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Breathing Pulses in an Excitatory Neural Network∗

Stefanos E. Folias† and Paul C. Bressloff†

Abstract. In this paper we show how a local inhomogeneous input can stabilize a stationary-pulse solution
in an excitatory neural network. A subsequent reduction of the input amplitude can then induce
a Hopf instability of the stationary solution resulting in the formation of a breather. The breather
can itself undergo a secondary instability leading to the periodic emission of traveling waves. In one
dimension such waves consist of pairs of counterpropagating pulses, whereas in two dimensions the
waves are circular target patterns.
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1. Introduction. Various in vitro experimental studies have observed waves of excitation
propagating in cortical slices when stimulated appropriately [7, 12, 35]. The propagation ve-
locity of these synaptically generated waves is of the order 0.06m/s, which is much slower
than the typical speed of 0.5m/s found for action-potential propagation along axons. Travel-
ing waves of electrical activity have also been observed in vivo in the somatosensory cortex of
behaving rats [24], turtle and mollusk olfactory bulbs [18, 21], turtle cortex [27], and visuomo-
tor cortices in the cat [29]. Often these traveling waves occur during periods without sensory
stimulation, with the subsequent presentation of a stimulus inducing a switch to synchronous
oscillatory behavior [11]. This suggests that determining the conditions under which cortical
wave propagation can occur is important for understanding the normal processing of sensory
stimuli as well as more pathological forms of behavior such as epileptic seizures and migraines.

A number of theoretical studies have established the occurrence of traveling fronts [8, 15]
and traveling pulses [36, 1, 19, 25, 30] in one-dimensional excitatory neural networks modeled
in terms of nonlinear integro-differential equations. Such equations are infinite dimensional
dynamical systems and can be written in the general form [10]

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x|x′)f(u(x′, t))dx′ − βq(x, t) + I(x),

1

ε

∂q(x, t)

∂t
= −q(x, t) + u(x, t),(1.1)

where u(x, t) is a neural field that represents the local activity of a population of excitatory
neurons at position x ∈ R, I(x) is an external input current, f(u) denotes the output firing
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rate function, and w(x|x′) is the strength of connections from neurons at x′ to neurons at x.
The neural field q(x, t) represents some form of negative feedback mechanism such as spike
frequency adaptation or synaptic depression, with β, ε determining the relative strength and
rate of feedback. The nonlinear function f is typically taken to be a sigmoid function f(u) =
1/(1 + e−γ(u−κ)) with gain γ and threshold κ. It can be shown [25] that there is a direct
link between the above model and experimental studies of wave propagation in cortical slices
where synaptic inhibition is pharmacologically blocked [7, 12, 35]. Since there is strong vertical
coupling between cortical layers, it is possible to treat a thin cortical slice as an effective one-
dimensional medium. Analysis of the model provides valuable information regarding how
the speed of a traveling wave, which is relatively straightforward to measure experimentally,
depends on various features of the underlying cortical circuitry.

One of the common assumptions in the analysis of traveling wave solutions of (1.1) is that
the system is spatially homogeneous; that is, the external input I(x) is independent of x and
the synaptic weights depend only on the distance between presynaptic and postsynaptic cells,
w(x|x′) = w(x − x′). The existence of traveling waves can then be established for a class of
weight distributions w(x) that includes the exponential function e−|x|/d. The waves are in the
form of traveling fronts in the absence of any feedback [8], whereas traveling pulses tend to
occur when there is significant feedback [25]. The real cortex, however, is more realistically
modeled as an inhomogeneous medium. Inhomogeneities in the synaptic weight distribution w
may arise due to the patchy nature of long-range horizontal connections in superficial layers of
cortex. For example, in the primary visual cortex the horizontal connections tend to link cells
with similar stimulus feature preferences such as orientation and ocular dominance [23, 37, 3].
The variation of the feature preferences across the cortex is approximately periodic, and this
induces a corresponding periodic modulation in the horizontal connections. It has previously
been shown that an inhomogeneous periodic modulation in the strength of synaptic interac-
tions induced by long-range patchy connections can lead to wavefront propagation failure [4].
If the wavelength of the periodic inhomogeneity is much shorter than the characteristic wave-
length of the front, then averaging theory can be used to achieve an effective homogenization
of the neural medium along similar lines to that previously developed for a model of calcium
waves [16] and for a model of chemical waves in a bistable medium [17].

Another important source of spatial inhomogeneity is the external input I(x). Such inputs
would arise naturally from sensory stimuli in the case of the intact cortex and could be
introduced by external stimulation in the case of cortical slices. We have recently shown
how a monotonically varying input can induce wave propagation failure due to the pinning
of a stationary-front solution [5, 6]. More significantly, the stationary front can subsequently
destabilize via a Hopf bifurcation as the degree of input inhomogeneity is reduced, resulting
in an oscillatory back-and-forth pattern of wave propagation. Analogous breather -like front
solutions have previously been found in inhomogeneous reaction-diffusion systems [28, 31, 13,
14, 2, 26] and in numerical simulations of a realistic model of fertilization calcium waves [22].

In this paper we extend our work on fronts by analyzing the effects of input inhomogeneities
on the stability of stationary pulses, since these better reflect the types of neural activity
patterns observed in the cortex. In order to construct exact wave solutions, we follow previous
treatments [1, 25] and consider the high gain limit γ → ∞ of the sigmoid function f such
that f(u) = H(u− κ), where H is the Heaviside step function; that is, H(u) = 1 if u ≥ 0 and
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H(u) = 0 if u < 0. As a further simplification, we also assume that the weight distribution w
is homogeneous so that (1.1) reduces to the form

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)H(u(x′, t) − κ)dx′ − βq(x, t) + I(x),

1

ε

∂q(x, t)

∂t
= −q(x, t) + u(x, t).(1.2)

We first construct explicit traveling wave solutions of (1.2) in the case of a constant input
(section 2). We then analyze the existence and stability of stationary pulses in the presence
of a unimodal input (section 3). We show that (i) a sufficiently large input inhomogeneity
can stabilize a stationary pulse and (ii) a subsequent reduction in the level of inhomogeneity
can induce a Hopf instability of the stationary pulse leading to the formation of a breather-
like oscillatory wave. Numerically we find that a secondary instability can occur beyond
which the breather periodically emits pairs of traveling pulses (section 4). Moreover, there is
mode-locking between the oscillation frequency of the breather and the rate of wave emission.
Analogous forms of oscillatory wave are also shown to occur in a more biophysically realistic
conductance-based model (section 4). Finally, we extend our analysis to radially symmetric
pulses in a two-dimensional network (section 5).

2. Traveling pulses in a homogeneous network. We begin by briefly outlining the con-
struction of traveling pulse solutions of (1.2) in the case of zero input I(x) = 0, following
the approach of Pinto and Ermentrout [25]. We assume that the weight distribution w(x) is
a positive even function of x, is a monotonically decreasing function of |x|, and satisfies the
normalization condition

∫∞
−∞w(x)dx < ∞. For concreteness, w is taken to be an exponential

weight distribution

w(x) =
1

2d
e−|x|/d.(2.1)

The length scale is fixed by setting d = 1. Translation symmetry implies that we can consider
traveling pulse solutions of the form u(x, t) = U(x − ct) with U(±∞) = 0 and U(−a) =
U(0) = κ. Without loss of generality, we take c > 0. Substituting into (1.2) with I(x) = 0
and differentiating with respect to ξ lead to the second-order boundary value problem

− c2U ′′(ξ) + c[1 + ε]U ′(ξ) − ε[1 + β]U(ξ) = c[w(ξ + a) − w(ξ)] + ε[W (ξ + a) −W (ξ)],

U(0) = U(−a) = κ,

U(±∞) = 0,(2.2)

where W (ξ) =
∫ ξ
0 w(x)dx. Equation (2.2) is solved by considering separately the domains

ξ ≤ −a, −a ≤ ξ ≤ 0, and ξ ≥ 0 and matching the solutions at ξ = −a, 0. On the domain
ξ > 0, with w given by the exponential function (2.1),

− c2U ′′(ξ) + c(1 + ε)U ′(ξ) − ε(1 + β)U(ξ) =
c + ε

2

(
e−ξ − e−(ξ+a)

)
,

U(0) = κ,

U(∞) = 0.(2.3)
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This has the solution U>(ξ) = κe−ξ provided that

κ =
(c + ε)(1 − e−a)

2(c2 + c(1 + ε) + ε(1 + β))
≡ f(c, a).(2.4)

On the other two domains we have solutions consisting of complementary and particular parts:

U0(ξ) = A+eµ+ξ + A−eµ−ξ + U+eξ + U−e−ξ(2.5)

for −a < ξ < 0 and

U<(ξ) = A′
+eµ+ξ + A′

−eµ−ξ + U ′
+eξ(2.6)

for ξ < −a, where

µ± =
1

2c

[
1 + ε±

√
(1 + ε)2 − 4ε(1 + β)

]
.(2.7)

The coefficients U± and U ′
+ are obtained by direct substitution into the differential equation

for U , whereas the four coefficients A± and A′
± are determined by matching solutions at

the boundaries. This leads to the five boundary conditions (i) U0(0) = κ, (ii) U0(−a) = κ,
(iii) U<(−a) = κ, (iv) U ′

0(0) = −κ, and (v) U ′
0(−a) = U ′

<(−a). Since there are five equations
in four unknowns, we generate a second constraint on the speed and size of the wave that is
of the form g(c, a) = κ. A full solution to the wave equation can then be found for just those
values of c, a which satisfy both f(c, a) = κ and g(c, a) = κ.

Pinto and Ermentrout [25] used a shooting method to show that for sufficiently slow
negative feedback (small ε) and large β there exist two pulse solutions, one narrow and slow
and the other wide and fast. Numerically, the fast solution is found to be stable [25]. It is
also possible to construct an explicit stationary-pulse solution by setting c = 0 in (2.2):

U(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ξ

2(1 + β)

(
1 − e−a

)
for ξ > 0,

1

2(1 + β)

[
2 − eξ − e−(ξ+a)

]
for −a < ξ < 0,

eξ

2(1 + β)
(ea − 1) for ξ < −a

(2.8)

with

κ =
1

2(1 + β)

(
1 − e−a

)
.(2.9)

It turns out that stationary-pulse solutions are unstable in the case of homogeneous inputs
(see section 3), acting as separatrices between a zero activity state and a traveling wavefront.
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3. Stationary pulses in an inhomogeneous network. We now investigate the existence
and stability of one-dimensional stationary pulses in the presence of a unimodal input I(x)
which, for concreteness, is taken to be a Gaussian of width σ centered at the origin

I(x) = Ie−x2/2σ2
.(3.1)

As in section 2, we take w to be a positive even function of x and a monotonically decreasing
function of |x|, and we choose the normalization

∫∞
−∞w(x)dx = 1. For illustrative purposes,

the exponential weight distribution (2.1) will be used as a specific example.

3.1. Stationary-pulse existence. From symmetry arguments there exists a stationary-
pulse solution U(x) of (1.2) centered at x = 0, satisfying

U(x) > κ, x ∈ (−a, a); U(±a) = κ,

U(x) < κ, x ∈ (−∞,−a) ∪ (a,∞); U(±∞) = 0.

In particular,

(1 + β)U(x) =

∫ a

−a
w(x− x′)dx′ + I(x).(3.2)

The threshold κ and width a are related according to the self-consistency condition

κ̂ = [I(a) + W (2a)] ≡ G(a),(3.3)

where κ̂ = (1+β)κ and W (2a) =
∫ 2a
0 w(x)dx. The existence or otherwise of a stationary-pulse

solution can then be established by finding solutions to (3.3). Consider, for example, the ex-
ponential weight distribution (2.1) with d = 1 such that W (2a) = (1 − e−2a)/2. Furthermore,
suppose that the amplitude I of the Gaussian input (3.1) is treated as a bifurcation parameter
with the range σ kept fixed. (The effect of varying σ will be discussed below.) It is straight-
forward to show that there always exists a critical amplitude Ic, below which G(a) is strictly
monotonically increasing and above which G(a) has two stationary points. Consequently, as
κ̂ varies, we have the possibility of zero, one, two, or three stationary-pulse solutions. The
function G(a) is plotted in Figure 1 for a range of input amplitudes I, with horizontal lines
indicating different values of κ̂: intersection points determine the existence of stationary-pulse
solutions. Let κc denote the value of G(a) for which G′(a) has a double zero. Anticipating
the stability results of section 3.2, we obtain the following results. If κ̂ < κc, then there is
only a single pulse solution branch which is always unstable. On the other hand, if κ̂ > κc,
then there are two distinct bifurcation scenarios (see Figure 2), both of which can support a
stable pulse solution.

Scenario (i): κc < κ̂ < 1/2. There exist three solution branches with the lower (narrow
pulse) and upper (wide pulse) branches unstable. If ε > β, then the middle (intermediate
pulse) branch is stable along its entire length, annihilating in a saddle-node bifurcation at the
endpoints S, S′. On the other hand, if ε < β, then only a central portion of the middle branch
is stable due to the existence of two Hopf bifurcation points H,H ′. In the limit ε → β we have
H → S and H ′ → S′ leading to some form of degenerate bifurcation. Note that as κ̂ → 1/2,
aS′ → ∞, thus causing the upper branch to collapse.
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Figure 1. Plot of G(a) in (3.3) as a function of pulse width a for an exponential weight distribution
and various values of input amplitude I with σ = 0.25. Horizontal lines (gray) represent different values of
κ̂ = κ(1 + β). Intersections of black and gray curves indicate the existence of stationary-pulse solutions.
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Figure 2. One-dimensional stationary-pulse existence curves for an exponential weight distribution and
(i) κc < κ̂ < 1

2
, (ii) κ̂ > 1

2
. Other parameter values are β = 1, σ = 0.25. Black indicates stability, whereas

gray indicates instability of the stationary pulse. Saddle-node bifurcation points are indicated by S, S′ and Hopf
bifurcation points by H,H ′.
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Scenario (ii): κ̂ > 1/2. There exist two solution branches with the lower branch unstable
and the upper branch stable for sufficiently large I. If ε > β, then the upper branch is stable
along its entire length, annihilating in a saddle-node bifurcation at its endpoint S. On the
other hand, if ε < β, then the upper branch loses stability via a Hopf bifurcation at the
point H with H → S as ε → β.

In both of the above scenarios there also exists a stable subthreshold solution U(x) =
I(x)/(1+β) when I < κ̂. This is coexistent with the lower suprathreshold pulse, and the pair
annihilate at I = κ̂. To address the effect of varying the input σ, consider the case where κ̂ < 1

2 .
As σ decreases, κc decreases, widening the κ̂-interval for which there exist three stationary-
pulse solutions: in particular, κc → 0 as σ → 0. Conversely, as σ increases, κc increases
toward 1

2 , thus decreasing the size of the three-pulse regime. For κ̂ > 1
2 , qualitatively, the

bifurcation scenario remains unchanged; the effect of increasing σ is simply to widen the pulse
width a. Finally, note that the qualitative behavior of the function G(a), which determines
the existence of stationary-pulse solutions, follows from the fact that both w(x) and I(x) are
monotonically decreasing functions of |x| and are symmetric about x = 0.

3.2. Stability analysis. The stability of a stationary pulse of width a is determined by
writing u(x, t) = U(x)+ϕ(x, t) and q(x, t) = Q(x)+ψ(x, t) with Q(x) = U(x) and expanding
(1.2) to first-order in (ϕ,ψ). This leads to the linear equation

∂ϕ(x, t)

∂t
= −ϕ(x, t) +

∫ ∞

−∞
w(x− x′)H ′(U(x′))ϕ(x′, t)dx′ − βψ(x, t),

1

ε

∂ψ(x, t)

∂t
= −ψ(x, t) + ϕ(x, t).(3.4)

We assume that ϕ,ψ ∈ L1(R). The spectrum of the associated linear operator is found by
taking ϕ(x, t) = eλtϕ(x) and ψ(x, t) = eλtψ(x) and using the identity

dH(U(x))

dU
=

δ(x− a)

|U ′(a)| +
δ(x + a)

|U ′(−a)| ,(3.5)

where

U ′(x) =
1

1 + β

[
I ′(a) + w(x + a) − w(x− a)

]
(3.6)

and U ′(−a) = −U ′(a) > 0. We then obtain the eigenvalue equation(
λ + 1 +

εβ

λ + ε

)
ϕ(x) =

w(x + a)

|U ′(−a)|ϕ(−a) +
w(x− a)

|U ′(a)| ϕ(a).(3.7)

Note that we have formally differentiated the Heaviside function, which is permissible since it
arises inside a convolution. One could also develop the linear stability analysis by considering
perturbations of the threshold crossing points along the lines of Amari [1]. Since we are
linearizing about a stationary rather than a traveling pulse, we can analyze the spectrum of
the linear operator without the recourse to Evans functions.
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There exist three types of solutions to (3.7). The first consists of functions ϕ(x) that

vanish at x = ±a and λ = λ
(0)
± with λ

(0)
± given by

λ
(0)
± =

−(1 + ε) ±
√

(1 + ε)2 − 4ε(1 + β)

2
.(3.8)

Note that λ
(0)
± belong to the essential spectrum since they have infinite multiplicity and that

they are always real and negative. Thus they do not contribute to instabilities. The second
consists of solutions of the form ϕ(x) = A[w(x + a) − w(x− a)] with λ given by the roots of
the equation

λ + 1 +
εβ

λ + ε
=

w(0) − w(2a)

|U ′(a)| .(3.9)

It follows that λ = λ±, where

λ± =
−Λ ±

√
Λ2 − 4(1 − Γ)ε(1 + β)

2
(3.10)

with

Λ = 1 + ε− (1 + β)Γ, Γ =
w(0) − w(2a)

w(0) − w(2a) + D
,(3.11)

and D = |I ′(a)|. Finally, the third type of solution is ϕ(x) = A[w(x + a) + w(x− a)] with λ
given by the roots of the equation

λ + 1 +
εβ

λ + ε
=

w(0) + w(2a)

|U ′(a)| .(3.12)

This yields λ = λ̂±, where

λ̂± =
−Λ̂ ±

√
Λ̂2 − 4(1 − Γ̂)ε(1 + β)

2
(3.13)

with

Λ̂ = 1 + ε− (1 + β)Γ̂, Γ̂ =
w(0) + w(2a)

w(0) − w(2a) + D
.(3.14)

A stationary-pulse solution will be stable provided that Reλ±,Re λ̂± < 0.
In the limiting case of a homogeneous input, for which D = 0, (3.10) and (3.13) become

λ− = 0, λ+ = β − ε,(3.15)

and

λ̂± =
−Λ̂0 ±

√
Λ̂2

0 + 4ε(1 + β)(Γ̂0 − 1)

2
(3.16)
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with

Λ̂0 = ε + 1 − (1 + β)Γ̂0,(3.17)

Γ̂0 =
w(0) + w(2a)

w(0) − w(2a)
.(3.18)

Since Γ̂0 > 1 for finite pulse width a, it follows that λ̂+ > 0 for all parameter values, and,
hence, a stationary pulse (if it exists) is unstable in the case of the homogeneous network
described by (1.2). This result is consistent with Amari’s previous analysis [1]. He showed
that in order to stabilize a stationary pulse within a homogeneous network, it is necessary
to include some form of lateral inhibition. If a weak input inhomogeneity is subsequently
introduced into the network, then the peak of the activity profile moves to a local maximum
of the input where it is pinned.

For a nonzero Gaussian input, the gradient of a stationary pulse is given by D(a), where

D(a) =
aI
σ2

e−(a/σ)2/2.(3.19)

Using the gradient, we wish to determine the stability of the pulse in terms of the pulse
width a, with a = a(I) given by one of the solutions of (3.3) for fixed κ, β. Stability of the
stationary pulse corresponds to the following conditions:

Γ, Γ̂ < 1, Λ, Λ̂ > 0.

However, there are redundancies. First, by inspection of (3.11), the condition Γ < 1 is
automatically satisfied. The conditions Λ, Λ̂ > 0 are equivalent to

Γ, Γ̂ <
1 + ε

1 + β
,

and, since Γ < Γ̂, it follows that the condition on Γ is redundant. Hence, stability of the
stationary pulse reduces to the conditions

Γ̂ < 1, Γ̂ <
1 + ε

1 + β
,

in which the latter is redundant for ε > β, while the former is redundant for ε < β. These
conditions translate in terms of the gradient D as

ε > β : D(a) > 2w(2a) ≡ DSN(a),(3.20)

ε < β : D(a) > Dc(a),(3.21)

where

Dc(a) = 2w(2a) +

(
β − ε

1 + ε

)
(w(0) + w(2a)).(3.22)
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We now relate stability of the stationary pulse to the gradient D on different branches of the
existence curves shown in Figure 2 for w(x) given by the exponential distribution (2.1).

Stability for ε > β. Equation (3.3) implies that D(a) = 2w(2a) −G′(a). Thus, stability
condition (3.20) is satisfied when G′(a) < 0 and not satisfied when G′(a) > 0. Saddle-node
bifurcation points occur when G′(a) = 0, i.e., when D(a) passes through DSN, due to the
vanishing of a single real eigenvalue λ̂+. We can make the following conclusions about the
solution branches. In scenario (i) there are three solution branches. On the lower and upper
solution branches, G′(a) > 0, while G′(a) < 0 on the middle branch, indicating that the
former are always unstable and that the latter is stable for ε > β. In scenario (ii) there are
two solution branches: using the same arguments, the lower branch is always unstable while,
for ε > β, the upper branch is stable.

Hopf curves for ε < β. If ε < β, then a Hopf bifurcation can occur due to a complex
pair of eigenvalues λ̂± crossing into the right half complex plane. The Hopf bifurcation point
is determined by the condition Γ̂ = (1 + ε)/(1 + β) < 1, which is equivalent to the gradient
condition D(a) = Dc(a) > DSN(a). It follows that only branches determined to be stable for
ε > β can undergo a Hopf bifurcation when ε < β. Moreover, the Hopf bifurcation points
coincide with saddle-node bifurcation points precisely at the point β = ε, where there is a
pair of zero eigenvalues suggestive of a codimension 2 Takens–Bogdanov bifurcation. As ε
decreases from β, we expect the Hopf bifurcation point(s) to traverse these previously stable
branches from the saddle-node point(s). In order to illustrate this, we find a relationship for
D(a) which does not depend explicitly on I. Using (3.3), the input gradient D can be related
as

D(a) = |I ′(a)|
=

a

σ2
I(a)

=
a

σ2

(
κ(1 + β) −W (2a)

)
.(3.23)

We restrict a here depending on which branch of the existence curve we are considering. In
each of the scenarios discussed in section 3.1, we examine graphically the crossings of the
curves D(a), Dc(a): stability corresponds to D(a) > Dc(a) with Hopf points at D(a) = Dc(a).
Figure 3 illustrates the generic behavior in these scenarios. The left column presents the graphs
of D and of Dc for different values of ε spanning the interval [0, β]; intersection points indicate
Hopf bifurcation points. The right column graphs the corresponding Hopf curves in (a, ε)-
parameter space. Note that the upper branch in scenario (ii) is always stable for sufficiently
large input I, that is, for large pulse width a, for (3.3) implies that I(a) ∼ (1 + β)κ − 1/2,
and hence D ∼ [(1+β)κ−1/2](a/σ2) as a → ∞. Since D̂c(a) → (β− ε)/(1+ ε) and e−2a → 0
as a → ∞, it follows that both stability conditions (3.20) and (3.21) are satisfied in this
limit. Varying σ does not affect the qualitative behavior of the Hopf bifurcation curves. Since
σ appears only in (3.23), the effect of increasing σ is to shrink the graph of D by a factor
1/σ2, causing the Hopf curves in the right column of Figure 3 to be stretched downward, thus
increasing the size of the stability region in the (a, ε)-plane.

4. Numerical results. In our numerical simulations we use a Runge–Kutta (RK4) scheme
with 4000–10000 spatial grid points and time step dt = 0.02, evaluating the integral term by
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Figure 3. Left column: Gradient curves for the two bifurcation scenarios shown in Figure 2: (i) κc < κ̂ < 1
2

and (ii) κ̂ > 1
2
. The thick solid curve shows the input gradient D(a) as a function of pulse width a. The lighter

curves show the critical gradient Dc(a) as function of a for ε = 0.0, 0.5, 1.0 and β = 1. For a given value of
ε < β, a stationary pulse of width a is stable provided that D(a) > Dc(a). A pulse loses stability via a Hopf
bifurcation at any intersection points D(a) = Dc(a). The Hopf bifurcation point(s) for ε = 0.5 are indicated by
H,H ′. In the limit ε → β, we have H,H ′ → S, S′. Right column: Corresponding Hopf stability curves in the
(a, ε)-plane.

quadrature. Boundary points freely evolve according to the scheme rather than by prescrip-
tion, and the size of the domain is chosen so that the stationary pulse is unaffected by the
boundaries.

4.1. Hopf bifurcation to a breather. Numerically solving the one-dimensional rate equa-
tion (1.2), we find that the Hopf instability of the upper solution branch in bifurcation sce-
nario (ii) induces a breather-like oscillatory pulse solution; see Figures 4 and 5. As the input
amplitude I is slowly reduced below IHB, the oscillations steadily grow until a new instability
point is reached. Interestingly, the breather persists over a range of inputs beyond this sec-
ondary instability, except that it now periodically emits pairs of traveling pulses, as illustrated
in Figure 6. In fact, such a solution is capable of persisting even when the input is below
threshold, that is, for I < (1+β)κ. Note that although the homogeneous network (I = 0) also
supports the propagation of traveling pulses, it does not support the existence of a breather
that can act as a source of these waves.

Our simulations suggest both supercritical and subcritical Hopf bifurcations can occur
for scenario (ii). The conclusion of supercriticality is based on the evidence that there is
continuous growth of the amplitude of the oscillations from the stationary solution as I is
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Figure 4. Breather-like solution arising from a Hopf instability of a stationary pulse due to a slow reduction
in the amplitude I of the Gaussian input inhomogeneity (3.1) for an exponential weight distribution. Here
I = 5.5 at t = 0 and I = 1.5 at t = 250. Other parameter values are ε = 0.03, β = 2.5, κ = 0.3, σ = 1.0. The
amplitude of the oscillation steadily grows until it undergoes a secondary instability at I ≈ 2, beyond which the
breather persists and periodically generates pairs of traveling pulses (only one of which is shown). The breather
itself disappears when I ≈ 1.

reduced through the predicted bifurcation point, and, moreover, that the frequency of the
oscillatory solution near the bifurcation point is approximately equal to the predicted Hopf
frequency

ωH = Im λ̂± =
√
ε(β − ε).

For example, the Hopf bifurcation of the stationary pulse for the parameter values given in
Figure 4 was determined numerically to be supercritical. Conversely, the Hopf bifurcation
in scenario (i) appears to be subcritical. Furthermore, the basin of attraction of the stable
pulse on the middle branch seems to be small, rendering it, as well as any potential breather,
difficult to approach. Hence, we did not investigate this case further.

As mentioned above, a secondary instability occurs at some I < IHB, whereupon traveling
pulses are emitted: this behavior appears to occur only for values of ε that support traveling
pulses in the homogeneous model (I = 0). As the point of secondary instability is approached,
the breather starts to exhibit behavior suggestive of pulse emission, except that the recovery
variable q increases rapidly enough to prevent the nascent waves from propagating. On the
other hand, beyond the point of instability, recovery is not fast enough to block pulse emis-
sion; we also find that the activity variable u always drops well below threshold after each
emission. Interestingly, for a range of input amplitudes we observe frequency-locking between
the oscillations of the breather and the rate at which pairs of pulses are emitted from the
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Figure 5. Snapshots of the oscillatory behavior of (a) the breathing pulse (I = 2.2) and (b) the pulse
emitter (I = 1.3) far beyond the bifurcation point. The graphs of U and Q are indicated in blue and gold,
respectively, with the horizontal axis representing space in units of d, the spatial extent associated with the
exponential weight function. Other parameters are β = 2.5, κ = 0.3, ε = 0.03. Clicking on the above images
displays the associated movies.
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Figure 6. Mode-locking in the transition from breather to pulse emitter. (a) 0:1 mode-locking for I = 2.3,
(b) 1:4 mode-locking for I = 2.1, (c) 1:2 mode-locking for I = 1.3.

breather. Two examples of n : m mode-locked solutions are shown in Figure 6, in which there
are n pairs of pulses emitted per m oscillation cycles of the central breather. As I is reduced
further, the only mode that is seen is 1:2, which itself ultimately vanishes, and the system is
attracted to the subthreshold solution.

4.2. Breathers in a biophysical model. Although the rate model is very useful as an an-
alytically tractable model of neural tissue, it is important to determine whether or not its pre-
dictions regarding spatio-temporal dynamics hold in more biophysically realistic conductance-
based models. For concreteness, we consider a version of the Traub model, in which there is
an additional slow potassium M-current that produces the effect of spike-rate adaptation [9].
We also discretize space by setting x = j∆x for j = 1, . . . , N and label neurons by the in-
dex j. The membrane potential of the jth neuron satisfies the following Hodgkin–Huxley-like

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60262_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60262_02.gif
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dynamics [9]:

C
dVj

dt
= −Iion(Vj ,m, n, h, q) − Isyn

j (t) + Ij

with synaptic current

Isyn
j (t) = gsyn

∑
k

w(|j − k|)sk(t)(V − Vsyn),

dsj
dt

= K(Vj(t))(1 − sj) −
1

τ
sj

and ionic currents

Iion(V,m, n, h) = gL(V − VL) + gKn
4(V − VK) + gNam

3h(V − VNa) + gqq(V − VK),

τp(V )
dp

dt
= p∞(V ) − p, p ∈ {m,n, h, q}.

The various biophysical model functions and the parameters used in the numerics are listed
in Appendix A. Note that we have also included an external Gaussian input current Ij in
order to investigate the behavior predicted by the rate model. Without this external input,
the biophysical model has previously been shown to support a traveling pulse, consisting of
either a single action-potential or a packet of action-potentials [9]. Since the firing rate model
describes the average activity, we interpret high activity as repetitive firing of neurons and low
activity as neurons that are subthreshold or quiescent. Hence, we expect that the application
of a strong unimodal input should generate a stationary pulse, i.e., a localized region of neurons
that are repetitively firing, surrounded by a region of neurons that are quiescent. Subsequent
reduction of the input should lead to oscillations in this localized region followed by emission
of action-potentials or packets of action-potentials.

One obvious difference between this biophysical model and the rate model discussed in
section 3 is that the gating variable associated with spike-rate adaptation evolves according
to more complicated nonlinear dynamics, while that of the firing rate model evolves according
to simple linear dynamics. Nevertheless, the behavior of the rate model appears to carry over
to the biophysical model, thus lending support to the ability of rate models to describe the
averaged behavior of spiking biophysical models. For large input amplitude I, the system
approaches a solution in which a region, localized about the input, is repetitively firing, while
the outer region is quiescent; moreover, the firing rate is maximal in the center of this region
and decreases toward the boundaries, which is analogous to the stationary pulse of the firing
rate model. As I is subsequently decreased, there is a transition to breather-like behavior:
periodically, packets or bursts of action-potentials begin to propagate from the active region
and, shortly thereafter, fail to propagate as the newly excited region recovers. As in the rate
model, further reduction of the amplitude I leads to a transition to a state in which packets of
persistent action-potentials are emitted. Two examples are shown in Figure 7. The first is in
a regime where the breather still dominates with the occasional emission of wave packets. The
second corresponds to regular pulse emission, in which periodic bursts of persistent action-
potentials are emitted, each followed by an interlude of subthreshold behavior in the vicinity
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Figure 7. Breathers in a biophysical model with an exponential weight distribution. (a) I = 75mA/cm2,
(b) I = 50mA/cm2, where I is the amplitude of the Gaussian input. Other parameter values are specified in
Appendix A.

of the input; this is similar to the 1:2 pulse emitter of the firing rate model shown in Figure 6.
We expect similar behavior to occur in other biophysical models that have some form of
sufficiently slow negative feedback.

5. Two-dimensional pulses. We now extend our analysis to derive conditions for the
existence and stability of radially symmetric stationary-pulse solutions of a two-dimensional
version of (1.2):

∂u(r, t)

∂t
= −u(r, t) +

∫
R2

w(|r − r′|)H(u(r′, t) − κ)dr′ − βq(r, t) + I(r),

1

ε

∂q(r, t)

∂t
= −q(r, t) + u(r, t),(5.1)

where r = (r, θ) and r′ = (r′, θ′). Both the input I(r) and the weight distribution w(r) are
taken to be positive monotonically decreasing functions in L1(R+). As in the one-dimensional
case, stationary-pulse solutions are unstable in a homogeneous excitatory network but can be
stabilized by the local input. Our analysis should be contrasted with a number of recent studies
of two-dimensional stationary pulses [32, 34, 20]. These latter studies consider homogeneous
networks with uniform external inputs and include both excitatory and inhibitory synaptic
coupling. Thus the inhibition is nonlocal rather than local as in our model.

5.1. Stationary-pulse existence. We begin by developing a formal representation of the
two-dimensional stationary-pulse solution for a general monotonically decreasing weight func-
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tion w. We then generate stationary-pulse existence curves for the specific case of an exponen-
tial weight function and analyze their dependence on the parameters of the system. Since we
cannot obtain a closed form for the solution in the case of the exponential weight distribution,
we also derive an explicit solution for the case of a modified Bessel weight function that ap-
proximates the exponential. For concreteness, we consider a Gaussian input I(r) = Ie−r2/2σ2

.
Pulse construction for a general synaptic weight function. A radially symmetric station-

ary-pulse solution of (5.1) is u = q = U(r) with U depending only upon the spatial variable r
such that

U(r) > κ, r ∈ (0, a); U(∞) = 0,

U(a) = κ; U(0) < ∞,

U(r) < κ, r ∈ (a,∞).

Substituting into (5.1) gives

(1 + β)U(r) = M(a, r) + I(r),(5.2)

where

M(a, r) =

∫
R2

w(|r − r′|)H(U(r′) − κ)dr′

=

∫ 2π

0

∫ a

0
w(|r − r′|)r′dr′dθ.(5.3)

In order to calculate the double integral in (5.3) we use the Fourier transform, which for
radially symmetric functions reduces to a Hankel transform. To see this, consider the two-
dimensional Fourier transform of the radially symmetric weight function w, expressed in polar
coordinates,

w(r) =
1

2π

∫
R2

ei(r·k)w̆(k)dk

=
1

2π

∫ ∞

0

(∫ 2π

0
eirρ cos(θ−φ)w̆(ρ)dφ

)
ρdρ,

where w̆ denotes the Fourier transform of w and k = (ρ, φ). Using the integral representation

1

2π

∫ 2π

0
eirρ cos(θ−ϕ)dθ = J0(rρ),

where Jν(z) is the Bessel function of the first kind, we express w in terms of its Hankel
transform of order zero,

w(r) =

∫ ∞

0
w̆(ρ)J0(rρ)ρdρ,(5.4)

which, when substituted into (5.3), gives

M(a, r) =

∫ 2π

0

∫ a

0

(∫ ∞

0
w̆(ρ)J0(ρ|r − r′|)ρdρ

)
r′dr′dθ′.
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Switching the order of integration gives

M(a, r) =

∫ ∞

0
w̆(ρ)

(∫ 2π

0

∫ a

0
J0(ρ|r − r′|)r′dr′dθ′

)
ρdρ.(5.5)

In polar coordinates |r − r′| =
√
r2 + r′2 − 2rr′ cos(θ − θ′),∫ 2π

0

∫ a

0
J0(ρ|r − r′|)r′dr′dθ′ =

∫ 2π

0

∫ a

0
J0

(
ρ

√
r2 + r′2 − 2rr′ cos(θ − θ′)

)
r′dr′dθ′

=
1

ρ2

∫ 2π

0

∫ aρ

0
J0

(√
R2 + R′2 − 2RR′ cos(θ′)

)
R′dR′dθ′,

where R = rρ and R′ = r′ρ. To separate variables, we use the addition theorem

J0

(√
R2 + R′2 − 2RR′ cos θ′

)
=

∞∑
m=0

εmJm(R)Jm(R′) cosmθ′,

where ε0 = 1 and εn = 2 for n ≥ 1. Since
∫ 2π
0 cosmθ′dθ′ = 0 for m ≥ 1, it follows that∫ 2π

0

∫ a

0
J0(ρ|r − r′|)r′dr′dθ′ =

1

ρ2

∞∑
m=0

εmJm(R)

∫ aρ

0
Jm(R′)R′dR′

∫ 2π

0
cosmθ′dθ′

=
2π

ρ2
J0(R)

∫ aρ

0
J0(R

′)R′dR′

=
2πa

ρ
J0(rρ)J1(aρ).

Hence for general weight w, M(a, r) has the formal representation

M(a, r) = 2πa

∫ ∞

0
w̆(ρ)J0(rρ)J1(aρ)dρ.(5.6)

We now wish to show that for a general monotonically decreasing weight function w(r),
the function M(a, r) is necessarily a monotonically decreasing function of r. This will ensure
that the radially symmetric stationary-pulse solution (5.2) is also a monotonically decreasing
function of r in the case of a Gaussian input. Differentiating M with respect to r using (5.3)
yields

∂M

∂r
(a, r) =

∫ 2π

0

∫ a

0
w′(|r − r′|)

(
r − r′ cos(θ′)√

r2 + r′2 − 2rr′ cos(θ′)

)
r′dr′dθ′.(5.7)

By inspection of (5.7), ∂M
∂r (a, r) < 0 for r > a, since w′(z) < 0. To see that it is also negative

for r < a and, thus, monotonic, we instead consider the equivalent Hankel representation of
(5.6). Differentiation of M in this case yields

∂2M(a, r) ≡ ∂M

∂r
(a, r) = −2πa

∫ ∞

0
ρw̆(ρ)J1(rρ)J1(aρ)dρ(5.8)
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implying that

sgn
(
∂2M(a, r)

)
= sgn

(
∂2M(r, a)

)
.

Consequently ∂M
∂r (a, r) < 0 also for r < a. Hence U is monotonically decreasing in r for any

monotonic synaptic weight function w.
Exponential weight function. Consider the radially symmetric exponential weight func-

tion and its Hankel representation

w(r) =
1

2π
e−r, w̆(r) =

1

2π

1

(1 + ρ2)
3
2

.(5.9)

The condition for the existence of a stationary pulse is then given by

(1 + β)κ = M(a) + I(a) ≡ G(a),(5.10)

where

M(a) ≡ M(a, a) = a

∫ ∞

0

1

(ρ2 + 1)
3
2

J0(aρ)J1(aρ)dρ.(5.11)

The function G(a) is plotted in Figure 8 for a range of input amplitudes I, with horizontal lines
indicating different values of κ̂; intersection points determine the existence of stationary pulse
solutions. Note that the integral expression on the right-hand side of (5.11) can be evaluated
explicitly in terms of finite sums of modified Bessel and Struve functions; see Appendix B.

0

0.2

0.4

0.6

0.8

G(a)

1 2 3 4 5 6 7
width a

Figure 8. Plot of G(a) defined in (5.10) as a function of pulse width a for various values of input ampli-
tude I and for fixed input width σ = 1.

We proceed in the same fashion as in the one-dimensional case and generate stationary-
pulse existence curves for the exponential weight function. Qualitatively the catalogue of
bifurcation scenarios is similar, although there is now an additional case. In one dimension
we have G′(0) > 0 so that there are always at least two solution branches when κ̂ > 1/2. On
the other hand, in two dimensions we have G′(0) < 0 for sufficiently large input amplitude I
so that it is possible to find only one solution branch for large κ̂, that is, when κ̂ > κ0 for
some critical value κ0 > 1/2. Hence, there are three distinct cases as shown in Figure 9. The
effect of varying σ identically follows the one-dimensional case.
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Figure 9. Two-dimensional stationary-pulse existence curves for an exponential weight distribution:
(i) κc < κ̂ < 1

2
, (ii) 1

2
< κ̂ < κ0, and (iii) κ0 < κ̂. Other parameter values are β = 1, σ = 1.0. Black

indicates stability, whereas gray indicates instability of the stationary pulse. Saddle-node bifurcation points are
indicated by S, S′ and Hopf bifurcation points by H,H ′.

Modified Bessel weight function. In the case of the exponential weight function w we do
not have a closed form for the integral in (5.6). Here we consider a nearby problem where we
are able to construct the stationary-pulse solution explicitly. Consider the radially symmetric
weight function, normalized to unity,

w(r) =
2

3π

(
K0(r) −K0(2r)

)
,(5.12)

where Kν is the modified Bessel function of the second kind, whose Hankel transform is

w̆(r) =
2

3π

(
1

ρ2 + 1
− 1

ρ2 + 22

)
.(5.13)

The coefficient 2/3π is chosen so that there is a good fit with the exponential distribution as
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shown in Figure 10(a). Note that

w(0) =
1

2π

4 ln(2)

3
≈ 1

2π
(0.924), w(r) ∼ 1

3

(√
2e−r − e−2r

√
r

)
for large r.

Substituting (5.13) into (5.3), we can explicitly compute the resulting integral using Bessel
functions:

a

∫ ∞

0

1

ρ2 + s2
J0(rρ)J1(aρ)dρ =

{
a
s I1(sa)K0(sr) for r ≥ a,

1
s2

− a
s I0(sr)K1(sa) for r < a,

where Iν is the modified Bessel function of the first kind. Substituting into (5.3) shows that

M(a, r) = 2πa

∫ ∞

0
w̆(ρ)J0(rρ)J1(aρ)dρ

=
4

3
a

∫ ∞

0

(
1

ρ2 + 1
− 1

ρ2 + 22

)
J0(rρ)J1(aρ)dρ

=

{
4
3

(
aI1(a)K0(r) − a

2I1(2a)K0(2r)
)

for r ≥ a,

1 − 4
3

(
aI0(r)K1(a) + a

2I0(2r)K1(2a)
)

for r < a.

The condition for the existence of a stationary pulse of radius a is thus given by (5.10) with

M(a) =
4

3

(
aI1(a)K0(a) −

a

2
I1(2a)K0(2a)

)
.(5.14)

An example of an exact pulse solution is shown in Figure 10(b).
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Figure 10. (a) Synaptic weight functions, exponential weight in black and modified Bessel weight in gray.
(b) Stationary-pulse solution with half-width, a = 1, generated by the modified Bessel weight function with
κ = 0.4, β = 1, I = 1.

5.2. Stability analysis. We now analyze the evolution of small time-dependent perturba-
tions of the stationary-pulse solution through linear stability analysis. We investigate saddle-
node and Hopf bifurcations of the stationary pulse by relating the eigenvalues to the gradient
of the Gaussian input I. The behavior of the system near and beyond the Hopf bifurcation is
then studied numerically as in one dimension.
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Spectral analysis of the linearized operator. Equation (5.1) is linearized about the
stationary solution (U,Q) by introducing the time-dependent perturbations

u(r, t) = U(r) + ϕ(r, t),

q(r, t) = Q(r) + ψ(r, t)

with Q = U and expanding to first-order in ϕ,ψ. This leads to the linearized system of
equations

∂ϕ

∂t
(r, t) = −ϕ(r, t) +

∫
R2

w(|r − r′|)H ′(U(r′) − κ)ϕ(r′, t)dr′ − βψ(r, t),

1

ε

∂ψ

∂t
(r, t) = −ψ(r, t) + ϕ(r, t).

We separate variables

ϕ(r, t) = ϕ(r)eλt,

ψ(r, t) = ψ(r)eλt

to obtain the system

λϕ(r) = −ϕ(r) +

∫
R2

w(|r − r′|)H ′(U(r′) − κ)ϕ(r′)dr′ − βψ(r),

λ

ε
ψ(r) = −ψ(r) + ϕ(r).(5.15)

Solving (5.15), we find(
λ + 1 +

βε

λ + ε

)
ϕ(r) =

∫
R2

w(|r − r′|)H ′(U(r′) − κ)ϕ(r′)dr′.(5.16)

Introducing polar coordinates r = (r, θ) and using the result

H ′(U(r) − κ) = δ(U(r) − κ) =
δ(r − a)

|U ′(a)| ,

we obtain (
λ + 1 +

εβ

λ + ε

)
ϕ(r) =

∫ 2π

0

∫ ∞

0
w(|r − r′|)δ(r

′ − a)

|U ′(a)| ϕ(r′)r′dr′dθ′

=
a

|U ′(a)|

∫ 2π

0
w(|r − a′|)ϕ(a, θ′)dθ′,(5.17)

where a′ = (a, θ′)
We consider the following two cases. (i) The function ϕ satisfies the condition∫ 2π

0
w(|r − a′|)ϕ(a, θ′)dθ′ = 0
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for all r. The integral equation reduces to

λ + 1 +
βε

λ + ε
= 0,

yielding the eigenvalues

λ
(0)
± =

−(1 + ε) ±
√

(1 + ε)2 − 4ε(1 + β)

2
.

This is part of the essential spectrum and is identical to the one-dimensional case: it is negative
and does not cause instability. (ii) ϕ does not satisfy the above condition, and we must study
the solutions of the integral equation

µϕ(r, θ) = a

∫ 2π

0
W(a, r; θ − θ′)ϕ(a, θ′)dθ′,

where

λ + 1 +
εβ

λ + ε
=

µ

|U ′(a)|(5.18)

and W(a, r;φ) = w
(√

r2 + a2 − 2ra cosφ
)
. This equation demonstrates that ϕ(r, θ) is deter-

mined completely by its values ϕ(a, θ) on the restricted domain r = a. Hence we need only
consider r = a, yielding the integral equation

µϕ(a, θ) = a

∫ 2π

0
W(a, a;φ)ϕ(a, θ − φ)dφ.(5.19)

The solutions of this equation are exponential functions eγθ, where γ satisfies

a

∫ 2π

0
W(a, a;φ)e−γφdφ = µ.

By the requirement that ϕ is 2π-periodic in θ, it follows that γ = in, where n ∈ Z. Thus the
integral operator with kernel W has a discrete spectrum given by

µn = a

∫ 2π

0
W(a, a;φ)e−inπφdφ

= a

∫ 2π

0
w
(√

a2 + a2 − 2a2 cosφ
)
e−inφdφ

= 2a

∫ π

0
w (2a sin(φ)) e−2inφdφ(5.20)

(after rescaling φ). Note that µn is real since

Im{µn(a)} = −2a

∫ π

0
w(2a sin(φ)) sin(2nφ)dφ = 0;
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i.e., the integrand is odd-symmetric about π/2. Hence,

µn(a) = Re{µn(a)} = 2a

∫ π

0
w(2a sin(φ)) cos(2nφ)dφ

with the integrand even-symmetric about π
2 . Since w(r) is a positive function of r, it follows

that

µn(a) ≤ 2a

∫ π

0
w(2a sin(φ)) |cos(2nφ)|dφ ≤ 2a

∫ π

0
w(2a sin(φ))dφ = µ0(a).

Given the set of solutions {µn(a), n ≥ 0} for a pulse of width a (assuming that it exists),
we obtain from (5.18) the following pairs of eigenvalues:

λ±
n =

1

2

(
−Λn ±

√
Λ2
n − 4ε(1 + β)(1 − Γn)

)
,(5.21)

where

Λn = 1 + ε− Γn(1 + β), Γn =
µn(a)

|U ′(a)|(1 + β)
.(5.22)

Stability of the two-dimensional pulse requires that

Λn > 0, Γn < 1 for all n ≥ 0.

This reduces to the stability conditions

ε > β : Γn < 1 for all n ≥ 0,

ε < β : Γn <
1 + ε

1 + β
for all n ≥ 0.(5.23)

Next we rewrite the stability conditions in terms of the gradient of the input D(a) = |I ′(a)|.
From (5.2), (5.8), and (5.9) we have

U ′(a) =
1

1 + β

(
−Mr(a) + I ′(a)

)
,

where

Mr(a) ≡ − ∂

∂r
M(a, r)

∣∣∣∣
r=a

= 2πa

∫ ∞

0
ρw̆(ρ)J1(aρ)J1(aρ)dρ.(5.24)

We have already established in section 5.1 that Mr(a) > 0. Hence,

∣∣U ′(a)
∣∣ =

(
1

1 + β

) ∣∣−Mr(a) + I ′(a)
∣∣

=

(
1

1 + β

)(
Mr(a) + D(a)

)
.(5.25)



BREATHING PULSES IN AN EXCITATORY NEURAL NETWORK 401

The stability conditions (5.23) thus become

ε > β : D(a) > µn(a) −Mr(a) for all n ≥ 0,

ε < β : D(a) >

(
1 + β

1 + ε

)
µn(a) −Mr(a) for all n ≥ 0.

Finally, using the fact that µ0(a) ≥ µn(a) for all n ≥ 1 and Mr(a) > 0, we obtain the reduced
stability conditions

ε > β : D(a) > µ0(a) −Mr(a) ≡ DSN(a),(5.26)

ε < β : D(a) >

(
1 + β

1 + ε

)
µ0(a) −Mr(a) ≡ Dc(a).(5.27)

We now relate stability of the stationary pulse to the gradient D on different branches of the
existence curves shown in Figure 9 for w(r) given by the exponential distribution (5.9). In
this case the integral expressions for µ0(a), Mr(a), and M(a) can be evaluated explicitly in
terms of finite sums of modified Bessel and Struve functions; see Appendix B.

Stability for ε > β. Equation (5.10) implies that G′(a) = M′(a) + I ′(a). Since M(a) =
M(a, a), it follows from (5.3), (5.20), and (5.24) that

M′(a) = ∂1M(a, a) + ∂2M(a, a)

= µ0(a) −Mr(a),(5.28)

and hence

G′(a) = µ0(a) −Mr(a) −D(a).(5.29)

We now see that the stability condition (5.26) is satisfied when G′(a) < 0 and is not satisfied
when G′(a) > 0. Saddle-node bifurcations occur when G′(a), that is, when D(a) passes
through DSN(a) = µ0(a) − Mr(a). This establishes the stability of the middle branch in
case (i) and the upper branch of cases (ii) and (iii) shown in the left-hand column of Figure 9.

Hopf curves for ε < β. A Hopf bifurcation occurs when Λ0 = 0 and Γ0 < 1, or
equivalently, when D(a) = Dc(a). Since µ0(a) > 0 it follows from (5.26) and (5.27) that
Dc(a) > DSN(a), and hence Hopf bifurcations occur only on the branches that are stable
when ε > β. As in the one-dimensional case, the Hopf and saddle-node points coincide when
ε = β, and so we expect, as ε decreases from β, the Hopf bifurcation point(s) to traverse these
previously stable branches from the saddle-node point(s). Again, in order to show this more
explicitly, we find a relationship for D(a) that is independent of the input amplitude I. Using
(5.10), the input gradient D can be related as

D(a) = |I ′(a)|
=

a

σ2
I(a)

=
a

σ2
(κ(1 + β) − M(a)) .(5.30)

For each of the cases discussed in section 3.1, we examine graphically the crossings of the
curves D(a), Dc(a): stability corresponds to D(a) > Dc(a) with Hopf points at D(a) = Dc(a).
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Figure 11. Left column: Gradient curves for the various bifurcation scenarios shown in Figure 9: (i) κc <
κ̂ < 1

2
, (ii) 1

2
< κ̂ < κ0, and (iii) κ0 < κ̂. The thick solid curve shows the input gradient D(a) as a function

of pulse width a. The lighter curves show the critical gradient Dc(a) as function of a for ε = 0.0, 0.5, 1.0 and
β = 1. For a given value of ε < β, a stationary pulse of width a is stable provided that D(a) > Dc(a). A pulse
loses stability via a Hopf bifurcation at the intersection points D(a) = Dc(a). The Hopf bifurcation points for
ε = 0.5 are indicated by H; in the first scenario there are no Hopf points at this particular value of ε. In the
limit ε → β, we have H → S. Right column: Corresponding Hopf stability curves in the (a, ε)-plane.

The results are displayed in Figure 11. Note that as in one dimension, sufficiently wide pulse
solutions are always stable, as can be established by studying the asymptotic behavior of D(a)
and Dc(a); see Appendix B.

Two-dimensional breathers. Analogous to the one-dimensional case, we find numerically
that the upper branch in scenarios (ii) and (iii) can undergo a supercritical Hopf bifurcation
leading to the formation of a two-dimensional breather. An example is shown in Figure 12,
which was obtained using a Runge–Kutta scheme on a 300×300 grid with a time step of 0.02.
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0

 0.4

 0.8

Figure 12. Two-dimensional breather with β = 4, κ = 0.25, ε = 0.1, I = 0.26. Clicking on the above image
displays the associated movie.

0

 0.4

 0.8

Figure 13. Two-dimensional pulse emitter with β = 4, κ = 0.2, ε = 0.1, I = 0.2. Clicking on the above
image displays the associated movie.

Moreover, the breather can undergo a secondary instability, resulting in the periodic emission
of circular target waves; see Figure 13.

6. Discussion. In this paper we have shown that a localized external input can induce
oscillatory behavior in an excitatory neural network in the form of breathing pulses and that
these breathers can subsequently act as sources of wave emission. Interestingly, following some
initial excitation, breathers can be supported by subthreshold inputs. From a mathematical
perspective, there are a number of directions for future work. First, one could try to develop
some form of weakly nonlinear analysis in order to determine analytically whether or not
the Hopf instability of the stationary pulse is supercritical or subcritical. It would also be
interesting to explore more fully the behavior around the degenerate bifurcation point ε = β,
where there exists a pair of zero eigenvalues of the associated linear operator that is suggestive
of a Takens–Bogdanov bifurcation. The latter would predict that for certain parameter values
around the degenerate bifurcation point, the periodic orbit arising from the Hopf bifurcation
could be annihilated in a homoclinic bifurcation associated with another unstable stationary
pulse. This could provide one mechanism for the disappearance of the breather as the ampli-
tude of the external input is reduced. (A pulse-emitter does not occur when ε ≈ β.) Another
extension is to consider a smooth nonlinear output function f(u) = 1/(1 + e−γ(u−κ)), which
reduces to the Heaviside function in the high gain limit γ → ∞. In the case of sufficiently
slow adaptation (small ε), it might be possible to use singular perturbation methods along
the lines of Pinto and Ermentrout [25], who established the existence of traveling pulses in a
homogeneous network with smooth f . Finally, it would be interesting to extend our analysis
to the case of traveling waves locking to a moving stimulus; the associated stability analysis

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60262_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60262_04.gif
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would then involve Evans functions. From an experimental perspective, our results could be
tested by introducing an inhomogeneous current into a cortical slice and searching for these
oscillations. One potential difficulty of such an experiment is that persistent currents tend to
burn out neurons. An alternative approach might be to use some form of pharmacological
manipulation of NMDA receptors, for example, or an application of an external electric field
that modifies the effective threshold of the neurons. Note that the usual method for inducing
traveling waves in cortical slices (and in corresponding computational models) is to intro-
duce short-lived current injections; once the wave is formed it propagates in a homogeneous
medium.

Appendix A. We used the following biophysical model functions and parameter values in
section 4.2:

Vsyn = −45 mV, gsyn = 20 mS/cm2,

VK = −100 mV, gK = 80 mS/cm2,

VNa = 50 mV, gNa = 100 mS/cm2,

VL = −67 mV, gL = 0.2 mS/cm2,

F = 1µF/cm2, gq = 3 mS/cm2,

αm(v) = 0.32(54 + v)/(1 − exp(−(v + 54)/4)),

βm(v) = 0.28(v + 27)/(exp((v + 27)/5) − 1),

αh(v) = 0.128 exp(−(50 + v)/18),

βh(v) = 4/(1 + exp(−(v + 27)/5)),

αn(v) = 0.032(v + 52)/(1 − exp(−(v + 52)/5)),

βn(v) = 0.5 exp(−(57 + v)/40),

where

p∞(v) =
αp(v)

αp(v) + βp(v)
, τp(v) =

1

αp(v) + βp(v)
, p ∈ {m,n, h},

q∞(v) =
1

1 + e(−(v+35)/20)
, τq(v) =

1000

3.3e(v+35)/20 + e−(v+35)/20
,

τ = 1, K(V ) =
1

1 + e−(V +50)
.

Appendix B. In this appendix we evaluate the gradient functions D(a) and Dc(a) of (5.30)
and (5.27) for the exponential weight distribution (5.9). We then determine their asymptotic
behavior for large pulse width a, thus establishing the stability of stationary pulses in the
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limit a → ∞. First, from (5.20), we can write

µ0(a) =
a

π

∫ π

0
exp(−2a sinφ)dφ

=
2a

π

∫ π
2

0
exp(−2a cosφ)dφ

= a

(
2

π

∫ π
2

0
cosh(−2a cosφ)dφ

)
− a

(
2

π

∫ π
2

0
sinh(−2a cosφ)dφ

)
(B.1)

= a
(
I0(2a) − L0(2a)

)
,(B.2)

where Iν is a modified Bessel function and Lν denotes a modified Struve function [33]. Second,
from (5.24),

Mr(a) = a

∫ ∞

0

ρ

(ρ2 + 1)
3
2

J1(aρ)J1(aρ)

= a
(
L0(2a) − I0(2a)

)
−

(
L1(2a) − I1(2a)

)
,(B.3)

where

I1(2a) =
4a

π

∫ π/2

0
cosh(2a cos θ) sin2 θdθ

and

L1(2a) =
4a

π

∫ π/2

0
sinh(2a cos θ) sin2 θdθ.

Equation (5.27) then implies that

Dc(a) =
β + ε + 2

1 + ε
a
(
I0(2a) − L0(2a)

)
−

(
I1(2a) − L1(2a)

)
.(B.4)

Using the asymptotic expansions for large a,

I0(2a) − L0(2a) ∼
1

π

(
1

a
+

1

4a2

)
,

I1(2a) − L1(2a) ∼
2

π

(
1 − 1

4a2

)
,(B.5)

we deduce that

Dc(a) ∼
1

π

(
β − ε

1 + ε

)
+

(
1

4

(
β − ε

1 + ε

)
+ 1

)
1

πa2
.(B.6)

Similarly, from (5.11) we have

M(a) = a

∫ ∞

0

1

(ρ2 + 1)
3
2

J0(aρ)J1(aρ)dρ

=

(
1

2
+ aI1(2a) −

1

2
I0(2a)

)
−

(
2a

π
+ aL1(2a) −

1

2
L0(2a)

)
.(B.7)
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Equation (5.30) and the asymptotic expansions (B.5) then imply that

D(a) ∼ a

σ2

(
(1 + β)κ− 1

2

)
+

1

πσ2
− 1

8πa2
.(B.8)

Finally, combining (B.6) and (B.8),

D(a) −Dc(a) ∼
a

σ2

(
(1 + β)κ− 1

2

)
+

1

πσ2
−

(
β − ε

1 + ε

)
+ O(a−2).(B.9)

From this we conclude that for all σ > 0, a stationary-pulse solution (if it exists) is stable in
the limit a → ∞, provided that κ̂ > 1/2.
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