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Abstract. We consider the symmetry properties of a general class of nonlocal population models
describing the aggregation and alignment of oriented objects in two dimensions. Such objects could
be at the level of molecules, cells, or whole organisms. We show that the underlying interaction
kernel is invariant under the so-called shift-twist action of the Euclidean group acting on the space
R2 × S1. This group action was previously studied within the context of a continuum model of
primary visual cortex. We use perturbation methods to solve the eigenvalue problem arising from
linearization about a homogeneous state, and then use equivariant bifurcation theory to identify the
various types of doubly periodic patterns that are expected to arise when the homogeneous state
becomes unstable. We thus establish that two distinct forms of spatio-angular order can occur,
corresponding to scalar and pseudoscalar representations of the Euclidean group.
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1. Introduction. A wide variety of self-organizing biological systems exhibit
aggregation and alignment phenomena. These occur spontaneously due to mutual in-
teractions between the individual elements of a population, in which both the relative
position and the relative orientation of the individuals have a significant effect on the
nature of the interactions. The underlying population can consist of molecules, cells,
or whole organisms. A well-known example of the last category is the aggregation
of animal herds, fish schools, and flocks of birds, in which the members of the group
tend to align their bodies with each other and move in a common direction [14]. Such
behavior provides a defense against predators. Examples at the cellular and molecular
levels are the alignment of mammalian fibroblast cells within densely formed patches
[10] and the alignment of actin filaments forming a scaffolding structure within a cell
[22]. In order to investigate the important role of alignment in population survival
and in the properties of biological materials, a number of continuum models of in-
teracting oriented objects have been developed, with applications to animal social
groups [19, 14, 6], fibroblasts [16, 17, 8], and actin [7, 12, 21]. All of these models
are formulated in terms of integro-differential equations describing the evolution of
the distribution of oriented elements in space. It is typically assumed that the in-
teraction terms involve convolutions of the population distribution with some linear
kernel. Convolutions with respect to orientation are natural, since an individual can
interact with a neighboring cell having any relative orientation, whereas convolutions
with respect to spatial position can be justified by assuming that signaling between
individuals happens on a much faster time-scale than aggregation and alignment [15].

In this paper we investigate how symmetries of the interaction kernel determine
the types of spatio-angular patterns that can emerge through a Turing-like instability
of a homogeneous state. For concreteness, we focus on a diffusion-advection equation
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for a population of oriented objects distributed in the two-dimensional plane. This
corresponds to the second of three classes of model previously studied by Mogilner
and Edelstein-Keshet [18], in which nonlocal interactions induce a rotation about
the center of mass of each element as well as a linear drift of the center of mass in
the plane. (The other two models are less realistic in the sense that they treat the
alignment process as instantaneous, although they do exhibit the same qualitative
behavior since they have the same underlying symmetries.) Mogilner and Edelstein-
Keshet [18] solved the eigenvalue problem arising from a linear stability analysis of
the homogeneous state in the case of a separable interaction kernel, that is, one in
which variations in the strength of interaction with respect to relative orientation and
relative position are uncorrelated. Such a kernel is invariant under the action of the
product group E(2) × O(2), where E(2) denotes the Euclidean group of rigid body
motions in the plane R2 and O(2) consists of rotations and reflection on the circle
S1. However, it is often found that individuals with similar orientations have stronger
interactions when they are collinear in the plane, implying that the interaction kernel
is nonseparable [6]. (A specific example of a nonseparable kernel was briefly considered
in [18], but general symmetry properties were not addressed.) Here we show that these
more realistic kernels are invariant with respect to the so-called shift-twist action of
E(2) acting on the space R2 ×S1, and we explore the consequences of this symmetry
for pattern formation. Note that the same group action has recently been analyzed
within the context of continuum models of the visual cortex, where the nonlocal
interactions are mediated by axonal connections between neurons that are tuned to
respond to oriented visual stimuli [3, 4]. Shift-twist invariant kernels also play a
central role in a recently proposed computational algorithm for grouping and joining
edges that form the boundaries of objects in a visual image [24].

We begin by describing the nonlocal population model for the aggregation and
alignment of oriented objects in two dimensions and discussing its symmetry proper-
ties (section 2). We show that the resulting diffusion-advection equation is equivariant
with respect to the shift-twist action of the Euclidean group due to the invariance of
the underlying interaction kernel. We then use perturbation methods to solve the
eigenvalue problem arising from linearization about a homogeneous state and deter-
mine marginal stability conditions (section 3). Finally, we use equivariant bifurcation
theory to identify the various types of doubly periodic patterns that are expected
to arise when the homogeneous state becomes unstable, and thus establish that two
distinct forms of spatio-angular order can occur, corresponding to the so-called scalar
and pseudoscalar representations of the Euclidean group (section 4). Interestingly,
analogous results [5] have been obtained for the Landau–de Gennes model of a ne-
matic liquid crystal [9], where the oriented objects are rod-like molecules that interact
by electrostatic attraction or repulsion.

2. Description of the model and its symmetries. Let f(r, θ, t) denote the
distribution of oriented objects in a two-dimensional domain D ⊂ R2 at time t with
r ∈ D and −π < θ ≤ π. It is assumed that the total number of objects N is conserved;
that is, Ṅ = 0 with

N =

∫
D

∫ π

−π

f(r, θ, t)
dθ

2π
d2r.(2.1)

In cases where the population grows (due to cell proliferation, for example), N may
still be treated as a constant, provided that the growth process is adiabatic. The pop-
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ulation distribution f is taken to evolve according to the diffusion-advection equation

∂f

∂t
= D1

∂2f

∂θ2
+ D2∇2f − ∂Jθ

∂θ
−∇ · Jr.(2.2)

Here D1 and D2 are angular and spatial diffusion constants, Jθ is the flux arising
from changes in the orientation of objects, and Jr is the flux arising from motion in
the plane:

Jθ = f
dθ

dt
, J = f

dr

dt
.(2.3)

Following Mogilner and Edelstein-Keshet [16, 18], we assume that inertial forces can
be neglected so that the velocities are simply proportional to the driving forces,

dθ

dt
= η1Fθ,

dr

dt
= η2Fr.(2.4)

The forces are taken to be conservative; that is, each can be expressed in terms of the
gradient of an underlying potential function V :

Fθ =
∂V

∂θ
, Fr = ∇V,(2.5)

where V is given by the integral of f with respect to a linear kernel W ,

V (r, θ) = W ∗ f(r, θ) ≡
∫
D

∫ π

−π

W (r, θ|r′, θ′)f(r′, θ′)
dθ

2π
d2r.(2.6)

(One could also consider a more general situation in which angular and planar motion
are generated by two distinct potentials [18].) Substituting (2.3), (2.4), (2.5), and (2.6)
into (2.2) leads to the following model equation:

∂f

∂t
= D1

∂2f

∂θ2
+ D2∇2f − η1

∂

∂θ

(
f
∂(W ∗ f)

∂θ

)
− η2∇ · (f∇(W ∗ f)).(2.7)

2.1. The interaction kernel. We now specify the form of the interaction kernel
W . Consider a local patch of individuals at point r with orientation θ. These will
move in the plane and reorient as a result of the influence from other patches at
r′ with orientation θ′ (see Figure 2.1(a)). It is likely that the interactions depend
on three distinct factors [6, 18]: (i) the Euclidean distance |r − r′|, (ii) the relative
orientation θ − θ′, and (iii) the relative alignment in the plane ψ = arg(r − r′) − θ.
One way to understand the third factor is to consider the case of parallel objects that
are equidistant in the plane but are either collinear or flanking each other (see Figure
2.1(b)). Given the fact that each object is elongated, it is possible that collinear
objects tend to influence each other more strongly than flanking objects. In the
cellular or molecular case this would arise due to differences in the contact areas of
the individuals, whereas in animal social groups this would reflect differences in the
ability to sense individuals in different relative directions. In the latter case, the
influence of individuals behind a given animal would also tend to be weaker than
on the sides or front. If we assume that the three effects are independent, then the
interaction kernel can be decomposed into the product form (see [6])

W (r, θ|r′, θ′) = G(|r − r′|)H(θ − θ′)∆(arg(r − r′) − θ).(2.8)
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Fig. 2.1. (a) Two oriented objects in the plane. (b) Difference in the influence of collinear
(black) and flanking (gray) oriented objects.

We now discuss each of the terms appearing in (2.8).
The strength of interactions decreases as a function of spatial separation so that

G(r) is a monotonically decreasing function of r. For concreteness, we take G to be
a Gaussian

G(r) =
1

2πσ2
e−r2/2σ2

,(2.9)

where σ denotes the effective range of interactions. We fix the spatial scale by setting
σ = 1. Throughout this paper we assume that the range of interactions is at least a
few orders of magnitude smaller than the size of the domain D. This allows us to treat
the spatial domain as infinite so that we can ignore boundary effects. The angular
contribution H(θ) is assumed to be an even function of θ with one or more maxima
whose locations are model-dependent. In the case of fibroblasts [18], interactions tend
to favor parallel alignment which may be “head-to-head” (θ = 0) or “head-to-tail”
(θ = π). This can be modeled by taking a bimodal function of the form

H(θ) = [cos 2θ − cos 2θ0]+ , θ0 <
π

4
,(2.10)

where [x]+ = x if x > 0 and [x]+ = 0 if x ≤ 0, and θ0 determines the width of the
two maxima. If only “head-to-head” alignment is favored, then H(θ) can be modeled
by the unimodal function

H(θ) = [cos θ − cos θ0]+ , θ0 <
π

2
.(2.11)

In the case of actin fibers [7], crosslinking proteins allow fibers to interact and bind
at different configurations that include both parallel and orthogonal alignment. An
example of an orthogonal interaction kernel is

H(θ) = [cos 2θ0 − cos 2θ]+ , θ0 >
π

4
.(2.12)

All three cases are illustrated in Figure 2.2. The final factor ∆ is expected to be a
positive function that is greater for coaligned elements than for flanking elements (at
least in the case of parallel alignment). One possibility is to take

∆(ψ) = 1 + β cos 2ψ, β < 1.(2.13)
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Fig. 2.2. Orientation kernel H(θ) for different favored alignments: (a) unimodal parallel align-
ment, (b) bimodal parallel alignment, (c) orthogonal alignment.

Note that as it stands the interaction kernel (2.8) is not symmetric under the inter-
change (r, θ) ↔ (r′, θ′). It is straightforward to modify the kernel so that it has such
an exchange symmetry by taking

W (r, θ|r′, θ′) =
1

2
H(θ − θ′) [J(r − r′, θ) + J(r − r′, θ′)] ,(2.14)

where

J(r, θ) = G(|r|)∆(arg(r) − θ).(2.15)

2.2. Euclidean symmetry. We now show that the nonseparable interaction
kernel W given by (2.8) is invariant under the action of the Euclidean group E(2),
which is composed of the (semidirect) product of O(2), the group of planar rotations
and reflections, with R2, the group of planar translations. The action of the Euclidean
group on R2 × S1 is generated by

s · (r, θ) = (r + s, θ), s ∈ R2,
ϕ · (r, θ) = (Rϕr, θ + ϕ), ϕ ∈ S1,
κ · (r, θ) = (κr,−θ),

(2.16)

where κ is the reflection (x1, x2) �→ (x1,−x2) and Rϕ is a rotation by ϕ. The corre-
sponding group action on a function a : R2 × S1 → R is given by

γ · a(P ) = a(γ−1 · P ) for all γ ∈ O(2)+̇R2,(2.17)

where P = (r, θ), and the action on W (P |P ′) is

γ ·W (P |P ′) = W (γ−1 · P |γ−1 · P ′).

The so-called shift-twist action in (2.16) reflects a crucial feature of the underlying
interactions, namely that they tend to favor collinear parallel elements. This correla-
tion between relative angular position and object orientation means that invariance
of W under E(2) requires a rotation in the plane according to the twist r → Rϕr and
a simultaneous rotation of object orientation according to the shift θ → θ + ϕ (see
Figure 2.3). A similar argument holds for reflections.

Translation invariance of W given by (2.8) follows immediately from the spatial
homogeneity of the interactions, which implies that

W (r − s, θ|r′ − s, θ′) = W (r, θ|r′, θ′).
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Fig. 2.3. Action of a rotation by ϕ on two oriented objects located at planar positions
r1, r2 and with internal orientations θ1, θ2. The action is of the form (r, θ) → (r′, θ′) =
(Rϕr, ϕ + θ).

Invariance with respect to a rotation by ϕ follows from

W (R−ϕr, θ − ϕ|R−ϕr′, θ′ − ϕ)

= G(|R−ϕ(r − r′)|)H(θ − ϕ− θ′ + ϕ)∆(arg[R−ϕ(r − r′)] − θ + ϕ)

= G(|r − r′|)H(θ − θ′)∆(arg(r − r′) − θ)

= W (r, θ|r′, θ′).

We have used the conditions |Rϕr| = |r| and arg(R−ϕr) = arg(r) − ϕ. Finally,
invariance under a reflection κ about the x-axis holds since

W (κr,−θ|κr′,−θ′) = G(|κ(r − r′)|)H(−θ + θ′)∆(arg[κ(r − r′)] + θ)

= G(|r − r′|)H(θ − θ′)∆(− arg(r − r′) + θ)

= W (r, θ|r′, θ′).

We have used the conditions arg(κr) = − arg(r), H(−θ) = H(θ), and ∆(−ψ) = ∆(ψ).
Finally, using identical arguments, it is straightforward to show that the modified
kernel (2.14) is also invariant under the Euclidean group action (2.16).

Let us now determine how (2.7) transforms under the shift-twist action of the

Euclidean group. Introducing the transformed coordinates (r̃, θ̃) = γ−1(r, θ) and

setting f̃(r, θ) = f(r̃, θ̃), etc., we see that (2.7) becomes

∂f̃

∂t
= D1

∂2f̃

∂θ̃2
+ D2∇̃2f̃ − η1

∂

∂θ̃

(
f̃
∂ ˜W ∗ f

∂θ̃

)
− η2∇̃ · (f̃∇̃˜W ∗ f).(2.18)

Invariance of the weight kernel W implies that ˜W ∗ f = W ∗ f̃ :

W ∗ f(γ−1P, t) =

∫
R2×S1

W (γ−1P |P ′)f(P ′, t)dP ′

=

∫
R2×S1

W (P |γP ′)f(P ′, t)dP ′

=

∫
R2×S1

W (P |P ′′)f(γ−1P ′′, t)dP ′′,

since d[γ−1P ] = ±dP and W is Euclidean invariant. It is also easy to establish that
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all of the quadratic differential operators are Euclidean invariant, that is,

∂

∂θ̃

(
a
∂

∂θ̃

)
=

∂

∂θ

(
a
∂

∂θ

)
, ∇̃ · (a∇̃) = ∇ · (a∇)(2.19)

for any scalar function a(r, θ). Hence,

∂f̃

∂t
= D1

∂2f̃

∂θ2
+ D2∇2f̃ − η1

∂

∂θ

(
f̃
∂W ∗ f̃

∂θ̃

)
− η2∇ · (f̃∇W ∗ f̃).(2.20)

If we rewrite (2.7) as an operator equation, namely,

Ft[f ] ≡ df

dt
−F [f ] = 0,(2.21)

then it follows that γFt[f ] = Ft[γf ] = Ft[f̃ ]. Thus Ft commutes with γ ∈ E(2), and
Ft is said to be equivariant with respect to the symmetry group E(2) (see [13]). In
sections 3 and 4 we show how the equivariance of the operator Ft with respect to the
shift-twist action of E(2) has major implications for the nature of solutions bifurcating
from a homogeneous steady state solution. In particular, equivariance implies that
there exist two distinct forms of spatio-angular order, which are associated with scalar
and pseudoscalar representations of the Euclidean group. Further details concerning
the general approach used in this paper, as well as many illustrative examples, can
be found in the recent excellent book on the role of symmetry in nonlinear dynamical
systems by Golubitsky and Stewart [13].

3. Linear stability analysis. The first step in the analysis of pattern forming
instabilities is to linearize (2.7) about the homogeneous solution f(r, θ) = f , where

f =
N

2πA[D]
, A[D] =

∫
D
d2r,(3.1)

and to solve the resulting eigenvalue problem. In particular, we wish to find conditions
under which the homogeneous solution becomes marginally stable due to the vanishing
of one of the (degenerate) eigenvalues, and to identify the marginally stable modes.
In the following we will consider the modified version of the interaction kernel given
by (2.14).

3.1. Eigenvalue equation. Substitute

f(r, θ, t) = f + a(r, θ)eλt(3.2)

into (2.7) and expand to first order in a. This generates the linear eigenvalue equation

λa = L̂a

≡ D1
∂2a

∂θ2
+ D2∇2a− η1f

∂2(W ∗ a)
∂θ2

− η2f∇2(W ∗ a).(3.3)

Since the homogeneous solution has full Euclidean symmetry, γf = f for all γ ∈ E(2),

it follows that the linear operator L̂ is equivariant with respect to the Euclidean group
action (2.16). This can be shown either by explicitly using (3.3) or by rewriting (2.7)
in the form (2.21) and exploiting the equivariance of F . In the latter case, linearizing
both sides of the equation γF [f ] = F [γf ] about f gives

γ
(
F [f ] + DF [f ](f − f)

)
= F [γf ] + DF [γf ](γf − f),
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which implies that γL̂ = L̂γ for all γ ∈ E(2), where L̂ = DF [f ]. Equivariance of

L̂ determines the basic form of the eigenfunction solutions of (3.3); namely, they are
given by irreducible representations of the group action (2.16) on the space R2 × S1.
We show this following similar arguments to those of Bressloff et al. [3, 4]. First,
translation symmetry implies that the eigenfunctions can be expressed in the form

a(r, θ) = u(θ − ϕ)eik·r + c.c.,(3.4)

where c.c. denotes the complex conjugate, k = q(cosϕ, sinϕ), and

λu(θ) = D1
∂2u(θ)

∂θ2
−D2q

2u(θ)

− f

2

[
η1

∂2

∂θ2
− η2q

2

] ∫ π

−π

H(θ − θ′)
[
Ĵ(k, θ + ϕ) + Ĵ(k, θ′ + ϕ)

]
u(θ′)

dθ′

2π
.(3.5)

Here Ĵ(k, θ) is the Fourier transform of J(r, θ),

Ĵ(k, θ) =

∫
R2

e−ik·rJ(r, θ)d2r.(3.6)

Euclidean symmetry further restricts the structure of the eigensolutions u(θ) of (3.5)
as follows.

(i) The Fourier transform Ĵ(k, θ +ϕ) is independent of the direction ϕ = arg(k).
This is easy to establish as follows:

Ĵ(k, θ + ϕ) =

∫
R2

e−ik·rJ(r, θ + ϕ)d2r

=

∫ ∞

0

∫ π

−π

e−iqr cos(ψ−ϕ)G(r)∆(ψ − θ − ϕ)dψrdr

=

∫ ∞

0

∫ π

−π

e−iqr cos(ψ)G(r)∆(ψ − θ)dψrdr

= Ĵ(q, θ).(3.7)

Therefore, λ and u(θ) depend only on the magnitude q = |k| of the wavevector k, and
there is an infinite degeneracy due to rotational invariance. Note, however, that the
eigenfunction (3.4) depends on u(θ − ϕ), which reflects the shift-twist action of the
rotation group.

(ii) For each k the associated subspace of eigenfunctions

Vk = {u(θ − ϕ)eik·r + c.c.}(3.8)

decomposes into two invariant subspaces,

Vk = V +
k ⊕ V −

k ,(3.9)

corresponding to even and odd functions, respectively:

V +
k = {v ∈ Vk : u(−θ) = u(θ)} and V −

k = {v ∈ Vk : u(−θ) = −u(θ)}.(3.10)

This is a consequence of reflection invariance, as we now indicate. That is, let κk

denote reflections about the wavevector k so that κkk = k. Then κka(r, φ) =
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a(κkr, 2ϕ − φ) = u(ϕ − φ)eik·r+ c.c. Since κk is a reflection, any space that it acts
on decomposes into two subspaces—one on which it acts as the identity I and one
on which it acts as −I. The even and odd functions correspond to scalar and pseu-
doscalar representations of the Euclidean group studied in a more general context by
Vivancos, Chossat, and Melbourne [1].

A further reduction of (3.5) can be achieved by expanding the 2π-periodic function
u(θ) as a Fourier series with respect to θ:

u(θ) =
∑
n∈Z

Uneinθ.(3.11)

This then leads to the matrix eigenvalue equation

λ(q)Un = [L(q)U]n ≡ −An(q)Un +
1

2
Bn(q)

∑
m∈Z

Ĵn−m(q)[Hm + Hn]Um,(3.12)

where

An(q) = D1n
2 + D2q

2, Bn(q) = f(η1n
2 + η2q

2)(3.13)

and

Ĵn(q) =

∫ π

−π

e−inθĴ(q, θ)
dθ

2π
= ∆nĜn(q)(3.14)

with

Ĝn(q) =

∫ ∞

0

∫ π

−π

e−iqr cos(ψ)e−inψG(r)dψrdr.(3.15)

We have used (3.7) together with the Fourier series expansions

H(θ) =
∑
n∈Z

einθHn, ∆(ψ) =
∑
n∈Z

einψ∆n.(3.16)

Note that H∗
n = H−n = Hn and ∆∗

n = ∆−n = ∆n, since H(θ) and ∆(θ) are assumed
to be real even functions of θ. Equations (3.14) and (3.15) imply that

Ĵn(q)∗ = (−1)nĴ−n(q), Ĵ−n(q) = Ĵn(q).(3.17)

Denote the set of solutions to (3.12) by {(λj(q),Uj(q)), j ∈ Z}. We now establish
conditions under which the eigenvalues λj(q) are real for all q ∈ R. The case q = 0 is

trivial because Ĵn(0) ∼ δn,0 so that

λn(0) = −An(0) + Bn(0)Hn.(3.18)

Therefore, we take q �= 0. Introduce the inner product of two periodic functions
V (θ), U(θ) according to

〈V |U〉 =

∫ π

−π

V ∗(θ)U(θ)
dθ

2π
=

∑
n∈Z

V ∗
nUn = 〈V|U〉,(3.19)
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where V ∗ denotes the complex conjugate of V . The adjoint matrix L(q)† is then given
by

[L(q)†V]n ≡ −An(q)Vn +
1

2

∑
m∈Z

Ĵm−n(q)∗Bm(q)[Hm + Hn]Vm.(3.20)

Equation (3.17) implies that L(q)† and L(q) have the same set of eigenvalues,

L(q)Uj(q) = λj(q)Uj(q), L(q)†Vj(q) = λj(q)Vj(q),(3.21)

with the corresponding eigenvectors related according to

Uj,n(q) = (−1)nBn(q)Vj,n(q).(3.22)

This relationship is invertible since Bn(q) > 0 for all n ∈ Z and q �= 0. It further
follows that

λj〈Vj′ |Uj〉 = 〈Vj′ |LUj〉
= 〈L†V|U〉
= λ∗

j′〈Vj′ |Uj〉.(3.23)

Hence, if λj(q) �= λj′(q) for j �= j′, then the vectors Uj(q) and Vj(q) form a biorthog-
onal system with

〈Vj′(q)|Uj(q)〉 = χj(q)δj,j′(3.24)

and

χj(q) = 〈Vj(q)|Uj(q)〉 =
∑
n

(−1)nBn(q)|Vj,n(q)|2.(3.25)

It also follows that λj(q) = λ∗
j (q) if χj(q) �= 0. The latter condition certainly holds

for all q �= 0 and j ∈ Z when ∆(ψ) is π-periodic,

∆(ψ) = ∆(ψ + π),(3.26)

corresponding to the situation in which collinear interactions are equally strong at the
front and at the back (see Figure 2.1(b)). In this case ∆n = 0 and Ĵn(q) = 0 for all odd
integers n, and L(q) becomes a real matrix that only couples together even-to-even
or odd-to-odd components Un. Hence, χj(q) = ±

∑±
n Bn(q)|Vj,n(q)|2 �= 0, where∑±

n denotes the sum over even and odd integers, respectively. The corresponding
eigenfunctions satisfy either U(θ + π) = U(θ) or U(θ + π) = −U(θ) and can be taken
to be real-valued. If ∆(ψ) is not π-periodic, then the eigenvalues λj(q) are still real,
provided that χj(q) �= 0 except at isolated points, which follows from the observation
that λj(q) is a continuous function of q. In this more general situation, however, the
eigenfunctions U(θ) will be complex-valued.

3.2. Perturbation expansion. The calculation of the eigenvalues and eigen-
functions of the linearized equation (3.5), and hence the derivation of conditions for
the marginal stability of the homogeneous state, has been reduced to the problem of
solving the matrix equation (3.12). In general it is not possible to solve this equation
exactly. Here we will carry out a perturbation expansion under the assumption that
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the dependence of the interactions on relative direction in the plane is weak. In other
words, we write

∆(ψ) = 1 + βΨ(ψ), 0 ≤ β � 1, |Ψ(ψ)| ≤ 1 for all ψ,(3.27)

with Ψ0 =
∫ π

−π
Ψ(ψ)dψ = 0. Equation (3.12) can then be rewritten in the form

[λ(q) −Wn(q)]Un = β
∑
n∈Z

Ŵnm(q)Um,(3.28)

where

Wn(q) = −An(q) + Bn(q)HnĜ0(q)(3.29)

and

Ŵnm(q) =
1

2
Bn(q)[Hm + Hn]Ψn−mĜn−m(q)(3.30)

with An(q), Bn(q), Ĝn(q) given by (3.13) and (3.15). Equation (3.28) can then be
solved by expanding as a power series in β and using degenerate perturbation theory.

Case β = 0. In the limiting case that the interaction kernel is independent of
relative direction in the plane, β = 0, (3.28) reduces to the result previously obtained
for separable kernels [18]: the eigenvalues are

λn(q) = Wn(q) = −(D1n
2 + D2q

2) + f(η1n
2 + η2q

2)Hne−q2/2(3.31)

with corresponding eigenfunctions

an,k(r, θ) = einθeik·r, |k| = q.(3.32)

We have used the result Ĝ0(q) = e−q2/2, which follows from substituting (2.9) into
(3.15) and evaluating the resulting Gaussian integral. Note that the full interaction
kernel W is invariant with respect to the group E(2)×O(2) so that the odd and even
modes an,k ± a−n,k are degenerate, that is, λ−n(q) = λn(q).

Case β > 0. For nonzero β, there is a q-dependent splitting of the pair of degener-
ate eigenvalues λ±n(q), n �= 0, which separates out odd and even solutions. Denoting
the characteristic size of such a splitting by δλ = O(β), we impose the condition that
δλ � ∆W , where ∆W = min{Wn − Wm,m �= ±n}. This ensures that the pertur-
bation does not excite states associated with other eigenvalues of the unperturbed
problem. We can then restrict ourselves to calculating perturbative corrections to the
degenerate eigenvalues λ±n and their associated eigenfunctions. Therefore, introduce
the power series expansions

λ±n = Wn + βλ
(1)
±n + β2λ

(2)
±n + · · ·(3.33)

and

U±n,m = z±nδm,±n + βU
(1)
±n,m + β2U

(2)
±n,m + · · · ,(3.34)

where δn,m is the Kronecker delta function. Here Un,m is the mth component of the
vector Un associated with the eigenvalue λn. Substitute these expansions into the
matrix eigenvalue equation (3.28) and systematically solve the resulting hierarchy of
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equations to successive orders in β using degenerate perturbation theory along similar
lines to [3]. This leads to the following results:

(i) the even (+) and odd (−) eigenvalues to O(β2) are

λ±n(q) = Wn(q) + β
[
Ŵnn(q) ± Ŵn,−n(q)

]
+ β2

∑
0≤m�=n

[
Ŵnm(q) ± Ŵ−n,m(q)

] [
Ŵmn(q) ± Ŵm,−n(q)

]
Wn −Wm

;(3.35)

(ii) the corresponding eigenfunctions to O(β) are

an,k(r, θ) =

⎡⎣cos(nθ) + β
∑

0≤m�=n

U+
m(q) cos(mθ)

⎤⎦ eik·r;(3.36)

a−n,k(r, θ) =

⎡⎣sin(nθ) + β
∑

0<m�=n

U−
m(q) sin(mθ)

⎤⎦ eik·r(3.37)

with |k| = q and

U+
0 (q) =

Ŵ0n(q)

Wn −W0
, U±

m(q) =
Ŵmn(q) ± Ŵm,−n(q)

Wn −Wm
, 0 < m �= n.(3.38)

It is important to stress that the splitting of even and odd branches for β > 0 is a
consequence of the underlying shift-twist symmetry and thus occurs beyond the small
β regime.

3.3. Marginal stability. We now determine the marginal stability boundaries
in parameter space that separate regions of stability from regions of instability. Cross-
ing one of these boundaries signals that one or more eigenvalues become positive and
their corresponding eigenfunctions start to grow, leading to the formation of a self-
organizing pattern. (Conservation of population number implies that there always
exists one neutrally stable mode q = 0, n = 0, that is, λ0(0) = 0.) For concreteness,
we treat the rescaled diffusion coefficients D1 → D1f,D2 → D2f as bifurcation pa-
rameters. An adiabatic increase in the mean density f due to a growth in population
number or a contraction in the area occupied by the population then corresponds to
a reduction in D1 and D2. This reduction can lead to one of four distinct types of
instability, depending on which eigenmodes are first excited:

(I) if q �= 0, n = 0, then a spatially periodic pattern forms without any angular
order (aggregation without orientation);

(II) if q = 0, n �= 0, then a pattern with angular order forms that is spatially
uniform (orientation without aggregation);

(IIIa,b) if q �= 0, n �= 0, then a pattern with spatio-angular order forms, in which
the angle of preferred orientation changes periodically in space even though the spa-
tial density remains homogeneous. The invariance of the interaction kernel under
Euclidean shift-twist symmetry implies that when β > 0, there are two kinds of
spatio-angular patterns, corresponding to (a) even and (b) odd eigenmodes, respec-
tively. Examples of such eigenmodes are shown in Figure 3.1 under the simplifying
assumption that a particular harmonic component n dominates. The crucial obser-
vation is that the direction of preferred orientation is correlated with the direction
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n = 1 (odd) n = 1 (even) n = 2 (even)n = 2 (odd)

Fig. 3.1. Examples of even (an,k = cos(nθ)eik·r + c.c.) and odd (an,k = sin(nθ)eik·r + c.c.)
eigenmodes with spatio-angular order in the case of a horizontal wavevector k = (q, 0). If n = 1,
then there is a unique direction of preferred orientation (indicated by an arrow). If n = 2, then
there are two preferred directions of motion (indicated by a bar). The width of each vertical strip is
π/q.

of the wavevector k, whereas there is no such correlation when β = 0 so that the
distinction between odd and even solutions disappears.

3.3.1. Separable interaction kernel (β = 0). Before determining the effects
of shift-twist symmetry on pattern forming instabilities of the homogeneous state, we
first discuss the separable case previously analyzed by Mogilner and Edelstein-Keshet
[18]. The eigenvalues for β = 0 are given by (3.31). In particular, when n = 0 we
have (on setting f = 1)

λ0(q) = q2
(
−D2 + η2H0e

−q2/2
)
.(3.39)

It is clear that λ0(q) < 0 for all q �= 0 if D2 > D2,0, where

D2,0 = η2H0.(3.40)

If D2 < D2,0, then the homogeneous state is unstable with respect to the excitation
of eigenmodes over a range of wavenumbers that includes the origin so that q ≈
0, n = 0. Although this is a type I instability, the emerging pattern tends to involve
long-wavelength spatial inhomogeneities. Therefore, the resulting stationary state
could be treated as homogeneous on shorter spatial scales and thus be susceptible
to secondary bifurcations associated with excitation of modes with q �= 0, n �= 0
(see below). Alternatively, the n = 0 modes could be stabilized by incorporating an
additional contribution to the interaction kernel W in the form of a repulsive hard-core
potential:

W (r, θ|r′, θ′) = G(r − r′)H(θ − θ′)∆(arg(r − r′) − θ) − Cδ(r − r′)(3.41)

with C > 0. This modifies the β = 0 contribution to λ0 according to

λ0(q) = q2
(
−D2 + η2H0e

−q2/2 −H0C
)
,(3.42)

and the stability condition becomes D2 > D′
2,0 with

D′
2,0 = H0(η2 − C).(3.43)
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Now consider the branch of eigenmodes for a given n, n �= 0, such that Hn > 0
(otherwise λn(q) < 0 for all q). Differentiating (3.31) with respect to q gives

dλn(q)

dq
= q

[
−2D2 + Hn

(
2η2 − (η1n

2 + η2q
2)
)
e−q2/2

]
.(3.44)

This implies that λn(q) has a maximum at q = 0 when D2 > D2,n and a maximum
at q = qc �= 0 when D2 < D2,n, where

D2,n = Hn(η2 − η1n
2/2).(3.45)

Since

λn(0) = n2[−D1 + η1Hn],(3.46)

it follows that λn(q) < 0 for all n �= 0 when D2 > D2,n and D1 > D1,n with

D1,n = η1Hn.(3.47)

On the other hand, if D2 > D2,n and D1 < D1,n, then there is a type II instability
due to excitation of the eigenmode at q = 0. Finally, if 0 < D2 < D2,n, then there is a
type III instability due to excitation of the eigenmodes with wavenumber q = qc �= 0.
This occurs at a critical value D1 = Fn(D2) with Fn a monotonically decreasing
function such that Fn(D2,n) = D1,n and Fn(0) = D′

1,n > D1,n. Note that this last
instability can occur only for integers n satisfying n2 < 2η2/η1.

In order to determine the stability of the homogeneous state one now has to com-
bine the stability conditions for all n. For concreteness, suppose the set of coefficients
{Hn, n �= 0} has a maximum at n = nc such that Dj,nc > Dj,n for all n �= 0, nc. This
leads to the stability diagram shown in Figure 3.2. In the absence of a repulsive con-
tribution to the interaction kernel, the region of stability is given by the dark shaded
region in Figure 3.2. Crossing the vertical boundary at D1 = D1,nc

induces a type II
instability, whereas crossing the horizontal boundary at D2 = D2,0 induces a type I
instability. A type III instability can occur only through a secondary bifurcation. On
the other hand, when there is a repulsive contribution to the potential, the stability
region extends to include both the dark and light shaded regions. A type II instability
now occurs on crossing the lower horizontal boundary at D2 = D′

2,0, so that there
is an additional curved boundary D1 = Fnc(D2) for D′

2,0 < D2 < D2,nc . Crossing
this boundary induces a type III instability, but there is no separation into even or
odd patterns, since the separable interaction kernel is invariant under the standard
Euclidean group action.

3.3.2. Nonseparable interaction kernel (β > 0). We now show that pat-
terns with even or odd spatio-angular order can occur when β > 0. We take D1

and D2 to be close to the curved boundary of the stability region shown in Figure
3.2, where the unperturbed system undergoes a type III instability, and consider O(β)
corrections to the eigenvalues λ±n(q) for n = nc. Using (3.30) and (3.35) with Ψ0 = 0,
we find that λ±n(q) = −D1n

2 + Λ±n(q) + O(β2), where

Λ±n(q) = −D2q
2 + (η1n

2 + η2q
2)Hn

[
e−q2/2 ± βΨ2nĜ2n(q)

]
.(3.48)

Suppose that Λ±n(q) has a unique maximum at q = q± �= 0. If Λn(q+) > Λ−n(q−),
then the homogeneous state will become unstable at the critical point D1 = Λn(q+)/n2
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D2

D2,0

D1D1,nc

D2,nc

D'2,0

III

I
II

I

Fig. 3.2. Stability diagram for the homogeneous state when β = 0. In the absence of a repulsive
contribution to the interaction kernel, the region of stability is given by the dark shaded region. This
extends to include the light shaded region when repulsion is included. The type of primary instability
induced by crossing each boundary of the stability region is also indicated. (See text for details.)

due to excitation of even eigenmodes with wavenumber q+, whereas if Λ−n(q−) >
Λn(q+), then the homogeneous state will become unstable at the critical point D1 =
Λ−n(q−)/n2 due to excitation of odd eigenmodes with wavenumber q−.

In order to determine whether an odd or even pattern arises, it is necessary to
evaluate the function Ĝ2n(q) for the given Gaussian kernel (2.9). Rewriting (3.15) for
even integers as

Ĝ2n(q) =

∫ π

0

e−2inψ

[∫ ∞

0

G(r) cos(rq cosψ)rdr

]
dψ

and using the Jacobi–Anger expansion

cos(sq cosψ) = J0(sq) + 2

∞∑
m=1

(−1)mJ2m(sq) cos(2mψ),

with Jn(x) the Bessel function of integer order n, we find that Ĝ2n is related to G
according to

Ĝ2n(q) = (−1)n
∫ ∞

0

G(r)J2n(rq)rdr.(3.49)

Substituting (2.9) into (3.49) and using standard properties of Bessel functions leads
to the result

Ĝ2n(q) =
qσ

√
2π

4
e−σ2q2/4

[
In−1/2

(
σ2q2

4

)
− In+1/2

(
σ2q2

4

)]
,(3.50)

where Iν is a modified Bessel function.
In Figure 3.3 we plot Ĝ2n(q) as a function of wavenumber q for n = 0, 1, 2. Note

that Ĝ2n(q) alternates in sign with n, having a maximum for even n and a minimum
for odd n. It follows that if HnΨ2n > 0, then the homogeneous state destabilizes
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Fig. 3.3. Plot of Ĝ2n(q) as a function of wavenumber q for n = 0, 1, 2.
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Fig. 3.4. Plot of Λ±n(q) as a function of wavenumber q for n = 1, 2. Here D2 = 0.2, η1 =
0.3, η2 = 1, Hn = 1, and βΨ2n = 0.5. The dashed curve represents the coalescence of the even and
odd branches when β = 0.

due to excitation of even (odd) eigenmodes when n is even (odd); the opposite result
holds for HnΨ2n < 0. Example dispersion curves Λ±n(q) are plotted in Figure 3.4 for
n = 1, 2. Since maxq{Λ−1(q)} > maxq{Λ1(q),Λ±2(q)/4} > 0 for the given parameter
values, it follows that the critical eigenmodes are odd patterns with n = 1 (assuming
D2 > D′

2,0). Keeping the same parameters but setting H1 = 0 would change the
critical eigenmodes to even patterns with n = 2. For this particular example, the
splitting of the even and odd modes around the critical point is small.

4. Doubly periodic patterns. Rotation symmetry implies that in the case
of nonzero critical wavenumber qc, the space of marginally stable eigenfunctions is
infinite-dimensional, consisting of all solutions of the form u(θ− ϕ)eikϕ·r, where u(θ)
is either an even or odd function of θ, kϕ = qc(cosϕ, sinϕ), and 0 ≤ ϕ < 2π. However,
translation symmetry allows us to restrict the space of solutions of the original equa-
tion (2.7) to that of doubly periodic functions. This restriction is standard in many
treatments of spontaneous pattern formation, but as yet it has no formal justifica-
tion. However, there is a wealth of evidence from experiments on convecting fluids and
chemical reaction-diffusion systems [23] indicating that such systems tend to generate
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Table 4.1

Generators for the planar lattices and their dual lattices.

Lattice �1 �2 �̂1 �̂2

Square (1, 0) (0, 1) (1, 0) (0, 1)

Hexagonal (1, 1√
3
) (0, 2√

3
) (1, 0) 1

2
(−1,

√
3)

Rhombic (1,− cot η) (0, csc η) (1, 0) (cos η, sin η)

doubly periodic patterns in the plane when the homogeneous state is destabilized.
Given such a restriction, the associated space of marginally stable eigenfunctions is
finite-dimensional. A finite set of specific eigenfunctions can then be identified as can-
didate planforms, in the sense that they approximate time-independent solutions of
(2.7) sufficiently close to the critical point where the homogeneous state loses stability.

Let L be a planar lattice; that is, choose two linearly independent vectors �1 and
�2 and let

L = {2πd(m1�1 + m2�2) : m1,m2 ∈ Z},

where d is the lattice spacing. Note that L is a subgroup of the group of planar
translations. A function f : R2 × S1 → R is doubly periodic with respect to L if

f(r + �, θ) = f(r, θ)

for every � ∈ L. Let θ be the angle between the two basis vectors �1 and �2. We can
then distinguish three types of lattice according to the value of θ: square (θ = π/2),
rhombic (0 < θ < π/2, θ �= π/3), and hexagonal (θ = π/3). After rotation, the
generators of the planar lattices are given in Table 4.1 (for unit lattice spacing). Also
shown are the generators of the dual lattice

L̂ = {d−1(m1�̂1 + m2�̂2) : m1,m2 ∈ Z}

with �i · �̂j = δi,j . Restriction to double periodicity means that the original Euclidean
symmetry group is now restricted to the symmetry group of the lattice, Γ = HL+̇T2,
where HL is the holohedry of the lattice, the subgroup of O(2) that preserves the
lattice, and T2 is the two torus of planar translations modulo the lattice. Thus, the
holohedry of the rhombic lattice is D2, the holohedry of the square lattice is D4, and
the holohedry of the hexagonal lattice is D6.

Imposing double periodicity on the marginally stable eigenfunctions means re-
stricting the lattice spacing d so that the critical wavevector k lies on the dual lattice.
There are infinitely many choices for the lattice size that satisfy this constraint—
we select the one for which qc is the shortest length of a dual wavevector, that is,
qc = d−1. Linear combinations of eigenfunctions that generate doubly periodic solu-
tions corresponding to dual wavevectors of shortest length are given by

a(r, θ) =

N∑
j=1

zju(θ − ϕj)e
ikj ·r + c.c.,(4.1)

where the zj are complex amplitudes. Here N = 2 for the square lattice with k1 = kc

and k2 = Rπ/2kc, where Rξ denotes rotation through an angle ξ. Similarly, N = 3
for the hexagonal lattice with k1 = kc, k2 = R2π/3kc, and k3 = R4π/3kc = −k1 −k2.
It follows that the space of marginally stable eigenfunctions can be identified with
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the N -dimensional complex vector space spanned by the vectors (z1, . . . , zN ) ∈ CN ,
with N = 2 for square or rhombic lattices and N = 3 for hexagonal lattices. It can be
shown that these form Γ-irreducible representations. The actions of the group Γ on
CN can then be explicitly written down for both the odd and even cases [3, 4]. For
example, on a hexagonal lattice, a translation (r, θ) → (r + s, θ) induces the action

γ ◦ (z1, z2, z3) = (z1e
−iξ1 , z2e

−iξ2 , z3e
i(ξ1+ξ2)),(4.2)

where ξj = kj · s, a rotation (r, θ) → (R2π/3r, θ + 2π/3) induces the action

γ ◦ (z1, z2, z3) = (z3, z1, z2),(4.3)

and a reflection κ across the x-axis (assuming kc = qc(1, 0)) induces the action

γ ◦ (z1, z2, z3) = (z1, z3, z2).(4.4)

The next important observation is that, using weakly nonlinear analysis and per-
turbation methods, it is possible to reduce the infinite-dimensional system (2.7) to a
finite set of coupled ODEs constituting an amplitude equation for z,

dzj
dt

= Fj(z), j = 1, . . . , N,(4.5)

which is equivariant with respect to the induced shift-twist action of the group Γ on
CN . One can now use techniques from symmetric bifurcation theory to determine the
equilibrium solutions that are likely to bifurcate from the homogeneous fixed point
z = 0. This analysis has been carried out elsewhere within the context of a continuum
model of visual cortex [3, 4]. Since the population model (2.7) has the same Euclidean
shift-twist symmetry as the cortical model, it has the same restrictions regarding the
types of bifurcations from a homogeneous state that can occur. However, which
particular bifurcation scenario is realized in practice may differ in the two models.
That is, although symmetry considerations restrict the form of the nonlinear functions
Fj appearing in the amplitude equation (4.5) [3, 4], the values of the coefficients
multiplying terms at a particular order in zj will be model-dependent. Determining
these coefficients would require carrying out an explicit perturbation calculation. Here
we focus on general aspects of the bifurcating solutions that can be deduced from
symmetry principles. For completeness we briefly review a few basic definitions and
results from equivariant bifurcation theory [13].

Isotropy subgroups. The symmetries of any particular equilibrium solution z form
a subgroup called the isotropy subgroup of z defined by

Σz = {σ ∈ Γ : σz = z}.(4.6)

More generally, we say that Σ is an isotropy subgroup of Γ if Σ = Σz for some z ∈ V .
Isotropy subgroups are defined up to some conjugacy. A group Σ is conjugate to
a group Σ̂ if there exists σ ∈ Γ such that Σ̂ = σ−1Σσ. The fixed-point subspace of an
isotropy subgroup Σ, denoted by Fix(Σ), is the set of points z ∈ V that are invariant
under the action of Σ,

Fix(Σ) = {z ∈ V : σz = z ∀ σ ∈ Σ}.(4.7)

Finally, the group orbit through a point z is

Γz = {σz : σ ∈ Γ}.(4.8)
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Table 4.2

Even planforms with u(−θ) = u(θ). The hexagon solutions (0) and (π) have the same isotropy
subgroup, but they are not conjugate solutions.

Lattice Name Planform eigenfunction

Square Even square u(θ) cosx + u
(
θ − π

2

)
cos y

Even roll u(θ) cosx
Rhombic Even rhombic u(θ) cos(k1 · r) + u(θ − η) cos(k2 · r)

Even roll u(θ) cos(k1 · r)
Hexagonal Even hexagon (0) u(θ) cos(k1 · r) + u

(
θ + π

3

)
cos(k2 · r) + u

(
θ − π

3

)
cos(k3 · r)

Even hexagon (π) u(θ) cos(k1 · r) + u
(
θ + π

3

)
cos(k2 · r) − u

(
θ − π

3

)
cos(k3 · r)

Even roll u(θ) cos(k1 · r)

If z is an equilibrium solution of (4.5), then so are all other points of the group orbit
(by equivariance). One can now adopt a strategy that restricts the search for solutions
of (4.5) to those that are fixed points of a particular isotropy subgroup. In general, if
a dynamical system is equivariant under some symmetry group Γ and has a solution
that is a fixed point of the full symmetry group, then we expect a loss of stability
to occur upon variation of one or more system parameters. Typically such a loss of
stability will be associated with the occurrence of new solution branches with isotropy
subgroups Σ smaller than Γ. One says that the solution has spontaneously broken
symmetry from Γ to Σ. Instead of a unique solution with the full set of symmetries Γ, a
set of symmetrically related solutions (orbits under Γ modulo Σ) each with symmetry
group (conjugate to) Σ is observed.

Equivariant branching lemma (see [13]). The system of equations (4.5) has a fixed
point z = 0 of the full symmetry group Γ. The equivariant branching lemma states
that generically there exists a (unique) equilibrium solution bifurcating from the fixed
point for each of the axial subgroups of Γ under the given group action—a subgroup
Σ ⊂ Γ is axial if dim Fix(Σ) = 1. The heuristic idea underlying this lemma is as
follows. Let Σ be an axial subgroup and z ∈ Fix(Σ). Equivariance of F then implies
that

σF (z) = F (σz) = F (z)(4.9)

for all σ ∈ Σ. Thus F (z) ∈ Fix(Σ) and the system of coupled ODEs (4.5) can be re-
duced to a single equation in the fixed-point space of Σ. Thus one can systematically
identify the various expected primary bifurcation branches by constructing the associ-
ated axial subgroups and finding their fixed points. The calculation of these subgroups
has been carried out elsewhere [3, 4], and the resulting even and odd planforms are
listed in Tables 4.2 and 4.3.

One way to represent the planforms graphically is to indicate the direction(s) of
preferred orientation at each point in space r, that is, the orientations that maximize
the state a(r, θ) for fixed r. This has been carried out elsewhere in the case of cortical
patterns, where the preferred orientation corresponds to the orientation of a local
visual stimulus that elicits the maximum response of a neuron at a particular location
in the cortex [3, 4]. From a mathematical rather than a physical viewpoint, the
only difference between the cortical patterns and those of the population model is
that in the former case the functions u(θ) are always restricted to be π-periodic, and
hence, the resulting spatio-angular patterns are line fields. As a simple example,
consider a square lattice with u(θ) = cos 2θ or u(θ) = sin 2θ and kc = 2π(1, 0). The
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Table 4.3

Odd planforms with u(−θ) = −u(θ).

Lattice Name Planform eigenfunction

Square Odd square u(θ) cosx− u
(
θ − π

2

)
cos y

Odd roll u(θ) cosx
Rhombic Odd rhombic u(θ) cos(k1 · r) + u(θ − η) cos(k2 · r)

Odd Roll u(θ) cos(k1 · r)
Hexagonal Odd hexagon u(θ) cos(k1 · r) + u

(
θ + π

3

)
cos(k2 · r) + u

(
θ − π

3

)
cos(k3 · r)

Triangle u(θ) sin(k1 · r) + u
(
θ + π

3

)
sin(k2 · r) + u

(
θ − π

3

)
sin(k3 · r)

Patchwork quilt u
(
θ + π

3

)
cos(k2 · r) − u

(
θ − π

3

)
cos(k3 · r)

Odd roll u(θ) cos(k1 · r)
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y
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1

y

x

Fig. 4.1. Line fields for even patterns (u(θ) = cos 2θ) and odd patterns (u(θ) = sin 2θ) in a
fundamental domain of a square lattice. The domain is divided up into subregions where the preferred
orientation (mod π) is uniform. The direction of orientation within each subregion is indicated by the
small parallel bars, which could be interpreted as aligned objects at discretely sampled points within
the subregion. Dashed lines indicate line singularities separating regions of different orientation.

corresponding even and odd planforms (modulo an arbitrary translation) are

a+(r, θ) = cos 2θ(sin 2πx− sin 2πy),

a−(r, θ) = sin 2θ(sin 2πx− sin 2πy).(4.10)

In the case of the even eigenmode a+(r, θ), the preferred orientation (mod π) at
(x, y) is θ = 0 when sin 2πx > sin 2πy and θ = π/2 when sin 2πx < sin 2πy. The
corresponding preferred orientations of the odd eigenmode a−(r, θ) are θ = π/4, 3π/4.
Note that line singularities occur for sin 2πx = sin 2πy, across which there are jumps
in orientation preference. The resulting even and odd line fields are shown in Figure
4.1. Inclusion of higher harmonic contributions to the function u(θ) can lead to
point rather than line singularities as well as sites containing more than one preferred
orientation [4]. If there is no distinction between “head” and “tail,” then solutions
of the population model (2.7) will also be π-periodic. On the other hand, if there
is such a distinction, then generically the resulting patterns will be represented by
vector fields rather than line fields. In the case of a square lattice with u(θ) = cos θ
or u(θ) = sin θ and kc = 2π(1, 0), the corresponding even and odd planforms (modulo
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Fig. 4.2. Vector fields for even patterns (u(θ) = cos θ) and odd patterns (u(θ) = sin θ) in a
fundamental domain of a square lattice. The preferred orientation at a given point in the plane is
given by the direction tangential to the flow line passing through that point. There is no preferred
orientation at the singularities (indicated by filled circles).

an arbitrary translation) are

a+(r, θ) = cos θ sin 2πx + sin θ sin 2πy = A(r) cos[θ − θ+(r)],

a−(r, θ) = sin θ sin 2πx− cos θ sin 2πy = A(r) cos[θ − θ−(r)],(4.11)

with A(r) =
√

sin2 2πx + sin2 2πy and

θ+(r) = tan−1 sin 2πy

sin 2πx
, θ−(r) = tan−1 − sin 2πx

sin 2πy
.(4.12)

It follows that the preferred orientation at position r is θ(r), provided that A(r) �= 0;
otherwise there is no preferred orientation. Another way to state this is that the
preferred orientation is determined by the flow lines of the vector fields,

V+ = sin 2πx
∂

∂x
+ sin 2πy

∂

∂y
, V− = − sin 2πy

∂

∂x
+ sin 2πx

∂

∂y
,(4.13)

except at the singularities x = mπ, y = m′π for integers m,m′. The resulting vector
fields are shown in Figure 4.2. Note that if higher harmonics are included in the
function u(θ), then it is possible for the flow lines to intersect, indicating that there
can be more than one preferred orientation away from singularities.

5. Discussion. In this paper we have shown that a wide class of self-organizing
biological systems have interactions that are invariant with respect to the shift-twist
action of the Euclidean group, and that this has major implications for the types of
patterns that can arise in these systems. Our main prediction is that patterns with
spatio-angular order should exhibit correlations between the directions of preferred
orientation and the underlying spatial orientation of the pattern (as determined by
the wavevectors of the excited eigenmodes), and that there are two distinct types of
correlation corresponding to scalar and pseudoscalar representations of the Euclidean
group. In other words, given a spatially periodic variation in preferred orientation,
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there is a correlation between the preferred orientation within a patch and the orien-
tation of the boundaries of that patch. Whether or not such correlations are actually
observed in real systems remains to be seen, although the line fields shown in Figure
4.1 are very suggestive of certain arrangements of fibroblasts where the cells appear
to be oriented at approximately 45◦ to line singularities [18].

One of the simplifying assumptions in our analysis has been to restrict the spatial
domain to be two-dimensional. This is appropriate for cells grown in vitro on a flat
surface and for animal herds. On the other hand, cells in vivo and fish schools or
bird flocks [20] are better described by a three-dimensional domain. In the three-
dimensional case, the orientation of an individual is specified by points on a sphere
(φ, θ) with φ ∈ [0, π] and θ ∈ [0, 2π). This suggests that the underlying symmetry
group is E(3) × O(3) when the corresponding interaction kernel is separable with
respect to spatial and angular coordinates. An interesting problem that follows from
this is to determine the appropriate three-dimensional analogue of Euclidean shift-
twist symmetry when the kernel is taken to be nonseparable. Another factor that
would modify the symmetry group is the presence of an environmental gradient that
biases the selection of a direction with which to align. Examples include migrating
birds using the earth’s magnetic field as a directional cue and fibroblasts aligning
strongly with grooves on an artificial substrate.
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