-
tern in the sequence. Such a transition arises because of destabilization of an ex-
isting pattern when ρ reaches a critical value. Moreover, as we establish in Sec-
tion 3, the nature of the transition between successive patterns can be understood
by considering the growth of linear eigenmodes close to the point of instabil-
ity. In particular, away from the boundary we find frequency-tripling, in which
each ocular dominance column splits into three alternating columns. The occur-
rence of frequency-tripling rather than frequency-doubling reflects the fact that the
Swindale model is symmetric with respect to the exchange of left and right eye oc-
ular dominance columns. This is analogous to the inversion symmetry required
for the observation of frequency-tripling in a piecewise linear reaction–diffusion
system (Crampin et al., 2002).

3. Linear stability analysis on a fixed domain

The basic mechanism for ocular dominance column formation originally proposed
by Swindale (1980) involves the growth of spatially periodic eigenmodes from the
homogeneous binocular state n(x) = 0 for all x ∈ � where � is a fixed domain.
Linearizing about the binocular state gives

∂n(x, t)
∂t

=
∫

�

W(|x − x′|)n(x′, t) dx′. (24)

Suppose, for the moment, that � = R. The solutions of (24) are then of the form
n(x, t) = eλt ei x·k and the growth factor λ satisfies the dispersion relation

λ = W̃(k) ≡
∫ ∞

−∞
eikxW(|x|) dx. (25)
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W(x)

x

(a)

~
W(k)

k

kc

(b)

Fig. 2 (a) Difference-of-exponentials interaction function W(x) displaying short-range excitation
and long-range inhibition. (b) Fourier transform W̃(k) with maximum at k = kc. The gray shaded
region denotes the semi-infinite band of unstable modes.

Thus, the rate of growth or decay of the linear eigenmodes is determined by
the Fourier transform W̃ of the lateral interaction function W. An example of a
difference-of-exponentials function W(x) and its transform W̃(k) are plotted in
Fig. 2 for the case W̃(0) < 0. It can be seen that there is a semi-infinite band of
eigenmodes that are unstable (positive λ). The value of k that maximizes W̃(k)
is called the critical wavenumber kc. One finds numerically that the critical wave
number kc determines the approximate wavelength of the pattern that emerges
from the homogeneous initial state (or some random initial state). The result-
ing pattern consists of alternating left and right ocular dominance columns with
approximate width π/kc and with sharp boundaries (Swindale, 1980). The mech-
anism for the formation of such a pattern is analogous to the Turing instability
of reaction–diffusion systems (Turing, 1952; Murray, 2002), where competition is
mediated by diffusing and reacting chemical species rather than nonlocal lateral
interactions.

Figure 2 is oversimplified, in the sense that it does not take into account bound-
ary effects. Nevertheless, we will assume that at some critical point in development,
ocular dominance columns spontaneously emerge through a Turing-like instability
from a binocular state. For concreteness, suppose that this occurs when ρ = 1, that
is, the cortex has size L0. Of course, the initial development of ocular dominance
itself takes time so that one cannot really ignore the growth of the cortex during
this period. However, we assume that this does not have a significant effect on the
initial Turing instability. Once the ocular dominance pattern has formed, the cor-
tex continues to grow, that is, ρ increases. At some critical value of ρ the pattern
becomes unstable and a new pattern is formed. This can be understood in terms
of a state transition between two patterns belonging to the class of steady-state
solutions:

n̄(x) =
{

1, for x ∈ +
−1, for x ∈ −

(26)
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with ± ⊂ [0, L0] such that + ∪ − = [0, L0]. Here + (−) signifies the subre-
gion spanned by the left-eye (right-eye) ocular dominance columns. Although the
existence of these solutions is independent of ρ, their stability properties strongly
depend on ρ. Linearizing Eq. (19) about n̄(x) by setting n(x, t) = n̄(x) + c(x, t)
and expanding to first order in c gives

∂c(x, t)
∂t

= −2�ρ(x)n̄(x)c(x, t), (27)

where

�ρ(x) =
∫ L0

0
Wρ(|x − x′|)n̄(x′) dx′. (28)

The condition for (marginal) stability of the equilibrium solution n̄ is then

�ρ(x)

{
≥ 0, for x ∈ +
≤ 0, for x ∈ −

. (29)

In the following, we determine �ρ and its dependence on ρ for some simple ex-
amples of stationary solutions satisfying Eq. (26) including fronts, single bumps
and periodic patterns. We use this to gain insights into the nature of the growth-
induced transition between successive ocular dominance patterns. In particular,
we show that frequency-tripling tends to occur away from the boundary.

3.1. Stationary front

Consider the stationary front solution

n̄(x) =
{

−1, 0 ≤ x < x0

1, x0 < x ≤ L0
(30)

with 0 < x0 < L0. The corresponding function �ρ defined by Eq. (28) takes the
form

�ρ(x) =
∫ L0

x0

Wρ(|x − x′|) dx′ −
∫ x0

0
Wρ(|x − x′|) dx′. (31)

Substituting for Wρ using Eqs. (16) and (21) gives

�ρ(x) = ρ [�σ̂E (x) − β�σ̂I (x)] (32)

with σ̂E,I = ρσE,I and

�σ (x) =
∫ L0

x0

e−σ |x−x′ | dx′ −
∫ x0

0
e−σ |x−x′ | dx′. (33)
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Evaluating the integrals shows that

�σ (x) =
{

�−
σ (x), 0 ≤ x < x0

�+
σ (x), x0 < x ≤ L0

(34)

with

�+
σ (x) = 1

σ

[
2 − 2e−σ (x−x0) − e−σ (L0−x) + e−σ x

]
, (35)

and

�−
σ (x) = 1

σ

[
2eσ (x−x0) − 2 − e−σ (L0−x) + e−σ x

]
. (36)

The general stability condition (29) implies that the stationary front is stable if
�ρ(x) ≤ 0 for all 0 ≤ x < x0 and �ρ(x) ≥ 0 for all x0 < x ≤ L0. Since �ρ(x) is a
continuous function of x, it follows that a necessary condition for a stable front
is �ρ(x0) = 0. Combining this with Eqs. (32), (41), (35) and (36), we obtain the
stability condition

1
σE

e−x0σ̂E − β

σI
e−σ̂Ix0 = 1

σE
e−σ̂E(L0−x0) − β

σI
e−σ̂I(L0−x0). (37)

The latter is satisfied if x0 = L0/2 independently of the parameters β, σE,I and ρ.
Therefore, we will take x0 = L0/2 in the following. (Note that for certain ranges
of parameters there can exist other solutions x0 of Eq. (37), but the corresponding
fronts tend to be unstable.)

In Fig. 3, we plot �ρ(x) for a range of values of ρ with x0 = 1/2, L0 = 1 and
fixed weight parameters σE,I, β. Note that �ρ(x) is an odd function with respect
to reflections about x = 1/2, that is, �ρ(1 − x) = �ρ(x) for 0 ≤ x ≤ 1/2. The
front is stable provided that the function �ρ(x) only crosses the x-axis at the
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Fig. 3 Plot of �ρ(x) for various values of the scale factor ρ in the case of a stationary front
with center at x0 = 1/2 for L0 = 1. The parameters of the weight distribution (16) are taken to be
β = 0.5, σE = 4.4, σI = 1.9 and A= 10. (a) ρ = 1: front solution is stable since �ρ(x) < 0 for 0 ≤
x < 1/2 and �ρ(x) > 0 for x0 < x ≤ 1. (b) ρ = 4: front solution is unstable since �ρ(x) crosses the
x-axis close to the boundary of the domain. The function �ρ(x) also develops additional extrema.
(c) ρ = 6: additional regions of instability occur due to the extrema at P, P∗ crossing the x-axis.
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Fig. 4 Evolution of an unstable stationary front for fixed ρ. Other parameter values as in Fig. 3.
(a) ρ = 4: insertion of new columns at the boundary. (b) ρ = 6: frequency-tripling in which each
column splits into three alternating columns.

point x = 1/2. It can be seen that as ρ increases, zero crossings occur close to the
boundary of the domain. The function �ρ(x) also develops additional stationary
points so that as ρ is further increased, these points also cross the x-axis leading
to additional regions of instability. It is these latter crossings that generate the
splitting of ocular dominance columns via frequency-tripling. In order for this
to be the primary instability, however, the zero crossings at the boundary have
to be suppressed. Otherwise, the front destabilizes with respect to the zero
crossings close to the boundary leading to the insertion of new columns at the
boundary rather than frequency-tripling. This is illustrated in Fig. 4, where we
show the evolution of an unstable front for the fixed values of ρ corresponding
to Fig. 3(b,c). One way to remove the boundary instability would be to introduce
periodic boundary conditions, as shown in Section 4. It turns out that the basic
transitions identified for the front carry over to the case of single or multiple bump
solutions (see below). Hence, if boundary effects are suppressed or negligible
(as when starting from a large number of bumps) then increasing ρ leads to a
sequence of frequency-tripling transitions. On the other hand, if boundary effects
are significant then the sequence of transitions is more irregular.

3.2. Single stationary bump

Let us now consider a stationary bump solution of the form

n̄(x) =


−1, 0 ≤ x < x0

1, x0 < x ≤ x1

−1, x1 < x < L0

(38)

with 0 < x0 < x1 < L0. (The bump is the region where n̄ = +1.) The corresponding
function �ρ defined by Eq. (28) takes the form

�ρ(x) = −
∫ x0

0
Wρ(|x − x′|) dx′ +

∫ x1

x0

Wρ(|x − x′|) dx′ −
∫ L0

x1

Wρ(|x − x′|) dx′.

(39)
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Substituting for Wρ using Eqs. (16) and (21) gives Eq. (32) with

�σ (x) = −
∫ x0

0
e−σ |x−x′ |dx′ +

∫ x1

x0

e−σ |x−x′ |dx′ −
∫ L0

x1

e−σ |x−x′ |dx′. (40)

Evaluating the integrals shows that

�σ (x) =


�−

σ (x), 0 ≤ x < x0

�0
σ (x), x0 ≤ x < x1

�+
σ (x), x1 < x ≤ L0

(41)

with

�+
σ (x) = 1

σ

[
e−σ x − 2e−σ (x−x0) + 2e−σ (x−x1) − 2 + e−σ (L0−x)], (42)

�0
σ (x) = 1

σ

[
e−σ x − 2e−σ (x−x0) − 2eσ (x−x1) + 2 + e−σ (L0−x)], (43)

and

�−
σ (x) = 1

σ

[
e−σ x + 2eσ (x−x0) − 2eσ (x−x1) − 2 + e−σ (L0−x)]. (44)

The general stability condition (29) implies that the stationary bump is stable if
�ρ(x) ≤ 0 for 0 ≤ x < x0, x1 < x ≤ L0 and �ρ(x) ≥ 0 for x0 < x < x1. Since �ρ(x)
is a continuous function of x, it follows that a necessary condition for a stable bump
is �ρ(x0) = �ρ(x1) = 0. Combining this with Eqs. (32), (41), (42), (43) and (44), we
obtain the stability conditions

1
σE

[
e−σ̂Ex0 + e−σ̂E(L0−x0) − 2e−σ̂E(x1−x0)]

= β

σI

[
e−σ̂Ix0 + e−σ̂I(L0−x0) − 2e−σ̂I(x1−x0)], (45)

and

1
σE

[
e−σ̂Ex1 + e−σ̂E(L0−x1) − 2e−σ̂E(x1−x0)]

= β

σI

[
e−σ̂Ix1 + e−σ̂I(L0−x1) − 2e−σ̂I(x1−x0)]. (46)

Equations (45) and (46) can be reduced to a single equation for the intersection
point x0 in the particular case x1 = L0 − x0:

1
σE

[
e−σ̂Ex0 + e−σ̂E(L0−x0) − 2e−σ̂E(L0−2x0)]

= β

σI

[
e−σ̂Ix0 + e−σ̂I(L0−x0) − 2e−σ̂I(L0−2x0)], (47)
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Fig. 5 Plot of �ρ(x) for various values of the scale factor ρ in the case of a stationary bump with
jumps at x0, x1 for L0 = 1. The parameters of the weight distribution (16) are as in Fig. 3. (a) ρ = 4:
bump solution is stable since �ρ(x) < 0 for x ∈ (0, x0) ∪ (x1, 1) and �ρ(x) > 0 for x ∈ (x0, x1). (b)
ρ = 7.2: bump solution is unstable since �ρ(x) crosses the x-axis close to the boundary of the
domain. The function �ρ(x) also develops additional extrema. (c) ρ = 8: additional regions of
instability occur because of the extrema at P, P∗, P∗∗ crossing the x-axis.

One can then obtain an approximate solution to Eq. (47) in the large-ρ limit.
First, recall that σ̂E,I = ρσE,I. Since σE > σI, it follows that each term on the left-
hand side is much smaller than the corresponding term on the right-hand side and
can be neglected. Taking x0 = 1/3 − δ then leads to the following equation

e−σ̂I/3eσ̂Iδ + e−2σ̂I/3e−σ̂Iδ − 2e−σ̂I/3e−2σ̂Iδ = 0

Dropping the second term on the right-hand side in the large-ρ limit and solving
for δ we deduce that for sufficiently large ρ,

x0 ≈ 1
3

− ln 2
3ρσI

Hence, x0 → 1/3, x1 → 2/3 in the limit ρ → ∞. In Fig. 5, we plot �ρ(x) for a
range of values of ρ with L0 = 1 and fixed weight parameters σE,I, β. The bump
is stable provided that the function �ρ(x) only crosses the x-axis at the points
x = x0, x1. The behavior of �ρ as a function of ρ is similar to that of the front.
That is, as ρ increases, zero crossings occur close to the boundary of the domain.
The function �ρ(x) also develops additional stationary points so that as ρ is fur-
ther increased, these points also cross the x-axis leading to additional regions of
instability. Again these latter crossings generate the splitting of ocular dominance
columns via frequency-tripling as illustrated in Fig. 6, where we show the evolution
of an unstable bump for the fixed values of ρ corresponding to Fig. 5(b and c).

3.3. Periodic pattern

It is instructive to extend the above analysis to the case of a spatially periodic
solution of the Swindale model defined on the unbounded domain −∞ < x < ∞:

∂n
∂t

= [1 − n(x, t)2]
[∫ ∞

−∞
W(|x − x′|)n(x′, t) dx′

]
. (48)
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Fig. 6 Evolution of an unstable stationary bump for fixed ρ. Other parameter values as in Fig. 5.
(a) ρ = 7.2: insertion of new columns at the boundary. (b) ρ = 8: frequency-tripling in which each
column splits into three alternating columns.

Such a multi-bump solution is of the form

n̄(x) =
∞∑

m=−∞
(−1)mHm(x), (49)

where

Hm(x) =
{

1, if md < x < (m + 1)d

0, otherwise

with d being the characteristic width of each bump. Linearizing about n̄ leads to
Eq. (27) with �ρ → �∗, where

�∗(x) =
(∫ ∞

−∞
W(|x − x′|)n̄(x′) dx′

)
. (50)

The periodic pattern is stable provided that n̄(x)�∗(x) > 0 for all x ∈ (−∞,∞).
Substituting Eqs. (16) into Eq. (50) shows that �∗(x) = �σE (x) − β�σI (x) with

�σ (x) =
∫ x

−∞
eσ (x′−x)n̄(x′) dx′ +

∫ ∞

x
eσ (x−x′)n̄(x′) dx′. (51)

Let us calculate �σ (x) on the interval md < x < (m + 1)d. Substituting for n̄ using
Eq. (49) leads to the decomposition

�σ (x) =
m−1∑

n=−∞
(−1)n

∫ (n+1)d

nd
eσ (x′−x) dx′ +

∞∑
n=m+1

(−1)n
∫ (n+1)d

nd
eσ (x−x′) dx′

+(−1)m

[∫ x

md
eσ (x′−x)dx′ +

∫ (m+1)d

x
eσ (x−x′)dx′

]
.
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Evaluating each of these integrals and summing the resulting geometric series
gives

�σ (x) = 2
σ

(−1)m

[
1 − eσ ((m+1)d−x) + eσ (x−md)

1 + eσd

]
, md < x < (m + 1)d.

Setting y = x − md and noting that n̄(x) = (−1)m over the interval md < x < (m +
1)d, we deduce that

n̄(y + md)�σ (y + md) = �σ (y), 0 < y < d (52)

with

�σ (y) = 2
σ

[
1 − cosh(σ (y − d/2))

cosh(σd/2)

]
. (53)

The function �σ (y) is a positive, unimodal function that is symmetric about its
maximum at y = d/2. Since the right-hand side of Eq. (52) is independent of m,
we conclude that the periodic pattern is stable provided that

�(y) ≡ �σE (y) − β�σI (y) > 0, 0 < y < d. (54)

We now show that if inhibition is sufficiently strong then only patterns up to a
critical width dc are stable. Equation (53) gives �(0) = 0 and

� ′(0) = tanh(σEd/2) − β tanh(σId/2) > 0,

which follows from the lateral inhibition conditions σE > σI and 0 < β < 1. Hence,
�(y) is a positive, increasing function sufficiently close to the boundaries y = 0, d.
It will remain positive unless �(d/2) < 0. In the case of small d, we have

�(d/2) ≈ d2

8
(σE − βσI) > 0,

whereas for large d

�(d/2) ≈ 1
σE

− β

σI
< 0,

assuming that σE > σI/β. The latter condition is equivalent to requiring that the
Fourier transform of W(x) satisfy W̃(0) < 0. One finds that there exists a criti-
cal value of width dc for which �(dc/2) = 0 such that �(d/2) > 0 for d < dc and
�(d/2) < 0 for d > dc. This is illustrated in Fig. 7. Our analysis is consistent with
the Turing-like approach to analyzing the Swindale model (Swindale, 1980). That
is, linearizing about the homogeneous binocular state, one finds that for σE > σI/β

there exists a semi-infinite band of eigenmodes that grow to form a periodic pat-
tern (see Fig. 2). These modes are the ones with a sufficiently high wave number k,
which corresponds to small values of d.
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Fig. 7 Plot of �(y) for various values of width d in the case of a periodic pattern. The parameters
of the weight distribution (16) are taken to be β = 0.5, σE = 4.4, σI = 1.9.

4. Numerical results

In this section, we describe numerical results obtained by directly simulating the
one-dimensional model evolving according to Eq. (11), and interpret our results in
terms of the analysis presented in Section 3. Note that we include the slowly vary-
ing term (ρ̇/ρ)n in our simulations, although the model produces similar results
without it. We assume slow logistic growth with ρ(t) given by Eq. (23) for ε 
 1.
We consider two types of initial condition. The first consists of a stable front solu-
tion, which exists provided that the initial length L0 is sufficiently small; this allows
us to make a direct comparison with the analysis of Section 3. The second consists
of a binocular state at a larger value of L0, which immediately undergoes a Turing
instability leading to the formation of an ocular dominance column pattern; this is
the more likely situation from a developmental perspective. The subsequent pro-
gression of the pattern as the domain size grows exhibits two distinct time scales:
the slow widening of the columns as the length of the domain increases, and the
rapid transitions that occur when the system becomes unstable, quickly followed
by the insertion of new ocular dominance columns. We take into account these
two time scales by using an adaptive-step numerical scheme. That is, we take rel-
atively large time steps, unless the value of the next step determined by Euler’s
Method significantly differs from the value predicted by Improved Euler’s. In the
latter case, we continually halve the time step until the two predictions are within
a given tolerance.

First, suppose that the initial state is a stable front solution (small L0). With
free boundary conditions, the stability analysis from Section 3.1 indicates that this
solution will remain stable until the cortex reaches some critical length, at which
point columns will be inserted at the boundaries. In line with Fig. 3(b), we find
numerically that this occurs at a critical length L = ρL0 ≈ 4. We also find that as
the cortex continues to grow, frequency-tripling bifurcations occur in the interior
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of the domain, resulting in the formation of a multiple stripe pattern, see Fig. 8(a).
Associated with each column insertion is a sharp reduction in the mean width of an
ocular dominance column and a transient rise in the corresponding variance. This
is shown in Fig. 8(b and c). Note that not all of the ocular dominance columns split
at exactly the same time. This pattern irregularity is a consequence of the boundary
instabilities. However, this may not be a defect of the model, since the ocular dom-
inance patterns observed experimentally also tend to be rather disordered (Hubel
and Wiesel, 1977; Swindale, 1996). A much more regular pattern can be gener-
ated by using periodic boundary conditions instead of free boundary conditions,
as illustrated in Fig. 9. An alternative mechanism for eliminating boundary effects
would be to increase the growth rate ε, so that the frequency-tripling bifurcation
occurs before the boundary instabilities have had a chance to develop. However,
this appears to require an unrealistically fast growth rate.

Now suppose that the system starts off in a binocular state (large L0), and
immediately undergoes a Turing-like instability leading to the formation of an
ocular dominance pattern with mean column width d ≈ π/kc, where kc is the criti-
cal wavenumber of the associated weight distribution (16). Note that the resulting
pattern, which already has a certain degree of irregularity, then undergoes both
boundary insertions and frequency-tripling bifurcations as the length of the do-
main slowly increases, see Fig. 10. Thus, as in the previous example, frequency-
tripling provides a mechanism for column insertion, whereby the mean column
width is approximately preserved. This is consistent with the recent experimental
finding that the column width in adult cats is similar to that of kittens, even though
the cortex has at least doubled in size (Rathjen et al., 2003). In our simulations we
find that frequency-tripling bifurcations occur when the domain size has increased
by a factor of 2.5–3 from when ocular dominance columns first form. This is only a
slight over estimate of postnatal growth in cat, particularly given the simplicity of
the model. Our model actually makes the stronger prediction that if the mean col-
umn width were sampled more frequently during postnatal development, then one
would detect two distinct regimes: one characterized by a slow increase in column
width and the other characterized by a relatively sharp decrease in width due to
column insertions. Finally, note that our basic results are robust to changes in the
various weight parameters and to changes in the rate of growth. The same quali-
tative behavior is also seen in another well-known developmental model as shown
below.

5. Correlation-based Hebbian model

For simplicity, we have formulated the problem of ocular dominance column for-
mation on a growing cortical domain in terms of Swindale’s developmental model
(Swindale, 1980). One possible limitation of this particular model is its assump-
tion that opposite eye interactions are anti-correlated. It turns out, however, that
the results of our analysis carry over to another well-known developmental model,
namely the correlation-based linear Hebbian model with subtractive normaliza-
tion (Miller et al., 1989). We first describe the construction of the model on a fixed
cortical domain. Let nL(r) and nR(r) denote the synaptic densities of feedforward
afferents from the left and right eyes to a point r in cortex; for the moment these
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Fig. 8 (a) A plot of the growth from a front pattern at an initial length L0 = 2 under logistic
growth with ε = 0.01 and ξ = 4. The parameters of the weight distribution (16) are taken to be
β = 0.5, σE = 4.4, σI = 1.9 and A= 10. White corresponds to left eye dominance and black cor-
responding to right eye dominance. (b) The mean ocular dominance column width against time.
(c) The standard deviation σ divided by the mean ocular dominance width against time.

are assumed to be fixed as well. Suppose that there are also weak intracortical
synaptic interactions between neurons at r and r′ given by the distribution J (|r −
r′|). Assuming a linear model for the cortical activity V(r, t) at time t , we take

τ0
∂V(r, t)

∂t
= −V(r, t)

+
∫

�

J (r − r′)V(r′, t) dr′ + nL(r)IL(r) + nR(r)IR(r), (55)

where τ0 is a membrane time constant and IL(r) and IR(r) denote left and right
eyes inputs. These inputs are generated at random from some given probability
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Fig. 9 Same as Fig. 8 except with periodic boundary conditions. Note the regularity of the
frequency-tripling bifurcations compared to Fig. 8.

distribution that characterizes the input statistics. Since development takes place
on a much slower time-scale than the dynamics of cortical activity, we can take
V to be given by its steady-state value. Calculating this steady-state requires
inverting the linear operator L̂V(r) = V(r) − ∫

J (|r − r′|)V(r′) dr′. In the case
of weak cortical interactions, this inversion can be carried out by performing a
perturbation expansion in J . The first order approximation is thus

V(r) =
∫

�

M(|r − r′|) [nL(r′)IL(r′) + nR(r′)IR(r′)] dr′ (56)

with M(r) ≈ δ(r) + J (r) and δ is the Dirac delta function. Given the steady-state
response to an input for fixed synaptic densities nL, nR, we now allow these
densities to vary slowly in time according to a Hebbian rule with subtractive
normalization (Miller et al., 1989):

τ
∂nL

∂t
= 〈VIL〉 − γ (n), τ

∂nR

∂t
= 〈VIR〉 − γ (n), (57)

where τ � τ0, 〈. . .〉 denotes averaging over the distribution of inputs IL,R, and the
decay term γ (n) enforces a conservation constraint.

Suppose that the input correlations are of the form(
〈IL(r)IL(r′)〉 〈IL(r)IR(r′)〉
〈IR(r)IL(r′)〉 〈IR(r)IR(r′)〉

)
= Q(r − r′)C, C =

(
CS CD

CD CS

)
, (58)

where Q(r) determines the spatial dependence of the correlations, CS gives the
same eye correlations and CD the opposite eye correlations such that CD < CS.
Substituting Eq. (56) into (57) then leads to the equation (on setting τ = 1)
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Fig. 10 (a) A plot of the growth from a binocular state at an initial length L0 = 16 under logistic
growth with ε = 0.005 and ξ = 3.2. Other parameter values as in Fig. 8. White corresponds to left
eye dominance and black corresponding to right eye dominance. (b) The mean ocular dominance
column width against time. (c) The standard deviation σ divided by the mean ocular dominance
width against time.

∂ni (r, t)
∂t

=
∫

w(|r − r′|)
∑

j=L,R

Ci j n j (r′, t) dr′ − γ (n) (59)

for i = L, R, where w(r) = M(r)Q(r). Comparison with Eq. (1) shows that
wi j (r) → Ci jw(r) and the logistic multiplicative term has been replaced by a sub-
tractive normalization constraint. The latter is now chosen so that the total synaptic
density nL(r) + nR(r) is conserved at each point in cortex:

γ (n) = µ

∫
w(|r − r′|) [nL(r) + nR(r)] dr′ (60)
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with µ specified below. Exploiting the fact that the input correlation matrix C
has eigenvalues µ± = CS ± CD with corresponding eigenvectors e± = (1,±1), it
is straightforward to show that Eq. (59) reduces to the pair of equations

∂ N(r, t)
∂t

= (CS + CD − 2µ)
∫

�

w(|r − r′|)N(r′, t) dr′, (61)

∂n(r, t)
∂t

= (CS − CD)
∫

�

w(|r − r′|)n(r′, t)dr′ (62)

with N = nL + nR and n = nL − nR. (Take the inner product of Eq. (59) with e±.)
Finally, setting µ = (CS + CD)/2, we see that the subtractive constraint ensures
a constant total density N. In the absence of such a constraint (µ = 0), one
would require negative correlations CD = −CS in order to conserve the total
denisty, which correponds to the anti-correlation assumption of the Swindale
model.

One can now proceed along identical lines to Section 2. First, we derive a single
equation for the density n = nL − nR on a growing cortical domain, which is given
by Eq. (6) with

Ft [n](r, t) = (CS − CD)
∫

�t

wt (|r − r′|)n(r′, t) dr′. (63)

In order to have bounded solutions, it is necessary to supplement the linear equa-
tion with the external constraints |n(r, t)| ≤ N for all x ∈ �t . Second, restricting
ourselves to a one-dimensional network, we map back to a fixed domain of length
L0 to obtain the analog of Eq. (18):

∂n
∂t

= (CS − CD)
∫ L0

0
Wρ(|x − x′|)n(x′, t) − n(x, t)

ρ̇

ρ
. (64)

The interesting point to note is that this equation (on dropping the dilution term)
together with the constraint |n(x, t)| ≤ N has precisely the same set of steady-
state solutions (26) as the Swindale model. Moreover, they have the same stability
conditions. That is, an equilibrium solution n̄(x) is stable on x ∈ [0, L0] provided
that ∫ L0

0
Wρ(|x − x′|)n̄(x′) dx′ > 0, for n̄(x) = N, (65)∫ L0

0
Wρ(|x − x′|)n̄(x′) dx′ < 0, for n̄(x) = −N. (66)

This is identical to the condition for (marginal) stability derived in Section 3 for
the Swindale model, see Eq. (29). Thus we expect the correlation-based model
to exhibit the same type of frequency-tripling bifurcations, which is confirmed
numerically in Fig. 11.
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Fig. 11 A plot of the growth from a binocular state for the subtractive normalization model under
logistic growth with ε = 0.01 and ξ = 3.5. Here CS = 1, CD = 0.2, A= 25, and all other parameter
values as in Fig. 10.

6. Discussion

Most activity-dependent models for the development of ocular dominance
columns have focused on the emergence of a steady-state ocular dominance pat-
tern via a Turing-like instability from a homogeneous binocular state (Swindale,
1996). The mean width of the columns in the steady-state is determined by the crit-
ical wavenumber of the underlying intracortical weight function. Since the basic
pattern forming mechanism is highly nonlinear, bifurcation methods cannot be
used to determine the amplitude and stability of the emerging pattern, and thus
cannot be used to investigate whether or not additional instabilities occur during
subsequent cortical growth. In this paper, we have shown that in the case of two
well-known developmental models (Swindale, 1980; Miller et al., 1989), it is possi-
ble to analyze how stability depends on domain size by directly linearizing about
the steady-state ocular dominance pattern. In one spatial dimension, we have
combined this stability analysis with numerical simulations to demonstrate how
changes in the size of the domain can induce one or more frequency-tripling bi-
furcations resulting in the insertion of new ocular dominance columns. Our model
thus predicts that there are two distinct regimes of columnar growth, one char-
acterized by a slow increase in column width and the other characterized by a
relatively sharp decrease in width due to column insertions. This is consistent with
the recent experimental finding that the ocular dominance column width of kittens
and adult cats are comparable even though the cortex has doubled in size during
postnatal growth (Rathjen et al., 2003).

There are a number of interesting issues raised by this work that warrant further
investigation. The first concerns how the intracortical interaction function scales
with the size of the cortex. One of the basic results of our analysis is that a sim-
ple elongation of the recurrent interactions as the cortex grows will not induce
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any pattern transitions (the “balloon effect”). Motivated by experimental data re-
garding the refinement of patchy horizontal connections during postnatal growth
(Luhmann et al., 1990; Callaway and Katz, 1991), we made the simple ansatz that
the interaction function is actually invariant with respect to the size of cortex;
changing such a scaling rule would modify the rate at which column insertions
occur. An alternative to this rather ad hoc approach would be to construct a more
detailed model that considers the joint development of feedforward afferents and
intracortical connections. A second important issue concerns the effects of the
boundaries. In the case of free boundary conditions and slow cortical growth, our
one-dimensional model predicts that additional columns are inserted at the bound-
aries of the domain leading to a more irregular sequence of frequency-tripling bi-
furcations. Boundary effects are also likely to be important in the more realis-
tic two-dimensional case. Indeed, one finds experimentally that ocular dominance
columns tend to run orthogonally to the boundary separating primary visual cor-
tex (V1) from extrastriate area V2. However, extending our stability analysis to
two dimensions is nontrivial, particularly given the greater complexity of two-
dimensional ocular dominance patterns due to the extra rotational degree of free-
dom (assuming isotropic lateral interactions). Such complexity is manifested by
the striking differences between the stripe-like patterns found in primates and the
blob-like patterns found in cat. Finally, it would be interesting to use the methods
outlined in this paper to construct developmental models that take into account
cortical growth during the formation of other cortical features maps such as orien-
tation preference. Indeed, the insertion of a set of ocular dominance columns could
coincide with the insertion of a corresponding set of hypercolumns. The hypercol-
umn is the basic functional unit of cortex that includes the full range of orientation
preferences as well as a pair of left/right ocular dominance columns.
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