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Abstract. We show how a one-dimensional excitatory neural network can exhibit a symmetry
breaking front bifurcation analogous to that found in reaction diffusion systems. This occurs in
a homogeneous network when a stationary front undergoes a pitchfork bifurcation leading to bidi-
rectional wave propagation. We analyze the dynamics in a neighborhood of the front bifurcation
using perturbation methods, and we establish that a weak input inhomogeneity can induce a Hopf
instability of the stationary front, leading to the formation of an oscillatory front or breather. We
then carry out a stability analysis of stationary fronts in an exactly solvable model and use this to
derive conditions for oscillatory fronts beyond the weak input regime. In particular, we show how
wave propagation failure occurs in the presence of a large stationary input due to the pinning of a
stationary front; a subsequent reduction in the strength of the input then generates a breather via
a Hopf instability of the front. Finally, we derive conditions for the locking of a traveling front to a
moving input, and we show how locking depends on both the amplitude and velocity of the input.
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1. Introduction. Nonlinear integro-differential equations of the form

τs
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)f(u(x′, t))dx′ − βv(x, t) + I(x),

1

ε

∂v(x, t)

∂t
= −v(x, t) + u(x, t)(1.1)

have arisen as continuum models of one-dimensional cortical tissue [1, 12], in which
u(x, t) is a neural field that represents the local activity of a population of excitatory
neurons at position x ∈ R, I(x) is an external input current, τs is a synaptic time
constant (assuming first-order synapses), f(u) denotes the output firing rate function,
and w(x− x′) is the strength of connections from neurons at x′ to neurons at x. The
distribution w(x) is taken to be a positive, even function of x. The neural field
v(x, t) represents some form of negative feedback mechanism such as spike frequency
adaptation or synaptic depression, with β, ε determining the relative strength and rate
of feedback. If additional nonlocal terms in v are introduced, then v represents instead
the activity of a population of inhibitory neurons [17, 1]. The nonlinear function f is
usually taken to be a smooth sigmoid function

f(u) =
1

1 + e−γ(u−κ)
(1.2)

with gain γ and threshold κ. The units of time are fixed by setting τs = 1; a typical
value of τs is 10 msec. It can be shown [12] that there is a direct link between the above
model and experimental studies of wave propagation in cortical slices where synap-
tic inhibition is pharmacologically blocked [4, 7, 18]. Since there is strong vertical
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coupling between cortical layers, it is possible to treat a thin cortical slice as an
effective one-dimensional medium. Analysis of the model provides valuable informa-
tion regarding how the speed of a traveling wave, which is relatively straightforward
to measure experimentally, depends on various features of the underlying cortical
circuitry.

A number of previous studies have considered the existence and stability of trav-
eling wave solutions of (1.1) in the case of a uniform input I, which is equivalent to
a shift in the threshold κ. In particular, it has been shown that in the absence of
any feedback (β = 0), the resulting scalar network can support the propagation of
traveling fronts [5, 10], whereas traveling pulses tend to occur when there is significant
negative feedback [17, 1, 12]. In this paper, we show that such feedback can also have
a nontrivial effect on the propagation of traveling fronts. This is due to the occurrence
of a symmetry breaking front bifurcation analogous to that found in reaction diffusion
systems [14, 8, 16, 9, 2, 15, 13, 11]. We begin by deriving conditions for the existence of
traveling wavefronts in the case of a homogeneous network (section 2). We then carry
out a perturbation expansion in powers of the wavespeed c to show that a stationary
front can undergo a supercritical pitchfork bifurcation at a critical rate of negative
feedback, leading to bidirectional front propagation (section 3). As in the case of
reaction diffusion systems, the front bifurcation acts as an organizing center for a va-
riety of nontrivial dynamics including the formation of oscillatory fronts or breathers.
We show how the latter can occur through a Hopf bifurcation from a stationary front
in the presence of a weak stationary input inhomogeneity (section 4). Finally, we
analyze the existence and stability of stationary fronts in an exactly solvable model,
which is obtained by taking the high gain limit γ → ∞ of the sigmoid function f
such that f(u) = H(u− κ), where H is the Heaviside function (section 5). As briefly
reported elsewhere [3], the exactly solvable model allows us to study oscillatory fronts
beyond the weak input regime. Rather than perturbing about the homogeneous case,
we now consider a large input amplitude for which wave propagation failure occurs
due to the pinning of a stationary front. A subsequent reduction in the amplitude
of the input then induces a Hopf instability, leading to the formation of a breather.
We conclude our analysis of the exactly solvable model by deriving conditions for the
locking of a traveling front to a moving input, and we show how locking depends on
both the amplitude and speed of the input.

The major advantage of the exactly solvable model is that it allows us to explicitly
determine the existence and stability of stationary and traveling fronts in the presence
of external inputs, without any restrictions on the size of the input. However, it has
the disadvantage of restricting the nonlinear function f to be a step function. This is
less realistic than the smooth nonlinearity (1.2), which matches quite well the input–
output characteristics of populations of neurons. The lack of smoothness also makes it
difficult to carry out a nonlinear analysis in order to determine whether or not the Hopf
instability is supercritical, for example. As we show in this paper, such an analysis
can be carried out for smooth f provided that the input amplitude is sufficiently
weak. The fact that the nonlocal integro-differential equation (1.1) exhibits behavior
similar to a reaction–diffusion system might not be surprising, particularly given that
for the exponential weight distribution w(x) = e−|x|, equation (1.1) can be reduced
to a PDE of the reaction–diffusion type. It is important to emphasize, however,
that our results hold for a more general class of weight distribution w(x) for which
a corresponding (finite-order) PDE cannot be constructed. Hence, the analysis is a
nontrivial extension of known results for reaction–diffusion equations.
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2. Traveling fronts in a homogeneous network. In this section we inves-
tigate the existence of traveling front solutions of (1.1) for homogeneous inputs by
combining results on scalar networks [5] with an extension of the analysis of front
bifurcations in nonscalar reaction–diffusion equations [8, 2].

2.1. The scalar case. The existence of traveling front solutions in scalar, ho-
mogeneous networks was previously analyzed by Ermentrout and McLeod [5]. Their
analysis can be applied to a scalar version of (1.1) obtained by taking ε → ∞ so
that v = u and setting I(x) = −h with h a constant input. This leads to the scalar
integro-differential equation

∂u(x, t)

∂t
= −(1 + β)u(x, t) +

∫ ∞

−∞
w(x− x′)f(u(x′, t))dx′ − h.(2.1)

Without loss of generality we choose h such that κ = 0 in the sigmoid function (1.2).
The weight distribution w is assumed to be a positive, even, continuously differentiable
function of x with unit normalization

∫∞
−∞ w(y)dy = 1. Suppose that the function

Fh,β(u) = f(u) − (1 + β)u− h(2.2)

has precisely three zeros at u = U±(h, β), U0(h, β) with U− < U0 < U+ and F ′
h,β(U±) <

0. It can then be shown that (modulo uniform translations) there exists a unique trav-
eling front solution of (2.1) such that u(x, t) = U(ξ), ξ = x− ct, with U(ξ) → U± as
ξ → ∓∞ [5]. Moreover, the speed of the wave satisfies

c = c(h, β) =
Γh,β∫∞

−∞ u′2f ′(u)dξ
,(2.3)

where

Γh,β =

∫ U+

U−

Fh,β(u)du.(2.4)

Since the denominator of (2.3) is positive definite, the sign of c is determined by the
sign of the coefficient Γh,β . In particular, suppose that h = 0.5 and f is given by the
sigmoid function (1.2) so that f(u)−h = tanh(u/2γ)/2. It follows that, for 0 < 1+β <
γ/4, there exists a pair of stable homogeneous fixed points with U− = −U+, which in
turn implies that Γh,β = 0 and the front solution is stationary; see Figure 2.1. The
corresponding function Fh,β(u) has the inflection symmetry Fh,β(−u) = −Fh,β(u).
Note that the stationary solution of (2.1) is also an ε-independent solution of the full
system (1.1) with I(x) = −h, but it is not necessarily the only solution (see below).

2.2. The regime ε � 1. In the large ε regime, the neural field v varies on a
much faster time scale than u. Introducing the stretched time coordinate τ = t/δ
with δ = ε−1 � 1, we have

∂u(x, τ)

∂τ
= δ

(
−u(x, τ) +

∫ ∞

−∞
w(x− x′)f(u(x′, τ))dx′ − βv(x, τ) − h

)
,

∂v(x, τ)

∂τ
= −v(x, τ) + u(x, τ).(2.5)
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Fig. 2.1. Balance condition for the speed of a traveling wavefront in a scalar excitatory network
with u(x, t) = U(x−ct) such that U(∓∞) = U±. The solid curve is f(u) = 1/(1+e−γu) with γ = 8,
and the dashed line is g(u) = (1 +β)u+h. The wavespeed c is positive (negative) if the gray shaded
area is larger (smaller) than the black shaded area. (a) h = 0.5, β = 0.5 such that c = 0. (b)
h = 0.4, β = 0.5 such that c > 0.

To leading order in δ, u is independent of τ so that we can explicitly solve for v
according to

v(x, t) = v0(x)e−εt + u(x, t)(1 − e−εt).(2.6)

Thus after an initial transient of duration t ∼ O(ε−1), the field v adiabatically follows
the field u, with the latter evolving according to the scalar equation (2.1). It follows
that in the large ε regime there exists a unique traveling wave solution of the full
system with (u(x, t), v(x, t)) = (U(x− ct), V (x− ct)) such that (U, V ) → (U±, U±) as
ξ → ∓∞ and c = c(h, β), U± = U±(h, β). The front is stable in the large ε regime
provided that the solution of the corresponding scalar equation is stable, which is
found to be the case numerically. If Γh,β = 0, then the front is stationary and persists
for all ε but may become unstable as ε is reduced.

2.3. The regime 0 < ε � 1. In the small ε regime, additional front solutions
can be constructed that connect the two fixed points (u, v) = (U±(h, β), U±(h, β)).
This follows from the observation that the neural field v remains approximately con-
stant on the length scale over which u varies, that is, within the transition layer of
the front. Suppose that the system is prepared in the down state (U−, U−) and is
perturbed on its left-hand side to induce a transition to the upper state (U+, U+). In
this case v ≈ U− within the transition layer, and this generates a front propagating
to the right whose speed is approximately given by (2.3) with h → h + βU−, that
is, c = c(h + βU−, 0). If, on the other hand, the system is prepared in the up state
(U+, U+) and is perturbed on its right-hand side to induce a transition to the down
state (U−, U−), then a left-propagating front is generated with c = c(h + βU+, 0).
Note from (2.4) that

Γh+βU−,0 > Γh,β + β

∫ U+

U−

(u− U−)du, Γh+βU+,0 < Γh,β + β

∫ U+

U−

(u− U+)du

(2.7)

so that Γh+βU−,0 > Γh,β > Γh+βU+,0. Hence, the existence of fronts propagating in
opposite directions clearly holds when h, β are chosen such that Γh,β = 0.

3. Front bifurcation. The above analysis suggests that if Γh,β = 0, then at
some critical rate of feedback ε = εc, a pair of counterpropagating fronts bifurcate
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from a stationary front. Moreover, all the front solutions have the same asymptotic
behavior (U(ξ), V (ξ)) → (U±, U±) as ξ → ∓∞. Following along lines analogous to
Hagberg and Meron [8], we carry out a perturbation expansion in powers of the speed
c about this critical point, and we show that the stationary solution undergoes a
pitchfork bifurcation.

First, set I(x) = −h and (u(x, t), v(x, t)) = (U(x − ct), V (x − ct)) in (1.1) to
obtain the pair of equations

−cU ′ = −U + w ∗ f(U) − βV,

−cV ′ = ε[−V + U ],(3.1)

where U ′ = dU/dξ and ∗ denotes the convolution operator,

w ∗ U =

∫ ∞

−∞
w(ξ − ξ′)U(ξ′)dξ′.(3.2)

Suppose that β and h are fixed such that Γh,β = 0, and denote the corresponding
stationary solution by (U, V ). Expand the fields U, V as power series in c:

U(ξ) = U(ξ) + cU1(ξ) + c2U2(ξ) + · · · ,
V (ξ) = V (ξ) + cV1(ξ) + c2V2(ξ) + · · · .(3.3)

Note that the higher order terms Un(ξ), Vn(ξ), n ≥ 1, should all decay to zero as
ξ → ±∞, since the stationary solution already has the correct asymptotic behavior.
Also expand ε according to

ε = εc + cε1 + c2ε2 + · · · .(3.4)

Substitute these expansions into (3.1) and Taylor expand the nonlinear function f(U)
about U :

f(U) = f(U) +
∑
n≥1

fn(U − U)n, fn =
1

n!

dnf

dUn

∣∣∣∣
U=U

.(3.5)

Collecting all terms at successive orders of c then generates a hierarchy of equations for
the perturbative corrections Un, Vn. The lowest order equation recovers the conditions
for a stationary solution:

(1 + β)U + h = w ∗ f(U),

V = U.(3.6)

At order c we have

−U
′
= −U1 + w ∗ [f1U1] − βV1,

−V
′
= εc[−V1 + U1] + εc[−V + U ].(3.7)

The term −βV1 in the first line can be eliminated using the second. Since V = U , we
thus find that

MU1 =

(
β

εc
− 1

)
U

′
, V1 = U1 +

U
′

εc
,(3.8)
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where M is the linear operator

MU = −(1 + β)U + w ∗ [f1U ].(3.9)

Since the functions Un(ξ), Vn(ξ) decay to zero as ξ → ±∞, we will assume that M
acts on the space L2(R) and introduce the generalized inner product

〈U |V 〉 =

∫ ∞

−∞
f ′(U(ξ))U(ξ)V (ξ)dξ(3.10)

for all U, V ∈ L2(R). With respect to this space, M is self-adjoint and has the null

vector U
′1:

MU
′
= M†U

′
= 0.(3.11)

Applying the Fredholm alternative to (3.8) then gives the solvability condition

〈U ′|U ′〉
(
β

εc
− 1

)
= 0.(3.12)

Since f ′(U(ξ)) > 0 for all ξ, it follows that 〈U ′|U ′〉 > 0 and thus εc = β. This in

turn means that MU1 = 0 and hence U1 = AU
′
for some constant A. Since U

′
is the

generator of uniform translations, we are free to choose the origin such that A = 0.
Under this choice,

U1 = 0, V1 =
U

′

εc
.(3.13)

At order c2 we obtain

−U ′
1 = MU2 + β[−V2 + U2] + w ∗ [f2U

2
1 ],

−V ′
1 = εc[−V2 + U2] + ε1[−V1 + U1] + ε2[−V + U ].(3.14)

Substituting for −V2 +U2 in the first line, taking V = U , β = εc, and using equation
(3.13) then gives

MU2 =
1

εc

(
U

′′ − ε1U
′)

, V2 = U2 +
1

ε2
c

(U
′′ − ε1U

′
).(3.15)

Applying the Fredholm alternative to (3.15) yields the solvability condition

〈U ′|U ′′〉 = ε1〈U
′|U ′〉.(3.16)

In order to evaluate the inner product 〈U ′|U ′′〉, we use the result

(1 + β)
d2U

dξ2
=

∫ ∞

−∞
w(ξ − ξ′)

d2f(U(ξ′))

dξ′2
dξ′,(3.17)

1We could equally well proceed by taking the standard inner product 〈U |V 〉 =
∫ ∞
−∞ U(ξ)V (ξ)dξ.

The adjoint of M is then given by M†U = −(1 + β)U + f1w ∗ U , which has the null vector f1U
′

where f1 = f ′(U).
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which follows from differentiating (3.6) with respect to ξ and using the asymptotic
properties of w. Then

〈U ′|U ′′〉 =

∫ ∞

−∞
f ′(U(ξ))U

′
(ξ)U

′′
(ξ)dξ

=

∫ ∞

−∞

df(U(ξ))

dξ
U

′′
(ξ)dξ

=
1

1 + β

∫ ∞

−∞

∫ ∞

−∞

df(U(ξ))

dξ
w(ξ − ξ′)

d2f(U(ξ′))

dξ′2
dξ′dξ

=
1

1 + β

∫ ∞

−∞

∫ ∞

−∞

df(U(ξ))

dξ
w′(ξ − ξ′)

df(U(ξ′))

dξ′
dξ′dξ

= 0,(3.18)

since w′(ξ) is an odd function of ξ. Hence, ε1 = 0 and

MU2 =
U

′′

εc
, V2 = U2 +

U
′′

ε2
c

.(3.19)

At order c3 we obtain

−U ′
2 = MU3 + β[−V3 + U3] + 2w ∗ [f2U1U2] + w ∗ [f3U

3
1 ],

−V ′
2 = εc[−V3 + U3] + ε1[−V2 + U2] + ε2[−V1 + U1] + ε3[−V + U ].(3.20)

Substituting for −V2 + U2 in the first line, taking V = U , β = εc, ε1 = 0, and using
(3.13) and (3.19) then gives

MU3 =
1

ε2
c

(
U

′′′ − ε2εcU
′)

, V3 = U3 +
1

ε3
c

(U
′′′

+ ε2
cU

′
2 − ε2εcU

′
).(3.21)

Applying the Fredholm alternative to (3.21) yields the solvability condition

ε2 =
〈U ′|U ′′′〉
εc〈U

′|U ′〉
< 0.(3.22)

The sign of ε2 can be determined using (3.17),

〈U ′|U ′′′〉 =

∫ ∞

−∞
f ′(U(ξ))U

′
(ξ)U

′′′
(ξ)dξ

=

∫ ∞

−∞

df(U(ξ))

dξ
U

′′′
(ξ)dξ

= −
∫ ∞

−∞

d2f(U(ξ))

dξ2
U

′′
(ξ)dξ

= − 1

1 + β

∫ ∞

−∞

∫ ∞

−∞

d2f(U(ξ))

dξ2
w(ξ − ξ′)

d2f(U(ξ′))

dξ′2
dξ′dξ

< 0,(3.23)

since w(ξ) is an even, monotonically decreasing function of |ξ|. Hence ε2 < 0.
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Combining these various results, we find that

U(ξ) = U(ξ) + O(c2),

V (ξ) = U(ξ) +
c

εc
U

′
(ξ) + O(c2),(3.24)

and

ε = εc + c2ε2 + O(c3).(3.25)

Equation (3.25) implies that the stationary front undergoes a pitchfork bifurcation,
which is supercritical since ε2 < 0. (This assumes of course that the stationary front
is stable for ε > εc. This can be confirmed numerically, and also proven analytically
in the high gain limit; see section 5.) Close to the bifurcation point the shape of the
propagating fronts is approximately the same as the stationary front, except that the
recovery variable V is shifted relative to U by an amount proportional to the speed
c, that is,

U(ξ) ≈ U(ξ), V (ξ) ≈ U(ξ + c/εc).(3.26)

An analogous result was previously obtained for reaction–diffusion equations [8]. It
is important to emphasize that the occurrence of a pitchfork bifurcation from a sta-
tionary front does not require any underlying inflection symmetries of the nonlinear
function f (see also [2]). We only require that the scalar equation (2.1) supports a
stationary front for appropriate choices of h, β. The fact that the weight distribu-
tion w(x) is even means that there must be a pitchfork bifurcation from a stationary
solution rather than a transcritical bifurcation as in the case of a nonsymmetric w.

4. The effect of a weak input inhomogeneity. Now suppose that both ε
and h are allowed to vary. We then expect a codimension 2 cusp bifurcation in which
the pitchfork bifurcation unfolds into a saddle-node bifurcation, with the stationary
front replaced by a traveling front in the large ε regime. More interestingly, as in
the case of reaction–diffusion systems [16, 9, 2], the pitchfork bifurcation acts as an
organizing center for a variety of dynamical phenomena, including the formation of
breathers due to the presence of a weak input inhomogeneity or due to curvature (in
the case of two spatial dimensions). These breathers consist of periodic reversals in
propagation that can be understood in terms of a dynamic transition between the pair
of counterpropagating fronts that is induced by the weak intrinsic perturbation. Such
a transition involves an interaction between a translational degree of freedom and an
order parameter that determines the direction of propagation. In order to unravel
this interaction, it is necessary to extend the perturbation analysis of section 3 along
lines analogous to previous treatments of reaction–diffusion systems [16, 9, 2].

Suppose that the system (1.1) undergoes a pitchfork bifurcation from a stationary
state when ε = εc = β and I(x) = −h. Introduce the small parameter δ according to
ε−εc = δ2χ and introduce a weak input inhomogeneity by taking I(x) = −h+δ3η(x).
Since any fronts are slowly propagating, we rescale time according to τ = δt so that
(1.1) becomes

δ
∂u(x, τ)

∂τ
= −u(x, t) +

∫ ∞

−∞
w(x− x′)f(u(x′, τ))dx′ − βv(x, τ) − h + δ3η(x),

δ
∂v(x, τ)

∂τ
= (εc + δ2χ) [−v(x, τ) + u(x, τ)] .(4.1)



FRONT BIFURCATIONS IN AN EXCITATORY NEURAL NETWORK 139

Motivated by (3.24), we introduce the ansatz that, sufficiently close to the pitchfork
bifurcation, the solutions of (4.1) can be expanded in the form

u(x, τ) = U(x− p(τ)) + δ2u2(x, τ) + δ3u3(x, τ) + · · · ,

v(x, τ) = U(x− p(τ)) + δ
a(δτ)

εc
U

′
(x− p(τ)) + δ2v2(x, τ) + δ3v3(x, τ) + · · · .(4.2)

Here p is identified with the translational degree of freedom, whereas a represents
the order parameter associated with changes in propagation direction. Note that a is
assumed to evolve on a slower time scale than p. We now substitute the ansatz (4.2)
into (4.1) and expand in powers of δ along lines similar to the perturbation calculation
of section 3.

At order δ we find that

pτ = a,(4.3)

where pτ = dp/dτ . At order δ2 we obtain the pair of equations

Mu2 = a2U
′′

εc
, v2 = u2 + a2U

′′

ε2
c

(4.4)

after setting pτ = a. The solvability condition for (4.4) is automatically satisfied. At
order δ3 we have

∂u2

∂τ
= Mu3 + β[−v3 + u3] + η,

∂v2

∂τ
+

U
′
aτ̂
εc

= εc[−v3 + u3] − aχ
U

′

εc
(4.5)

with τ̂ = δτ . Using (4.4), the following equation for u3 is obtained:

Mu3 =
1

ε2
c

(
a3U

′′′ − aχεcU
′ − aτ̂εcU

′)− η.(4.6)

Applying the Fredholm alternative to (4.6) yields an amplitude equation for a:

aτ̂ = −χa + a3 〈U ′|U ′′′〉
εc〈U

′|U ′〉
− εc

〈U ′|η〉
〈U ′|U ′〉

.(4.7)

Finally, rescaling p, a, and η, we obtain the pair of equations

pt = a,

at = (εc − ε)a +
〈U ′|U ′′′〉
εc〈U

′|U ′〉
a3 − εc

〈U ′|η〉
〈U ′|U ′〉

.(4.8)

Note that U = U(x − p), so that the final coefficient on the right-hand side of (4.8)
will be p-dependent in the case of an inhomogeneous input η = η(x).

Cusp bifurcation for homogeneous inputs. It is clear from (4.8) that when η = 0
we recover the pitchfork bifurcation of a stationary front as found in section 3. In
particular, for ε < εc there are three constant speed solutions of (4.8) such that
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at = 0, Pt = a = c, corresponding to an unstable stationary front and a pair of stable
counterpropagating fronts with speeds

c = ±

√√√√(εc − ε)εc
〈U ′|U ′〉

|〈U ′|U ′′′〉|
.(4.9)

If η is nonzero but constant, on the other hand, the final term on the right-hand

side of (4.8) reduces to the constant coefficient εcη(f(U+)− f(U−))/〈U ′|U ′〉, and the
pitchfork bifurcation unfolds to a saddle-node bifurcation. There are two saddle-
node lines in the (η, ε)-plane corresponding to the condition dG(a)/da = 0, where
at = G(a):

ηsn = ± 2

3
√

3

(εc − ε)3/2

ε
1/2
c

〈U ′|U ′〉3/2

(f(U+) − f(U−))|〈U ′|U ′′′〉|1/2
,(4.10)

and the corresponding speed along these lines is

csn = ±

√√√√(εc − ε)εc
〈U ′|U ′〉

3|〈U ′|U ′′′〉|
.(4.11)

Hopf bifurcation for a weak inhomogeneity. The introduction of a weak input
inhomogeneity can lead to a Hopf instability of the stationary front. We shall illustrate
this by considering the particular example of the step inhomogeneity

η(x) =

{
s/2 if x ≤ 0,
−s/2 if x > 0

(4.12)

with s > 0. For such an input we find that

〈U ′|η〉 =
s

2
[2f(U(−p)) − f(U+) − f(U−)].(4.13)

Recall from section 2 that when h = 0.5 the homogeneous network with f given by
(1.2) supports a stationary front solution for which U± = ±0.5/(1+β), and U(0) = 0
such that f(U+) + f(U−) = 2f(0). Hence, (4.8) has a fixed point at p = 0, a = 0.
Linearization about this fixed point shows that there is a Hopf bifurcation of the
stationary front at ε = εc with Hopf frequency

ωH =

√√√√sεcf ′(0)|U ′
(0)|

〈U ′|U ′〉
.(4.14)

The supercritical or subcritical nature of the Hopf bifurcation can then be determined
by evaluating higher order terms in a, p. However, this is complicated by the fact
that we do not have an analytical expression for the stationary front solution U , in
contrast to the case of a reaction–diffusion equation with a cubic nonlinearity [2].
(Note that, as in the case of reaction–diffusion equations [2], one can develop a more
intricate perturbation analysis that takes into account O(δ2) inhomogeneities and
corresponding shifts in the Hopf bifurcation point. Here we have followed a simpler
approach in order to illustrate the basic ideas underlying the perturbative treatment
of the integro-differential equation (1.1).)



FRONT BIFURCATIONS IN AN EXCITATORY NEURAL NETWORK 141

5. Exactly solvable model. We now consider the high gain limit γ → ∞, for
which (1.2) reduces to f(u) = H(u− κ), where H is the Heaviside function H(u) = 1
if u > 0 and H(u) = 0 if u ≤ 0. The advantage of using a threshold nonlinearity is
that explicit analytical expressions for front solutions can be obtained, which allows
us to derive conditions for the Hopf instability of a stationary front without any
restrictions on the size of the input inhomogeneity. Numerical simulations of the
full system establish that the bifurcation is supercritical and that it generates an
oscillatory modulation of the stationary front in the form of a breather [3]. (For a
corresponding analysis of reaction–diffusion equations, see Prat and Li [13].)

5.1. Traveling fronts (homogeneous case). We begin by deriving exact trav-
eling front solutions of (1.1) for f(u) = H(u− κ) and a homogeneous input I(x) = 0.
That is, we seek a solution of the form u(x, t) = U(ξ), ξ = x − ct, c > 0, such that
U(0) = κ, U(ξ) < κ for ξ > 0 and U(ξ) > κ for ξ < 0. Setting v(x, t) = V (ξ), we then
have

−cU ′(ξ) + U(ξ) =

∫ 0

−∞
w(ξ − ξ′)dξ′ − βV (ξ),(5.1)

− c

ε
V ′(ξ) = −V (ξ) + U(ξ).(5.2)

Differentiating the first equation and substituting into the second, we obtain a second-
order ODE with boundary conditions at ξ = 0 and ±∞:

−c2U ′′(ξ) + c[1 + ε]U ′(ξ) − ε[1 + β]U(ξ) = −cw(ξ) − εW (ξ),

U(0) = κ,

U(∓∞) = U±,(5.3)

where

W (ξ) =

∫ ∞

ξ

w(y)dy.(5.4)

Here U± are the homogeneous fixed point solutions

U+ =
1

1 + β
, U− = 0.(5.5)

We have used the fact that w has unit normalization, W (−∞) ≡
∫∞
−∞ w(y)dy = 1. It

follows that a necessary condition for the existence of a front solution is κ < U+.
In order to establish the existence of a traveling front, we solve the boundary

value problem in the domains ξ ≤ 0 and ξ ≥ 0 and match the solutions at ξ =
0. For further mathematical convenience, we take the weight distribution to be an
exponential function

w(x) =
1

2d
e−|x|/d,(5.6)

where d determines the range of the synaptic interactions. We fix the spatial scale by
setting d = 1; a typical value of d is 1 mm. We first consider the case of right-moving
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waves (c > 0). On the domain ξ ≥ 0, the particular solution is U>(ξ) = κe−ξ, with κ
related to the speed c according to the self-consistency condition

κ =
c + ε

2(c2 + c[1 + ε] + ε[1 + β])
, c ≥ 0.(5.7)

In the domain ξ ≤ 0 the solution consists of complementary and particular parts:

U<(ξ) = A+eµ+ξ + A−eµ−ξ + Aeξ + U+,(5.8)

where

µ± =
1

2c

[
1 + ε±

√
(1 + ε)2 − 4ε(1 + β)

]
.(5.9)

The coefficient A is obtained by direct substitution into the differential equation for
U , whereas the coefficients A± are determined by matching solutions at the boundary
ξ = 0, that is, U<(0) = κ and U ′

<(0) = −κ. Thus we find

A =
c− ε

2(c2 − c[1 + ε] + ε[1 + β])
,(5.10)

A+ =
µ−U+ + (µ− − 1)A− (1 + µ−)κ

µ+ − µ−
,(5.11)

A− =
−µ+U+ + (1 − µ+)A + (1 + µ+)κ

µ+ − µ−
.(5.12)

In the limit β → 0 we recover the standard result for an excitatory network without
feedback [5]:

U(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2(c + 1)
e−ξ for ξ > 0,

1 + (κ− 1)eξ/c +
1

2(c− 1)

[
eξ − eξ/c

]
for ξ < 0

(5.13)

with

κ =
1

2(c + 1)
, c ≥ 0.(5.14)

A similar analysis can be carried out for left-moving waves. Now the speed c is
determined by the particular solution in the domain ξ ≤ 0, which takes the form
U<(ξ) = −κ̂eξ + U+ with κ̂ = (1 + β)−1 − κ. This leads to the self-consistency
condition

κ̂ = − c− ε

2(c2 − c[1 + ε] + ε[1 + β])
, c ≤ 0.(5.15)

The existence of traveling front solutions can now be established by finding posi-
tive real solutions of (5.7) and negative real solutions of (5.15). For concreteness, we
will assume that the threshold κ is fixed and determine the solution branches as a
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Fig. 5.1. Plot of wavefront speed c as a function of ε for various values of β and a fixed
threshold κ = 0.25: (i) 2κ(1 + β) = 1, (ii) 2κ(1 + β) > 1, (iii) 2κ(1 + β) < 1. Stable (unstable)
branches are shown as solid (dashed) curves.

function of the feedback parameters ε, β with 1/κ − 1 > β > 0. The roots of (5.7)
and (5.15) can be written explicitly as

c =
1

2

⎡
⎣−(

1 + ε− 1

2κ

)
±

√(
1 + ε− 1

2κ

)2

− 4ε

(
1 + β − 1

2κ

)⎤⎦(5.16)

and

c =
1

2

⎡
⎣(1 + ε− 1

2κ̂

)
±

√(
1 + ε− 1

2κ̂

)2

− 4ε

(
1 + β − 1

2κ̂

)⎤⎦ .(5.17)

Using the fact that sign
(
1 + β − 1

2κ

)
= −sign

(
1 + β − 1

2κ̂

)
, we find that there are

three bifurcation scenarios, as shown in Figure 5.1:
(i) If 2κ(1 + β) = 1, then there exists a stationary front for all ε. At a critical

value of ε the stationary front undergoes a pitchfork bifurcation, leading to
the formation of a left- and a right-moving wave. This is the high gain limit
of the front bifurcation analyzed in section 3 for smooth f .

(ii) If 2κ(1 + β) > 1, then there is a single left-moving wave for all ε. There also
exists a pair of right-moving waves that annihilate in a saddle-node bifurcation
at a critical value of ε that approaches zero as β → 0.

(iii) If 2κ(1+β) < 1, then there is a single right-moving wave for all ε. There also
exists a pair of left-moving waves that annihilate in a saddle-node bifurcation
at a critical value of ε that approaches zero as β → 0.

5.2. Stability analysis of stationary fronts (inhomogeneous case). Sta-
tionary front solutions of (1.1) with f(u) = H(u−κ) in the case of an inhomogeneous
input I(x) satisfy the equation

(1 + β)U(x) =

∫ x0

−∞
w(x− x′)dx′ + I(x).(5.18)

Suppose that I(x) is a monotonically decreasing function of x. Since the system is no
longer translation invariant, the position of the front is pinned to a particular location
x0, where U(x0) = κ. Monotonicity of I(x) ensures that U(x) > κ for x < x0 and
U(x) < κ for x > x0. The center x0 satisfies

(1 + β)κ =
1

2
+ I(x0)(5.19)
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under the normalization
∫∞
0

w(y)dy = 1/2. Equation (5.19) implies that in contrast
to the homogeneous case, there exists a stationary front over a range of threshold
values (for fixed β); changing the threshold κ simply shifts the position of the center
x0. In the particular case of the exponential weight distribution (5.6), we have

(1 + β)U(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ex0−x

2
+ I(x), x > x0,

1 − ex−x0

2
+ I(x), x < x0.

(5.20)

If the stationary front is stable, then it will prevent wave propagation. Stability
is determined by writing u(x, t) = U(x) + p(x, t) and v(x, t) = V (x) + q(x, t) with
V (x) = U(x) and expanding (1.1) to first-order in (p, q):

∂p(x, t)

∂t
= −p(x, t) +

∫ ∞

−∞
w(x− x′)H ′(U(x′))p(x′, t)dx′ − βq(x, t),

1

ε

∂q(x, t)

∂t
= −q(x, t) + p(x, t).(5.21)

We assume that p, q ∈ L2(R). The spectrum of the associated linear operator is found
by taking p(x, t) = eλtp(x) and q(x, t) = eλtq(x). Using the identity

dH(U(x))

dU
=

δ(x− x0)

|U ′(x0)|
(5.22)

we obtain the equation

(λ + 1)p(x) =
w(x− x0)

|U ′(x0)|
p(x0) −

εβp(x)

λ + ε
.(5.23)

Equation (5.23) has two classes of solution. The first consists of any function p(x)

such that p(x0) = 0, for which λ = λ
(0)
± , where

λ
(0)
± =

−(1 + ε) ±
√

(1 + ε)2 − 4ε(1 + β)

2
.(5.24)

Note that λ
(0)
± belong to the essential spectrum since they have infinite multiplicity.

The second class of solution is of the form p(x) = Aw(x− x0), A �= 0, for which λ is
given by the roots of the equation

λ + 1 +
εβ

λ + ε
=

1

2|U ′(x0)|
.(5.25)

Since

U ′(x0) =
1

1 + β

[
I ′(x0) −

1

2

]
,(5.26)
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it follows that λ = λ±, where

λ± =
−Λ ±

√
Λ2 − 4(1 − Γ)ε(1 + β)

2
(5.27)

with

Λ = 1 + ε− (1 + β)Γ(5.28)

and

Γ =
1

1 + 2D
, D = |I ′(x0)|.(5.29)

We have used the fact that I ′(x0) ≤ 0. The eigenvalues λ± determine the discrete
spectrum.

5.3. Hopf bifurcation to a breathing front. Equation (5.27) implies that the
stationary front is locally stable, provided that Λ > 0 or, equivalently, the gradient of
the inhomogeneous input at x0 satisfies

D > Dc ≡
1

2

β − ε

1 + ε
.(5.30)

Since D ≥ 0, it follows that the front is stable when β < ε, that is, when the feedback is
sufficiently weak or fast. On the other hand, if β > ε, then there is a Hopf bifurcation
at the critical gradient D = Dc. The corresponding critical Hopf frequency is

ωH =

√
2Dcε(1 + β)

2Dc + 1
=

√
ε(β − ε).(5.31)

Note that the frequency depends only on the size and rate of the negative feedback
but is independent of the details of the synaptic weight distribution and the size of the
input. This should be contrasted with the corresponding Hopf frequency in the case
of a smooth nonlinearity f and a weak step-inhomogeneity; see (4.14). The latter
depends on the input amplitude and the form of the stationary solution U , which
itself depends on the weight distribution w.

In order to investigate the nature of solutions around the Hopf bifurcation point,
we consider the particular example of a smooth ramp inhomogeneity

I(x) = −s

2
tanh(γx),(5.32)

where s is the size of the step and γ determines its steepness. A stationary front will
exist provided that

s > s̄ ≡ |1 − 2κ(1 + β)|.(5.33)

The gradient D = sγ sech2(γx0)/2 depends on x0, which is itself dependent on β and
κ through (5.19). Using the identity sech2x = 1 − tanh2 x, it follows that

D =
γ

2s

(
s2 − s̄2

)
.(5.34)
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Fig. 5.2. Stability phase diagram for a stationary front in the case of a step input I(x) =
−s tanh(γx)/2, where γ is the steepness of the step and s its height. Hopf bifurcation lines (solid
curves) in s−β parameter space are shown for various values of ε. In each case the stationary front
is stable above the line and unstable below it. The shaded area denotes the region of parameter space
where a stationary front solution does not exist. The threshold κ = 0.25 and γ = 0.5.

Combining (5.30) and (5.34), we obtain an expression for the critical value of s that
determines the Hopf bifurcation points:

sc =
1

2γ

⎡
⎣β − ε

1 + ε
+

√(
β − ε

1 + ε

)2

+ 4s̄2γ2

⎤
⎦ .(5.35)

The critical height sc is plotted as a function of β for various values of ε and fixed
κ, γ in Figure 5.2. Note that in the homogeneous case (s = 0) a stationary solution
exists only at the particular value of β given by β = 1/(2κ)−1. This solution is stable
for ε > β and unstable for ε < β, which is consistent with the pitchfork bifurcation
shown in Figure 5.1. Close to the front bifurcation ε = β, the Hopf bifurcation
occurs in the presence of a weak input inhomogeneity, which is the case considered
in section 2. Now, however, it is possible to determine the bifurcation curve without
any restrictions on the size of the input.

Numerically solving the full system of equations (1.1) for a step input I(x), ex-
ponential weights w(x), and threshold nonlinearity f(u) = H(u − κ) shows that the
Hopf bifurcation is supercritical, in which there is a transition to a small amplitude
breather whose frequency of oscillation is approximately equal to the Hopf frequency
ωH . As the input amplitude s is reduced beyond the Hopf bifurcation point, the am-
plitude of the oscillation increases until the breather itself becomes unstable and there
is a secondary bifurcation to a traveling front. This is illustrated in Figure 5.3, which
shows a space-time plot of the developing breather as the input amplitude is slowly
reduced. Note that analogous results have been obtained for pulses in the presence
of stationary Gaussian inputs, where a reduction in the input amplitude induces a
Hopf bifurcation to a pulse-like breather [3, 6]. Interestingly, the localized breather
can itself undergo a secondary instability leading to the periodic emission of traveling
waves. In one dimension such waves consist of pairs of counterpropagating pulses,
whereas in two dimensions the waves are circular target patterns [6].



FRONT BIFURCATIONS IN AN EXCITATORY NEURAL NETWORK 147

-20 200
space x (in units of d)

0

100

180

tim
e 

t (
in

 u
ni

ts
 o

f τ
)

0

0.8

0.6

0.4

0.2

activity u

Fig. 5.3. Breather-like solution arising from a Hopf instability of a stationary front due to a slow
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5.4. Locking to a moving input. We conclude our analysis of the exactly
solvable model by considering the effects of a moving input stimulus. This is inter-
esting from a number of viewpoints. First, introducing a persistent stationary input
into an in vitro cortical slice can damage the tissue, whereas a moving input (at least
if it is localized) will not. Second, in vivo inputs into the intact cortex are typically
nonstationary, as exemplified by inputs to the visual cortex induced by moving visual
stimuli. We consider the particular problem of whether or not a traveling front can
lock to a step-like input I(x) = I0χ(x− vt) traveling with constant speed v, where

χ(x) =

⎧⎨
⎩

−1, x > 0,
0, x = 0,

+1, x < 0.

Such a front moves at the same speed as the input but may be shifted in space relative
to the input.

We proceed by introducing the traveling wave coordinate ξ = x− vt and deriving
existence conditions for a front solution U(ξ) satisfying U(ξ) → 0 as ξ → ∞, U(ξ) →
(1 + β)−1 as ξ → −∞, and U(ξ0) = κ. Substituting into (1.1) gives

−vU ′(ξ) = −U(ξ) +

∫ ξ0

−∞
w(ξ − η)dη − βV (ξ) + I0χ(ξ),(5.36)

−vV ′(ξ) = ε(−V (ξ) + U(ξ)).(5.37)

Setting W (ξ) =
∫∞
ξ

w(η)dη, we can rewrite this pair of equations in the matrix form

LS ≡
(

vU ′ − U − βV
vV ′ + εU − εV

)
= −

(
NE

0

)
,(5.38)

where

S = (U, V )T , NE(ξ) = W (ξ − ξ0) + I0χ(ξ).(5.39)
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We use variation of parameters to solve this linear equation. The homogeneous prob-
lem LS = 0 has the two linearly independent solutions,

S+(ξ) =

(
β

m+ − 1

)
exp(µ+ξ),(5.40)

S−(ξ) =

(
β

m− − 1

)
exp(µ−ξ),(5.41)

where

µ± =
m±
v

, m± =
1

2

(
1 + ε±

√
(1 − ε)2 − 4εβ

)
.

By variation of parameters we define

S(ξ) = [S+(ξ)|S−(ξ)]

(
a(ξ)
b(ξ)

)
,

where [A|B] denotes the matrix whose first column is defined by the vector A and
whose second column is defined by the vector B. Then

LS = v
∂

∂ξ

(
[S+(ξ)|S−(ξ)]

(
a(ξ)
b(ξ)

))
−
(

1 β
−ε ε

)(
[S+(ξ)|S−(ξ)]

(
a(ξ)
b(ξ)

))

= v[S+(ξ)|S−(ξ)]
∂

∂ξ

(
a(ξ)
b(ξ)

)
,(5.42)

since LS± = 0. Thus (5.38) reduces to

[S+(ξ)|S−(ξ)]
∂

∂ξ

(
a(ξ)
b(ξ)

)
= −1

v

(
NE

0

)
.(5.43)

The matrix [S+(ξ)|S−(ξ)] is invertible. Introducing the vector-valued functions

Z+(ξ) =

(
1 −m−

β

)
exp(−µ+ξ),(5.44)

Z−(ξ) = −
(

1 −m+

β

)
exp(−µ−ξ),(5.45)

we have

[S+|S−][Z+|Z−]T = [Z+|Z−]T[S+|S−] = β(m+ −m−)I,

where I denotes the identity matrix. Multiplying (5.43) by [Z+|Z−]T finally yields the
first-order equation

∂

∂ξ

(
a(ξ)
b(ξ)

)
= − 1

vβ(m+ −m−)
[Z+(ξ)|Z−(ξ)]T

(
NE(ξ)

0

)
.(5.46)

In order to solve (5.46) we need to specify the sign of v. First, suppose that v > 0,
which corresponds to a right-moving front. Integrating over the interval [ξ,∞) gives(

a(ξ)
b(ξ)

)
=

(
a∞
b∞

)
+

1

vβ(m+ −m−)

∫ ∞

ξ

[Z+(η)|Z−(η)]T
(

NE(η)
0

)
dη,
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where a∞, b∞ denote the values of a, b at ∞. Since we seek a bounded solution S(ξ),
we must require that a∞ = b∞ = 0. Hence the solution is(

a(ξ)
b(ξ)

)
=

1

vβ(m+ −m−)

∫ ∞

ξ

[Z+(η)|Z−(η)]T
(

NE(η)
0

)
dη,

so that

S(ξ) =
1

vβ(m+ −m−)
[S+(ξ)|S−(ξ)]

∫ ∞

ξ

[Z+(η)|Z−(η)]T
(

NE(η)
0

)
dη.(5.47)

Further simplification occurs by introducing the functions

M±(ξ) =
1

v

(
1

m+ −m−

)∫ ∞

ξ

eµ±(ξ−η)NE(η)dη.

We can then express the solution for (U(ξ), V (ξ)) as follows:

U(ξ) = (1 −m−)M+(ξ) − (1 −m+)M−(ξ),(5.48)

V (ξ) = β−1(m+ − 1)(1 −m−) [M+(ξ) −M−(ξ)] .(5.49)

To ensure that such a front exists we require that U(ξ0) = κ, i.e.,

κ = (1 −m−)M+(ξ0) − (1 −m+)M−(ξ0).(5.50)

Taking w(x) = e−|x|/2 so that

W (ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1

2
eξ, ξ < 0,

1

2
e−ξ, ξ ≥ 0,

we can calculate M±(ξ0) explicitly as

M±(ξ0) =
1

(m+ −m−)

(
1

2(v + m±)
− 1

m±
F (ξ0)

)
,

where

F (ξ0) =

⎧⎨
⎩

I0(2e
µ±ξ0 − 1), ξ0 < 0,

I0, ξ0 ≥ 0.

The case of a left-moving front for which v < 0 follows along similar lines by
integrating (5.46) over (−∞, ξ0]:

U(ξ) = (m− − 1)M̆+(ξ) − (m+ − 1)M̆−(ξ),(5.51)

V (ξ) = β−1(m+ − 1)(1 −m−)
[
M̆+(ξ) − M̆−(ξ)

]
,(5.52)
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Fig. 5.4. Locking of a traveling front to a moving step input with velocity v and amplitude I0.
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(v = 0) and two counterpropagating fronts, which is consistent with the front bifurcation shown
in Figure 5.1. Each of these solutions forms the vertex of a distinct locking region whose width
increases monotonically with I0 so that ultimately the locking regions merge.

where

M̆±(ξ0) =
1

(m+ −m−)

(
1

2

m± − 2v

m±(v −m±)
− 1

m±
G(ξ0)

)

and

G(ξ0) =

⎧⎨
⎩

−I0, ξ0 < 0,

I0(1 − 2eµ±ξ0), ξ0 ≥ 0.

This leads to the following threshold condition for v < 0:

κ = (m− − 1)M̆+(ξ0) − (m+ − 1)M̆−(ξ0).(5.53)

We can now numerically solve (5.50) and (5.53) to determine the range of input
velocities v and input amplitudes I0 for which locking occurs. For the sake of illustra-
tion, we assume the threshold condition 2κ(1 + β) = 1 and take ε < β. This ensures
that, in the absence of any input, there exists an unstable stationary front and a
pair of stable counterpropagating waves (see Figure 5.1). The continuation of these
stationary and traveling fronts as I0 increases from zero is shown in Figure 5.4. Since
2κ(1+β) = 1, equations (5.50) and (5.53) are equivalent under the interchange v → −v
and ξ0 → −ξ0. This implies that the locking regions are symmetric with respect to
v. For nonzero v the traveling front is shifted relative to the input such that ξ0 < 0
when v > 0 and ξ0 > 0 when v < 0. In other words, the wave is dragged by the input.

Figure 5.4 determines where locking can occur but not whether the resulting
traveling wave is stable or unstable. Indeed, the stability analysis of traveling fronts
is considerably more involved than that of stationary fronts. Nevertheless, we expect
that for sufficiently small I0 the locking regions around the counterpropagating fronts
are stable, whereas the central region containing the stationary front is unstable. On
the other hand, since β > ε, we know that the stationary front is stable for large
inputs I0 and undergoes a Hopf bifurcation as I0 is reduced. This suggests that the
Hopf bifurcation point at v = 0 lies on a Hopf curve within the locking region so that
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a traveling front locked to a moving input can also be destabilized as the strength of
the input is reduced (or as the input velocity changes relative to the intrinsic velocity
of waves in the homogeneous network). Recently, Zhang [19] analyzed the asymptotic
stability of traveling wave solutions of (1.1) in the case of homogeneous inputs by
deriving the associated Evans function and evaluating it in the singular limit ε � 1.
In future work we will extend this analysis to the case of inhomogeneous inputs and
finite ε, thus determining the stability of the locking regions shown in Figure 5.4. We
will also construct corresponding locking regions for traveling pulses in the presence
of moving Gaussian inputs, and numerically explore the types of oscillatory solutions
bifurcating from these waves.

Acknowledgment. We would like to thank Yue-Xian Li (University of British
Columbia) for many helpful discussions regarding his work on wavefront instabilities
in reaction–diffusion equations.

REFERENCES

[1] S. Amari, Dynamics of pattern formation in lateral inhibition type neural fields, Biol. Cybern.,
27 (1977), pp. 77–87.

[2] M. Bode, Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter dis-
tributions, Phys. D, 106 (1997), pp. 270–286.

[3] P. C. Bressloff, S. E. Folias, A. Prat, and Y.-X. Li, Oscillatory waves in inhomogeneous
neural media, Phys. Rev. Lett., 91 (2003), article 178101.

[4] R. D. Chervin, P. A. Pierce, and B. W. Connors, Periodicity and directionality in the prop-
agation of epileptiform discharges across neocortex, J. Neurophysiol., 60 (1988), pp. 1695–
1713.

[5] G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a
neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), pp. 461–478.

[6] S. E. Folias and P. C. Bressloff, Breathing pulses in an excitatory neural network, SIAM
J. Appl. Dynam. Systems, to appear.

[7] D. Golomb and Y. Amitai, Propagating neuronal discharges in neocortical slices: Computa-
tional and experimental study, J. Neurophysiol., 78 (1997), pp. 1199–1211.

[8] A. Hagberg and E. Meron, Pattern formation in non-gradient reaction-diffusion systems:
The effects of front bifurcations, Nonlinearity, 7 (1994), pp. 805–835.

[9] A. Hagberg, E. Meron, I. Rubinstein, and B. Zaltzman, Controlling domain patterns far
from equilibrium, Phys. Rev. Lett., 76 (1996), pp. 427–430.

[10] M. A. P. Idiart and L. F. Abbott, Propagation of excitation in neural network models,
Network, 4 (1993), pp. 285–294.

[11] Y.-X. Li, Tango waves in a bidomain model of fertilization calcium waves, Phys. D, 186 (2003),
pp. 27–49.

[12] D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neu-
ronal networks: I. Traveling fronts and pulses, SIAM J. Appl. Math., 62 (2001), pp. 206–
225.

[13] A. Prat and Y.-X. Li, Stability of front solutions in inhomogeneous media, Phys. D, 186
(2003), pp. 50–68.

[14] J. Rinzel and D. Terman, Propagation phenomena in a bistable reaction-diffusion system,
SIAM J. Appl. Math., 42 (1982), pp. 1111–1137.

[15] J. E. Rubin, Stability, bifurcations and edge oscillations in standing pulse solutions to an
inhomogeneous reaction-diffusion system, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999),
pp. 1033–1079.

[16] P. Schutz, M. Bode, and H.-G. Purwins, Bifurcations of front dynamics in a reaction-
diffusion system with spatial inhomogeneities, Phys. D, 82 (1995), pp. 382–397.

[17] H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical
and thalamic nervous tissue, Kybernetik, 13 (1973), pp. 55–80.

[18] J.-Y. Wu, L. Guan, and Y. Tsau, Propagating activation during oscillations and evoked
responses in neocortical slices, J. Neurosci., 19 (1999), pp. 5005–5015.

[19] L. Zhang, On stability of traveling wave solutions in synaptically coupled neuronal networks,
Differential Integral Equations, 16 (2003), pp. 513–536.


