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Saltatory Waves in the Spike-Diffuse-Spike Model of Active Dendritic Spines
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In this Letter we present the explicit construction of a saltatory traveling pulse of nonconstant profile
in an idealized model of dendritic tissue. Excitable dendritic spine clusters, modeled with integrate-
and-fire (IF) units, are connected to a passive dendritic cable at a discrete set of points. The saltatory
nature of the wave is directly attributed to the breaking of translation symmetry in the cable. The
conditions for propagation failure are presented as a function of cluster separation and IF threshold.
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The focus of many mathematical studies in physics has
been on waves which propagate with constant speed and
constant profile. However, there is an increasing body of
experimental data from the natural sciences highlighting
the existence of waves which travel with nonconstant
profile. For example, when calcium is released from in-
ternal stores into the cytosol of a cardiac myocyte, a wave
of increased concentration can travel with a lurching
quality, where activity is seen to jump from store to store
[1]. Another example can be drawn from the field of
computational neuroscience where neurons that can fire
via post inhibitory rebound are known to underlie the
generation of lurching waves of activity propagating
through an inhibitory network [2]. Such lurching waves
are typically referred to as saltatory. In this Letter, we
present the explicit construction of a saltatory wave in an
idealized model of a neuronal dendrite.

In the cerebral cortex, approximately 80% of all ex-
citatory synapses are made onto dendritic spines (see
Fig. 1). These are small mushroomlike appendages with
a bulbous head and a tenuous stem (of length around
1 um) and may be found in their hundreds of thousands
on the dendritic tree of a single cortical pyramidal cell.
The biophysical properties of spines have been linked
with mechanisms for Hebbian learning [3], the imple-
mentation of logical computations [4], coincidence de-
tection [5], orientation tuning in complex cells of visual
cortex [6], and the amplification of distal synaptic inputs
[7]. The implication of excitable channels in the spine
head membrane for amplification of excitatory synaptic
inputs was first discussed by Jack et al. [8]. However, it is
only relatively recently that confocal and two-photon
microscopy observations have confirmed the generation
of action potentials in the dendrites. Since dendritic
spines possess excitable membrane, the spread of current
from one spine along the dendrites may bring adjacent
spines to threshold for impulse generation, resulting in a
saltatory propagating wave in the distal dendritic
branches [9].

The first theoretical study of wave propagation medi-
ated by dendritic spines was carried out by Baer and
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Rinzel [10]. They considered a continuum model of a
dendritic tree coupled to a distribution of excitable den-
dritic spines. The active spine head dynamics is modeled
with Hodgkin-Huxley kinetics while the (distal) den-
dritic tissue is modeled with the cable equation. The spine
head is coupled to the cable via a spine stem resistance
that delivers a current proportional to the number of
spines at the contact point. There is no direct coupling
between neighboring spines; voltage spread along the
cable is the only way for spines to interact. Numerical
studies of the Baer-Rinzel model [10] show both smooth
and saltatory traveling wave solutions, the former arising
in the case of uniform spine distributions and the latter
when spines are clustered in groups. The saltatory nature
of a propagating wave may be directly attributed to the
fact that active spine clusters are physically separated. In
this Letter, we present an alternative, analytically trac-
table treatment of saltatory waves based on the so-called
spike-diffuse-spike (SDS) model of active dendritic
spines [11,12]. The SDS model, which reduces the spine
head dynamics to an all-or-nothing action potential
response, was previously used to construct exact solutions
for smooth waves in the case of a uniform spine density.
However, this analysis was limited since it did not capture
the true saltatory nature of a dendritic wave. Here we
explicitly take into account the discrete nature of spine
clusters, and explicitly construct the corresponding
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FIG. 1. An example of a piece of spine studded dendritic
tissue (from rat hippocampal region CA1 stratum radiatum)
~5 pum in length. Taken with permission from Synapse Web,
Boston University, http://synapses.bu.edu
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saltatory waves. We also derive dispersion curves for the
speed of the wave as a function of cluster spacing and the
spine threshold, and determine the conditions for wave
propagation failure.

Let p(x) represent the spine density per unit length
along a uniform, passive dendritic cable. Denoting the
voltage at position x on the cable at time r by V = V(x, 1),
the associated cable equation is given by

v ERY% V-V

T = —V+/\2ﬁ+/\2rap(x) — O
where 7 and A are the membrane time constant and the
electronic space constant of the cable. The parameter r is
the spine stem resistance of an individual spine and r, is
the intracellular resistance per unit length of cable. In the
SDS model, the function V(x, r) represents the sequence
of action potentials generated in the spine head at x
whenever the associated subthreshold spine head poten-
tial U(x, ), driven by current from the shaft, crosses some
threshold A. Given the high resistance of the spine stem,
we neglect subthreshold currents into the cable. The
voltage U evolves according to the integrate-and-fire
(IF) equation,

+ , 2

such that whenever U crosses the threshold 4 it is imme-
diately reset to zero. Here C and # are the membrane
capacitance and resistance of the spine head. Let #/(x)
denote the jth firing time of the spine head at position x
such that U(x, #(x)) = h. Then V(x, t) = >t — t(x)
with 7(r) = 0 for all #<0. The shape of the action
potential is specified by the function %(¢), which can be
fitted to the universal shape of an action potential.

In the original formulation of the SDS model, the spine
density function was taken to be uniform. Although im-
pulse propagation failure is known to occur if the spine
density is below some critical level, the numerical studies
of Baer and Rinzel suggest that propagation may be
recovered by redistributing the spines into equally spaced
dense clusters. Since interspine distances are of the order
of micrometers and electronic length is typically mea-
sured in millimeters, we shall consider spine head voltage
at a cluster site to be the local spatial average of
membrane potential in adjacent spines. Hence, we con-
sider a discrete distribution of spines for which p(x) =
ny,, 6(x — x,), where x,, is the location of the mth spine
cluster and 7 is the number of spines in a cluster. Such a
distribution breaks continuous translation symmetry so
that saltatory or lurching waves are expected rather than
traveling waves of constant profile. We define a saltatory
wave as an ordered sequence of firing times ...t,_; <
t,, < t,,+1 in which each spine cluster fires only once. The
corresponding set of threshold conditions is U(x,,, t,,) =
h for all m with U(x,,, ) for t < t,, obtained by integrat-
ing Eq. (2) from (—oo,7) using the initial condition
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lim,_, _V(x, 1) = 0:
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where &y = (1/r + 1/#)/C. Under the approximation
Ar,i/r < 1, Eq. (1) may be solved as

7D
Vix, 1) = %ZH(X ) )

where D = A?/7 is the diffusion coefficient for the cable
and

H(x, 1) = foz G(x, t — s)n(s) ds. (5)

The Green’s function in Eq. (5) is that of the uniform
cable equation:

elT

== ""/40), (6)
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Gx, 1) =

where O(7) is the Heaviside step function. Equation (4) is
formally equivalent to the solution of the fire-diffuse-fire
model of Ca’" release [13], although in the latter model
firing times are not generated by an IF process.

Suppose that the spine clusters are uniformly distrib-
uted along the cable such that x,, = md, where d is the
spacing between clusters. Equation (4) then has a salta-
tory wave solution of the form ¢,, = mA. The parameter
A measures the time between successive threshold cross-
ings at adjacent spine heads such that the speed v of
threshold crossing events is d/A. The speed is determined
from the threshold condition U(md, mA) = h, which is
independent of m. In order to calculate the wave speed,
we first Fourier transform Eq. (4) with respect to x and ¢
using the inverse transforms:

o dw
w0 = [ i) 52, ™
— 0 ar
L dk
G(x, 1) = [ kg —— 3
— 27

where o(k) = & + Dk*, e = 7~ !. This gives

nD o . d o . dk -
Vix, t) = n rr“[ e"‘”—wf e* — Gk, w)7i(w)

S 27 ) - 2
X Ze*i(kanA)m’ (9)

with G(k, w) = 1/[iw + o(k)]. We now use the identity
Ze‘im(kd“’A) = 2—7725(]( + w/v—2mwp/d), (10)
m d p

to eliminate the k integral:
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it is clear that the V(x, ) is

(x, 1) —

D

In this representation,
invariant under the combined translation
(x+dt+A).

It is useful to consider here the continuum limit in
which d — 0 such that the total number of spines remains
fixed. That is, we fix 77/d = p independent of d. In this
case only, the term with p = 0 contributes to (11) and the
threshold condition becomes

PO [ o sk
Crr J-w2mo(w/v) +iw]e) + iw]

12)

This integral can be evaluated by closing the contour in
the lower-half complex plane. Since 7(r) = 0 for £ <0, it
follows that any poles of #(w) lie in the upper-half
complex plane so that we only have to consider poles
arising from the zeros of the function o(w/v) + iw.
The latter are given by w = iw., where w. = v[—v *
Vv? + 4eD]/(2D). Hence, the wave speed satisfies

= pv’
D[w+_

filiw-)
o_Jlg) — w_]

13)

where i1 = hérz/(Dra). This is an implicit expression for
v as a function of system parameters. As a concrete
example, consider the shape of the action potential to
be a rectangular pulse of strength 7, and duration 7. In
this case, we write 5(r) = 9@ ()O(7x — 1), for which
fi(w) = no(1 — €'“™®) /iw. A plot of wave speed v =
v(l',) as a function of the rescaled threshold I',

h/(nop) is shown in Fig. 2. A fast and a slow wave are
found to coalesce in a saddle node bifurcation, illustrating
that above some critical threshold /& or below some criti-
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FIG. 2. A plot of wave speed v as a function of threshold T',,
as determined by Eq. (13) for the continuum SDS model. Here
e =gy =r7p =D = 1. The upper (lower) branch is stable
(unstable).
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cal spine density p solitary pulses fail to propagate. The
stability theory for the continuum case has been devel-
oped previously [11] and may be used to show that it is the
faster of the two branches that is stable.

An alternative way to calculate (4), practical for nu-
merically obtaining results for finite d, is to use (8) and
write (5) in the form

o dk
H(x, 1) = f ;T tkxg=o®ip(k, 1), (14)

where n(k, 1) = [ n(s)e”®*ds. One may then exploit the
convolution structure of (14) to evaluate it in closed form
for a given 7(z). In the interests of brevity and clarity of
exposition, we choose instead to focus on our previous

choice of rectangular pulse. In this case, n(k 1) =
nolexplo(k) min(z, 7¢)] — 1}/o(k), so that H(x, 1) =
A [x,t — min(z, 7g)] — A.(x, 1), with
o dk eikx—a'(k)t
A x, 1) = —_— 1
S(-x ) 770 [—oo 277_ a_(k) ( 5)

This is a standard integral [14] given explicitly by

el ()~ )
+exp(|x|@erfc<¢zim

Using this approach means that we may write the thresh-
old condition in the form

+ JE)} (16)

H(md, mA), (17)

where H(x, 1) = A(x, t — 75) — A(x, 1), and

R 0
A(x, 1) = / e®SA (x, t — s5)ds. (18)

Using (15), it may be shown that A(x, 1) = [A.(x, 1) —
Agie,(x, 1)]/€p. The sum in (17) can then be performed
numerically to obtain the speed of a lurching wave v =
v(d,T,), where T'), = h/(qy71) = r,/d

In Fig. 3, we plot the speed v as a function of cluster
spacing d for fixed threshold I',,, which shows that, if the
spine clusters are separated beyond some critical spacing,
on the order of the electronic length, a saltatory pulse will
fail to propagate. By generalizing the stability analysis in
[14], it is possible to establish that, as in the continuum
model, it is the faster of the two branches that is stable. It
is also instructive to consider the region in the (d,T,)
parameter plane where saltatory pulses exist. This may be
obtained by continuing the limit point defining propaga-
tion failure of a saltatory pulse in the (d, v) plane as a
function of I',,. The resulting phase diagram is shown in
Fig. 4, and establishes that with increasing d the critical
threshold for propagation failure decreases. Interestingly,
the minimum wave speed of a stable saltatory pulse is
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FIG. 3. A plot of wave speed v for a saltatory pulse as a

function of cluster spacing d. Here, I',, = 0.05 and ¢ = ¢, =
7gr = D = 1. The upper (lower) branch is stable (unstable).

found to be relatively insensitive to variation in cluster
spacing d and threshold I',,. In physical units of ms ™!, this
speed is O(1) which is consistent with experimentally
measured dendritic spike speeds in cortical pyramidal
cells [15]. Having obtained the speed of a saltatory pulse
as a function of system parameters, it is possible to close
our expression for the shape of a solitary pulse given by
V(x,t) =nDr,/rd ,,H(x — md, t — md/v). This analyti-
cal expression is plotted in Fig. 5, which clearly demon-
strates that the saltatory pulse has a nonconstant profile.

In essence, the work in this paper shows that the SDS
model is ideal for analytically exploring aspects of den-
dritic function known to be subserved by active spines.
One natural extension of our work is to explore the
scattering of saltatory waves in branched structures by
considering branching nodes with boundary conditions
that ensure continuity of potential and conservation of
current. Another natural extension is to treat noise at the
level of spines using techniques recently developed for
the study of clusters of stochastic receptor channels [16].
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FIG. 4. Continuation of the limit point in Fig. 3 showing the
region in (d, I',) where stable saltatory traveling waves exist.
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FIG. 5 (color online). Plot of the analytically obtained sal-
tatory solution V(x, ) in the dendritic cable with parameters as
in Fig. 3 and d = 1. The x axis covers 10 lattice sites and the ¢
axis 10d/v.
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From a more general perspective, the use of physically
separated excitable units, each capable of generating an
elementary signal, and embedded in a diffusive medium,
is likely to be a universal biological mechanism for
metabolically efficient signaling. In the case of neurons,
the excitable unit is a cluster of spines, the signal a
calcium spike, and the diffusive medium the dendrite.
In the context of intracellular calcium signaling, we may
replace spine by calcium sensitive receptor, spike by puff
(describing the calcium released from stores in the endo-
plasmic reticulum), and dendrite by cytosol.
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