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Abstract

We analyze spontaneous pattern formation in a continuum model of primary visual cortex that incorporates spatially peri-
odic inhomogeneities in the distribution of long-range horizontal connections. These inhomogeneities reflect the underlying
crystalline-like structure of cortex, as exemplified by the distribution of cytochrome oxidase blobs. We first solve the linear
eigenvalue problem for a primary Turing instability, and show how the resulting activity pattern can lock to the underlying
cortical lattice when certain resonance conditions are satisfied. This result is then extended to the weakly nonlinear regime
by performing a multiple scale perturbation expansion of the nonlocal integro-differential equation that determines cortical
activity. The resulting amplitude equation describes the effects of long-wavelength modulations of a primary roll pattern in the
presence of periodic inhomogeneities, and is shown to exhibit a commensurate—incommensurate transition analogous to that
found in convective fluid systems with external periodic forcing. Extensions of our theory to models of cortical development
are briefly discussed.
© 2003 Published by Elsevier B.V.

PACS 87.19.La/sep 05.45.-a

Keywords: Neural pattern formation; Visual cortex

1. Introduction

One of the major simplifying assumptions in most large-scale models of cortical tissue is that the interactions
between cell populations are homogeneous and isotropic, that is, that they are invariant under the action of the
Euclidean group of rigid body motions in the plane. Euclidean symmetry plays a key role in determining the types
of activity patterns that can be generated spontaneously in these cortical ngti®yBd For example, it is well
known that a homogeneous network can undergo a Turing-like instability due to competition between short-range
excitation and longer-range inhibitida9,48] Moreover, amplitude equations can be derived to investigate the
selection and stability of these patterns close to the primary instability, with the basic structure of these equations
determined by the underlying symmetr[8s9,16,19,20]
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However, the assumptions of homogeneity and isotropy are no longer valid when the detailed microstructure of
cortex is taken into account. In fact, cortex has a distinctly crystalline-like structure at the millimeter length-scale
[26]. This is exemplified by the distribution of cytochrome oxidase (CO) blobs found in the primary visual cortex
(V1) of cats and primates. These regions, which are about 0.2 mm in diameter and about 0.6 mm apart, coincide with
cells that are more metabolically active in response to visual stimuli, and hence richer in their level§28]CO
Moreover, the distribution of the CO blobs is correlated with a number of periodically repeating feature maps in
which local populations of neurons respond preferentially to stimuli with particular properties such as orientation,
spatial frequency and left/right eye (ocular) dominaf8®43] It has thus been suggested that the CO blobs are
the sites of functionally and anatomically distinct channels of visual procefZMjl] Another manifestation of
the crystalline-like structure of cortex is the distribution of singularities or so-called pinwheels in the orientation
preference map, where the scatter or rate of change of differing orientation preference label is much higher, so
that there is a weakening of orientation selectivity at the population level. Away from the pinwheels there exist
approximate linear zones within which iso-orientation regions form parallel slabs. The linear zones tend to cross
the borders of ocular dominance stripes at right angles, whereas the pinwheels tend to align with the centers of
ocular dominance stripes. CO blobs are also located in the centers of ocular dominance stripes and have a strong
association with about half of the orientation singularities. All of these features can be $égnlin

The periodic structure of visual cortex is reflected anatomically by the horizontally spreading connectional fields
made by pyramidal neurons in the superficial layers of V1 Ege2). By matching anatomical projections with
optically imaged feature maps, it has been shown that these horizontal connections, which extend several millimeters
in cortex and are broken into discrete patches with a very regular size and sfz&; v 38] tend to link neurons
having common functional properties as determined, for example, by their proximity to CO[B|8&s49,50]

The patchy nature of the horizontal connections immediately implies breaking of continuous rotation symmetry
but not necessarily continuous translation symmetry. For it is possible that the horizontal connections are still
homogeneous, depending only on the relative location of two points in cortex. However, there is growing evidence
that there exist inhomogeneities that break continuous translation symmetry as well. For example, an interesting
recent experimental finding is that some cells located within intermediate distances from CO blobs have very little in
the way of horizontal connectiof80], thus leading to an effective reduction in connectivity at the population level.
This suggests that there is a spatially periodic variation in the overall strength or range of the horizontal connections
that is correlated with the location of CO blobs. Another possible source of periodic inhomogeneity arises from
the anisotropy in the patchy connectional field as sedfign2 In some animals the direction of anisotropy is

Fig. 1. Map of iso-orientation contours (light gray lines), ocular dominance boundaries (dark gray lines) and CO blob regions (shaded areas) of
macaque V1. Redrawn froff].
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Fig. 2. Reconstruction of a tangential section through layers 2/3 of macaque area V1, showing a CTB injection site and surrounding transported
orthograde and retrograde label. Redrawn f{86].

correlated with the orientation preference map and thus rotates periodically acrosg dordthough the visual

cortex is the most studied region of the brain, there is growing evidence that analogous periodic structures appear
in other cortical areas such as the rat barrel cd2¢xand auditory cortex37]. A particularly striking example is

found in the prefrontal cortej27,32] Here pyramidal cells in superficial layers are segregated into stripes that are
mutually connected via horizontally projecting axon collaterals, whereas neurons within the gaps between stripes
do not have horizontal connections. The functional role of these stripes is currently unknown.

In this paper we investigate how a spatially periodic inhomogeneity in the distribution of horizontal connections
affects spontaneous pattern formation in a large-scale dynamical model of visual cortex. We treat the synaptic
interactions mediated by the horizontal connections as an excitatory perturbation that generates a state-dependent,
periodic forcing of an underlying homogeneous network. Under the assumption that the homogeneous network is
close to a primary pattern forming instability, we use the method of multiple spatial and temporal scales to derive a
form of Ginzburg—Landau amplitude equation. Our derivation explicitly takes into account the nonlocal nature of the
neuronal interactions. The resulting amplitude equation describes the effects of long-wavelength modulations of a
primary roll pattern and their coupling to the periodic forcing mediated by the horizontal connections. Following pre-
vious work on periodically forced convective systel®8,15,46] we show that when the wavelength of the primary
pattern is commensurate with the periodic modulation of the horizontal connections, the spontaneous activity pat-
terns lock to the cortical lattice. That is, the activity patterns explicitly reflect the crystalline-like structure of cortex.

The paper is organized along the following lines. Our cortical model of horizontal connections is introduced
in Section 2and the linear eigenvalue problem for pattern formation in the presence of periodic inhomogeneities
is presented irSection 3 The detailed derivation of the amplitude equation for a one-dimensional roll pattern
based on the method of multiple scales is presente8eittion 4 followed by an analysis of long-wavelength
instabilities and commensurate—incommensurate transitioBedtion 5 Finally, in Section 6we briefly discuss
possible applications of our results to cortical development.

2. Cortical model with long-range horizontal connections

We model a layer of visual cortex as a continuous two-dimensional neural medium evolving according to the rate
equation11,21,47,48]
da(r, 1)
ot

T

= —a(r,n + /2 w(r|r’) flar’, ) dr’ + ho. (2.1)
R

PHYSD 3191 1-27
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Table 1
Generators for the planar lattices and their dual lattices
Lattice 2 12 0 b
Square (1,0 0,1 (1.0 (O]
1 -1 2

Hexagonal 1,0 2 (1.3 (1, —) <O, —)

g (L0 > (13) = v
Rhombic (1,0) (cosn, sinn) (1, — cotn) (0, cscn)

89 The scalar fielai(r, r) represents the local activity of a population of excitatory and inhibitory neurons at cortical
90 positionr = (x, y) € R? at timer, T is a membrane or synaptic time constantjs a uniform external input, and

91 the distributionw(r|r’) is the strength of connections from neurons’ab neurons at. In the following we fix

92 the units of time by setting = 1. The nonlinear firing-rate functiofi is assumed to be a smooth monotonically
93 increasing function of the form

o  f@= 2.2)

14 er@=y

95 for constant gairy and threshold. Motivated by the anatomy highlighted 8ection 1 we decompose the weight
96 distributionw according to

97 w(r|r’) = Wo(Ir —r']) + kwnoz(r 1), (2.3)

98 whereW represents isotropic and homogeneous local connections that depend on the Euclidean distdhee
99 \/(x —x)2 4+ (y — )2, wnoz represents the distribution of excitatory horizontal connectionskaisdca positive
100 coupling parameter. Experimentally it is found that the horizontal connections modulate rather than drive a neuron’s
101 response to a visual stimul{&2,24,44] suggesting that is small.
102 In order to construct the distribution of long-range horizontal connectiggg we first have to take into account
103 the “patchiness” of these connections. Suppose that there exists a set of feature prefegen(msh as ocular
104 dominance, orientation and spatial frequency) that varies periodically with respect to a regular planatdattice

105 Lo = {(m1l1 +malr)dy : m1, mp € Z}, (2.4)

106 Wherel; andé; are the generators of the lattice afyds the lattice spacing, which is taken to be of the order 1 mm.

107 Let#d be the angle between the two basis vectarand(,. We can then distinguish three types of lattice according

108 tothe value ob: square latticed = /2), rhombic lattice (0< 6 < /2,6 # 7/3) and hexagonab(= r/3). After

109 rotation, the generators of the planar lattices are givarable 1 Also shown are the generators of thel lattice

110 f:o satisfying@i -L; = §; j. Given the latticeCo, we can partition the cortex into a set of fundamental domains,

111 each of which corresponds to a so-called functidngiercolumn [36]. A hypercolumn is defined to be a region

112 approximately 1 mrhin surface area that contains two orientation pinwheels and one CO blob per ocular dominance
113 column. The local connections span a single hypercolumn, whereas the patchy horizontal connections link cells
114 with similar feature preferences in distinct hypercolurhiwe implement the latter condition by introducing the

115 doubly periodic feature map(r)

2 A
1 2nr - 4;
Pr) = > ;:1 cos( 7 ) , (2.5)

1 Elsewhere we have developed an alternative model of visual cortex based on a lattice of coupled hypeftajumrkis model cortical
positionr is replaced by the sdt, F} with £ € Lg labeling a particular hypercolumn ars# labeling the feature preferences of neurons
at a particular point within the hypercolumn. The associated weight distribution is decomposed into local and long-range parts according to
w(l, FIE', F) = Wo(FIF)8e.or + kwnoz(LI1€)S(F — F).

116
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such that-1 < P(r) < 1 andP(r + ¢) = P(r) for all £ € Lo. One can interpreP(r) as an index function that
indicates the relative position ofwith respect to the lattic€. In particular, if P(r) = P(r’) then the neurons at
andr’ have the same set of feature preferences.

Assuming for the moment that the horizontal connections are homogeneous, we set

Whoz(rIr') = OP(r — 1) = Po)O(r —r'| —do)Jo(Ir — ') = J(r — 1), (2.6)

where® denotes the Heaviside step function. HBx 0 < Pg < 1, is a threshold that fixes the size of the patches,
andJo determines the variation in the strength of the connections with cortical separatin.4r’) < Py then

the cells ar andr’ differ sufficiently in their given feature preferences so thgg,(r|r’) = 0, which means that
the cells ar andr’ are not linked. Also note that the first cortical patch occurs at a minimum cortical sepaiation
For concreteness, we assume thatlecreases exponentially with cortical separation:

Jo(Ir)) = Ke™I"l/% 2.7)

with & > dp. It follows from Eqg. (2.6)that the total weight distributio(R.3) is translation invariant, since(r +
sir’ +s) = w(r|r’) for all s € R2, but it is not rotation invariant due to the discrete rotation symmetry of the lattice
Lo. Consider, for example, a square lattitg for which P(r) = [cos(2rx/dp) + cos(2ry/dp)]/2. In Fig. &)
we present a two-dimensional contour plot/of\r) as a function of cortical separatia@xr = r —r’, which shows
the distribution of patchy connections. A corresponding cross-sectidratiing thex-axis is shown irFig. 3(b),
together with an example of a local distributi@ify.

As we have highlighted isection 1 there are a number of possible sources for a spatially periodic variation
in the pattern of patchy connections as the location of the center of the distribution is shifted in the cortical plane.
Eq. (2.6)will then have the more general form

Who(r 1) = OP(r —t') — Po)O(Ir —t'| — do) Jo(r|r'), (2.8)

where Jp now includes the effects of periodic modulations. In order to motivate the detailed structiyeitas
necessary to be more explicit regarding the biological interpretation of the |1&giGéherefore, we now identifg

with the distribution of CO blobs having a given eye preference. Such a lattice is interleaved with a second lattice of
blobs having the opposite eye preference, which is givefijoy: {dol1/2+ ¢, £ € Lo}. This is illustrated irFig. 4

for a square lattic.The simplest example of a periodic modulation is motivated by the experimental observation
that some cells located within intermediate distances from CO blobs in primary visual cortex have very little in the
way of horizontal connection®0], thus leading to an effective reduction in connectivity at the population level.
The fact that CO blobs also coincide with regions in which there is a large variation in orientation preference could
also lead to denser horizontal connections around blobs. This suggests introducing a spatially periodic variation
in the strength of the horizontal connections of the fofgtr [r') = [1 + D(r)]Jo(|r — r’|) for some functionD

that is doubly periodic with respect to the full lattice of CO blabs= Lo U L§, seeFig. 4 The functionD(r)

is assumed to have zero mean, that/i€)(r)dr = 0. CombiningEgs. (2.3), (2.6) and (2.&hows that the total
weight distribution(2.3)is of the form

w(r|r’y = Wo(Ir = r'|) + «[1 + D(D)]J(r — ). (2.9)

2 Anatomical data indicates that the spacing between CO blobs across ocular dominance boundaries is smaller (arounti@30etween
those in the same column (around 4bh) [25,33,50] This would suggest a stretching of the latti&gin the direction orthogonal to the ocular
dominance columns by an approximate factor of 1.6. Interestingly, such a stretching accounts for most of the anisotropy in the distribution
of patchy connections shown Fig. 2 [6]. On the other hand, patchy feedback connections from extrastriate areas tend to be more strongly
anisotropid3]. In this paper we eliminate the stretching due to ocular dominance columns by choosing appropriately scaled planar coordinates
r. We also assume that the local connections are isotropic with respect to these scaled coordinates.
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Fig. 3. (a) Contour plot of the distributiaf(Ar) as a function of cortical separatiér = r —r’ (in units of the lattice spacingy) showing the
distribution of patchy connections on a square lattice. (b) Cross-sectidmlohg thex-axis. An example of a local weight distributidfy is
also shown, which is taken to be a Mexican hat function Bg€3.6).

It follows thatw(r +£|r' +£) = w(r|r’) for all ¢ € L so that the weight distributiom is itself doubly periodic with
respect taC. Finally, substitutingequation (2.9)nto the cortical mode(2.1) leads to the inhomogeneous equation
da(r, 1)

ot

=—a(r,n+ f2 Wo(r —r']) fla(r’, ) dr’ + «[1 4+ D(r)] /2 J@r =) fla(r’, n)dr’ + ho.
R R
(2.10)

Eq. (2.10)will be our starting point for the analysis of spontaneous cortical pattern formati®edtions 3—5We

end this section by briefly indicating how to incorporate other sources of spatially periodic variations in the pattern
of horizontal connections. An alternative interpretation of the results in[Befis that there is a periodic variation

in the average range of the horizontal connections. One way to implement such a scheme is t§ nefilgc€.7)

by &(r) = &[1 + x(r)] such that, fory(r)|r —r'| < &

Jorlr’y = K e "="VEO ~ Jor — '] [1+ %u — r’q ) (2.11)

Another source of inhomogeneity occurs when there is an anisotropy in the distribution of patchy connections that
correlates with the orientation preference nfigp This anisotropy, which is additional to any stretching associated
with the ocular dominance columns, can be incorporated into our model by taking

Jo(r Ity = Jo(x (), To)[r =1, Jo(x. 1) = K & VA-0220y2/E, (2.12)
L R L R

Fig. 4. Two interlocking square lattices of CO blobs (filled circles) associated respectively with left (L) and right (R) eye ocular dominance
columns. Horizontal connections are assumed only to link CO blobs having the same eye preference.

PHYSD 3191 1-27



167

168

169
170

171

172

173

174

175

176

177

178

179

180

181
182

P.C. Bressloff / Physica D xxx (2003) xxX—XxX 7

Ay o » e

Fig. 5. Contour plot of an anisotropic distribution of patchy horizontal connections on a square lattice.

where

cosd —sind
Ty = _ . (2.13)
sind  cosf

Here x(r) andé(r) determine the eccentricity and orientation of the resulting anisotropy. They are assumed to be
doubly periodic with respect to the lattice of orientation pinwheels. Assumingthat r'| « &, we have

x(r)
&lr —r’|
Substitutingeq. (2.11)or (2.14)into (2.3) then leads to a generalization®d. (2.9)of the form

Jo(r|r’y = Jo(Ir —r')) (1+ [cosB(r)(x — x") — sind(r)(y — y/)]2> . (2.14)

M
w(r|t) = Wollr =1/ + > Du(1)Ju(r — 1. (2.15)

m=1

For example, in the case of a periodically varying anisotrapy- 4 with

Di()=1,  Ji(r) = J(r), (2.16)
2

Da(r) = x(r)cos?0(r),  Ja(r) = ﬁm, 2.17)
y2

D3(r) = x(r)sin?0(r),  Ja(r) = O, (2.18)

Da(r) = —2x(r)coso(r) sind(r),  Ja(r) = %J(r). (2.19)

An example of an anisotropic distribution of patchy connections is showigirb.

3. Linear eigenvalue problem for cortical pattern formation

In this section we use perturbation methods to solve the linear eigenvalue problem for pattern forming instabilities
in the presence of periodically varying inhomogeneous horizontal connections. (A preliminary version of this
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analysis was briefly reported elsewh¢t®].) For mathematical convenience, we impose the periodic boundary
conditionsa(r +L¢;) = a(r), j =1, 2forallr R2, whereL determines the effective size of cortex dndre the
generators of g, seeTable 1 This will not significantly affect the nature of patterns within the bulk of the medium
provided that the range of cortical interactions is much smaller than

3.1. Homogeneous weights

Let us first consider the case of zero horizontal interactions by settin@ in Eq. (2.10)to obtain the homoge-
neous and isotropic network equation

a““ﬂz_mno+/ Wollr —t')) fla(r', ) dr’ + ho. (1)
ot R?

We assume thatp € L2(r), thatis, [z |Wo(r)[2d?r < co. There exists at least one fixed point solutign) = ao
of Eq. (3.1)such that

ap = Wo f(ao) + ho, (3-2)

and Wp = [ Wo(|r|)dr. If hq is sufficiently small relative to the threshafdthen this fixed point is unique and
stable. Under the change of coordinades- a — ho, it can be seen that the effect/of is to shift the threshold by

the amount-Kg. Thus there are two ways to increase the excitability of the network and thus destabilize the fixed
point: either by increasing the external infugtor reducing the thresholg The latter can occur through the action

of drugs on certain brain stem nuclei which provides a mechanism for generating geometric visual hallucinations
[8,19]. The local stability ofg is found by linearization: setting(r, 1) = ag + €"a(r) and linearizing about the

fixed point leads to the equation

ra(r) = —a(r) + M/z Wo(lr —r'Da(r’ydr’, (3.3)
R

wheren = f’(ag). Since the local weight distributioWy is homogeneous, it follows that the eigenmodes are in
the form of plane waves(r) = € with wavenumbek. Substitution intcEq. (3.3)shows that the corresponding
eigenvalues satisfy the dispersion relation

A= atk) = —1+ uWo(k), (3.4)

wherek = |k| andWy(k) is the Fourier transform di¥o(|r|)
%®=/wwmgmw. (3.5)
R2

Given theAperiodic poundary conditions anthe wavevectork are constrAained to lie on the lattike= Z;:l,z
(2rmj/L)¢;, wherel;, j =1, 2, are the generators of the reciprocal latifige(seeTable J).

We can use the dispersion relati@y)to determine conditions under which the homogeneous state loses stability
leading to the formation of spatially periodic patterns. The standard mechanism for such an instability, which is the
neural analog of the Turing instability in reaction—diffusion equations, is a combination of short-range excitation
and long-range inhibitiofiL9,48] This can be represented by the so-called “Mexican hat” functionigp&(a)):

2

w. w_
Wo(r) = Tt e’rz/ 208 _ — e”z/ 22 (3.6)
2no% 2no<

with o < o_ < dpandW o2 > W_o%. The corresponding Fourier transform

Wo(k) = W, e /203K _ ef(l/Z)crEkZ’ (3.7)

PHYSD 3191 1-27



217
218
219
220
221
222
223

224

225
226
227
228
229
230
231
232

233

234
235

236

237
238
239
240
241

P.C. Bressloff / Physica D xxx (2003) xxX—XxX 9

(@) (b) MK)

\/ \\/ r increasing gain

Fig. 6. Neural basis of the Turing mechanism. (a) Mexican hat interaction function showing short-range excitation and longer-range inhibition.
(b) Dispersion curves (k) for Mexican hat function. If the excitability. of the cortex is increased, the dispersion curve is shifted upwards
leading to a Turing instability at a critical parametay= Wo (k) 1, whereWo (k) = [max, Wo(k)]. For i < o < oo the homogeneous fixed

point is unstable.

has a maximum &t = k¢ # 0 as shown irFig. 6b). SinceWy (k) is bounded, it follows that when the network is

in a low activity state such that ~ 0, any solution oEq. (3.3)satisfies R& < 0 and the fixed point is linearly
stable. However, when the excitability of the network is increased, either through the action of some hallucinogen
or through external stimulatiory increases and the fixed point becomes marginally stable at the critical value
fe, Wherepgt = Wo(ke) = max {Wo(k)}. For u > uc, the fixed point is unstable and there exists a band of
wavevectork that have positive. and can thus grow to form spatially varying patterns. Sufficiently close to the
bifurcation point these patterns can be represented as linear combinations of plane waves

N
a(r) =Y (A, € 4 Are Ty, (3.8)
n=1
where the sum is over all wavevectors lying within some neighborhood of the critical gf¢le- k.. In the case
of a large system size, there will a large number of such excited modes. However, one usually considers regular
patterns obtained by superposition@fpairs of wavevectors distributed uniformly on the critical circle, that is,
k, = £2,-1ky forn = 1,..., N with £, representing rotation through an anglév. The casesv = 1,2,3
correspond to roll, square and hexagonal (or triangular) patterns, respectively. Note that the ER)timdefined
up to a uniform translation in, which corresponds to phase-shifts in the complex amplituges
The above analysis can be extended to incorporate homogeneous but nonisotropic horizontal connections by

takingx > 0 andD(r) = 0 in Eq. (2.10) Setting

W(r) = Wo(Ir]) + «J(r), (3.9)

and repeating the linear stability analysis about the corresponding homogeneous fixed point, the dispersion relation
(3.4)becomes

r=Ark) = -1+ uWk). (3.10)

Note thati(k) now depends on the direction as well as the magnitude sfnce it is invariant with respect to

the discrete rotation symmetry group of the dual lattizedefined inSection 2(seeTable J), rather than the
continuous rotation group. It follows that a particular wavevektowill be selected by the Turing mechanism,
together with all modes generated by discrete rotations of the dual lattice (ignoring accidental degeneracies). The
eigenmodes will naturally tend to be low-dimensional patterns such as rolls and hexagons, that is, they will satisfy
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Eq. (3.8)with k, = £2,_1k*forn =2,... , N andN = 2if Lg is a square lattice a¥ = 3 if Lo is a hexagonal

lattice. Thus the existence of a lattigg underlying the distribution of patchy horizontal connections provides a
physical mechanism for generating low-dimensional, doubly periodic patterns. Such cortical activity patterns are of
particular interest, since they provide a possible explanation for the occurrence of certain basic types of geometric
visual hallucination$8,19]. (In Euclidean symmetric models of cortical pattern formation, the double-periodicity

of the solutions is imposed by hand as a mathematical simplification rather than reflecting the existence of a real
lattice[8,19,21])

3.2. Inhomogeneous weights

Now suppose that there exists a spatially periodic variation in the strength of horizontal connections as specified
by the functionD(r) in Eq. (2.10) For the sake of simplicity, we will assume here tiais doubly periodic with
respectto the lattic€ = {(m1€1+mol2)d : m1, mo € Z} with the same lattice spacinl= dp/2 in both directions
{1, £2; the analysis is easily extended to the more general case illustrakég.id Under this simplification the
latticesL and Lo have the same discrete rotation symmetry group. The first point to note Bghé@.10)no longer
has a homogeneous fixed point solution. However, by introducing an appropriate inhomogeneity in the external
input, kg — h(r), itis possible to recover such a solution. Linearization then leads to the eigenvalue equation

ra(r) = —a(r) + M/z w(r|ra(r’ydr’ (3.11)
R

with w given byEg. (2.9) [Note that we could also linearize about the inhomogeneous fixed point associated with a
constant inpukg: this would simply introduce additional doubly periodic contributions to the eigenvalue equation.]
The double-periodicity oD implies that

wr +Lr)y=w(rr’' —¢) forallt e L. (3.12)
From this relation it follows that the solutions Bfy. (3.11)are of the form
ak (r) = Xy (r) (3.13)

with uk (r + £) = uk(r) for all ¢ € L. In order to prove this, let us introduce the translation operBt@uch that
T, f(r) = f(r + ¢) for any functionf. Then

Tg/ w(r|rHa(r’) dr’:/ w(r + £|ra(r’)dr’ :/ w(r|r’ — Oa(r’ydr’
R2 R2 R2
=/ w(r|r’)a(r’+£)dr/=/ w(r|r)Tea(r’ydr’. (3.14)
R2 R2
Defining the linear operatd according to
Ha(r) = —a(r) + p,/ w(r|ra(r’ydr’, (3.15)
R2

we haveT; L = HT;. Shur's lemma then implies that and7; have simultaneous eigensolutions:

Ha=ra, Ta=C{a. (3.16)

3 In condensed matter physics solutions of Schrodinger’s equation for an electron in a periodic potential take this form and are called Bloch
waves[1]. Bloch waves are spatial analogs of the eigenfunctions arising in Floquet theory.
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SinceT; Ty = Tyye, We have
C)C() = C + 1), (3.17)

which implies thatC(¢) = €K and the result follows.
Another way to establish the general form of the eigensolut{8ris3)is to introduce the Fourier series expan-
sions

; 27N ; ~
D) =) Dg€e¥", q= > —, (3.18)
q j=12
and
)= =Y acd k=Y 2y, (3.19)
L? k ’ j=1,2 L .

Wherer, j =1, 2, are the generators of the reciprocal latiicéseeTable J). Eq. (3.11)then reduces to

A+ 1— puWob]ak = « Z Vo (K)ak—q, (3.20)
q

where

Va(k) = J(k — q)[8q.0 + Dql, (3.21)
andJ (k) is the Fourier transform af(r). Eq. (3.20)mplies that the lateral interactions only couple together those
coefficientsax, ak—q, ak—q , . . . Whose wavevectors differ by a reciprocal lattice vector. In other words, if we fix
then

a(r) = " axq€* VT = " u(n), (3.22)

q

which is of the form(3.13)with u(r) given by the periodic function
u(r) =y ax_qe ", (3.23)
q

3.3. Perturbation theory

It is generally not possible to find exact solutions of the eigenvatinetion (3.2Q)Therefore, we proceed by
carrying out a perturbation expansion with respect to the small paraxizr characterizes the relative weakness
of the horizontal connectiorfsLet k. be the critical wavenumber for a pattern forming instability wkea 0. We
also defineV, (kc) to be a small neighborhood of the critical cir¢ked = kc. We then have to distinguish between
two cases, based on whether or not the following degeneracy condition holds: there exists a reciprocal lattice vector
Q such that

|Wo(k) — Wo(lk — Q| = O(x), Kk € Ni(ke), (3.24)

and Wo(k) — Wo(lk — q|)| > « for all g € £ such thatg # Q. Note that the exact degeneracy condition
Wo(k) = Wo(lk — QJ) is only satisfied ifik| = |k — Q|. This means that must lie on the perpendicular bisector
of the line joining the origin of the reciprocal lattig& to the lattice pointQ, as illustrated irFig. 7(a). Another

4 The perturbation analysis is similar in structure to that used to solve the Schrodinger equatiaakrperiodic potentia[1].
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Q2
A
)
Q——+———— 01
Q2

Fig. 7. (a) Ifk = |k — Q| thenk must lie on the bisector of the reciprocal lattice vedor(b) Construction of the first Brillouin zone (shaded
region) in the reciprocal square lattice wifly = 27¢;/d.

302 useful concept is that of a Brillouin zor#]. The first Brillouin zone is the fundamental domain around the origin
303 of the reciprocal lattice formed by the perpendicular bisectors of the shortest lattice vectors (of lerdthThe

304 example of a square lattice is showrFig. 7(b). The higher-order Brillouin zones are similarly constructed using
305 the perpendicular bisectors of larger lattice vectors. It follows that any point on the boundary of a Brillouin zone
306 Will satisfy the exact degeneracy condition.

307 Nondegeneratecase. First, suppose thaiq. (3.24)does not hold, thatis, K € N (k¢) then|Wo (k) —Wo(k—q)| >

308 «forallqge L, g # 0. This occurs, for example, if the critical circle lies well within the first Brillouin zone, see
309 Fig. 8@a). We then fixk and look for solutions satisfyingk -1 andax_q — 0, q # 0, in the limit« — 0. This

310 Corresponds to a small perturbation of the plane wave statefeq. (3.20)implies that (forq s 0)

[+ 1— uWo(k —aDlak—q = Y_ Vo (K — Dak_qq- (3.25)
311 a

312 which can be rewritten in the form

. V_q(K — q)ak e Z Vo —q(K — Qak_q

ak—q =K = 3 .
1o pWok —ab T Gz A+ 1 uWo(k —ql)
313

(3.26)

Fig. 8. Selected wavevectors on the critical circle for a square lattice. (a) Nondegenerate case: the critical circle lies well within thedirst Brillo
zone. (b) Degenerate case: the critical circle intersects the border of the first Brillouin zone and there is a doubling up of the marginally stable
modes.
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The first term on the right-hand side will be an order of magnitude larger than the remaining terms provided that
the degeneracy conditid3.24)does not hold. Therefore

V_q(k — Q)ak
A+1— puWo(lk — gl

Substituting this back int&q. (3.20)gives

O®?). (3.27)

Clk_q =K

Vq(K)V_q(k — g)ax

A O3, 3.28
A1 pwok—qp T O® (3.28)

[+ 1= pWotb)]ak = Vok)ax + k2 )
g0

Hence, replacing the denominator by the lowest-order contribution yields

Va(k)V_q(k — )
170 1[Wo(k) — Wo(lk — q))]

A(K) = —1+ uWo(k) + Vo (k) + & 0G3). (3.29)

To leading order i, the marginally stable modes will be those modes on the critical circle that maximize the term
Vo(k). SinceVp(K) is invariant with respect to discrete rotations of the dual latfica particular wavevectdc*

on the critical circle will be selected together with all modes generated by discrete rotations of the lattice. This is
illustrated inFig. 8@) for the square lattice. The eigenmodes will thus be of the form

a)= Y wme“ +cc (3.30)
i=1,...,N
with
_ig. V_qk —q)
i =c |1+ elar____ "9 + 0> |. 3.31
' { K% n(Wol) — Wo(k —ab) 531

Here N = 2 for the square lattice witk, = k* andk, = R;/2k*, whereRy denotes rotation through an angle
Similarly, N = 3 for the hexagonal lattice witky = k*, Ko = Ror/3k* andkz = Ryz/3K™.

Degenerate case. Now suppose that the degeneracy condii®i24)is satisfied for somé e L, which implies
that the critical circle is close to a Brillouin zone boundary, Bee 8b). This implies that there is an approximate
twofold degeneracy,and we must tredq. (3.20)separately for the two casksandk — Q. Thus, to first-order in
«k, EQ. (3.20)reduces to a pair of equations for the coefficient&inday _q:

A — EK) Vo (K) ak o, (3.32)
KV ok —-Q) A—-EK-Q)/ \ak—q

whereE(k) = —1 + u[Wo(k) + «Vo(k)]. Assume for the moment that the exact degeneracy conditigit) =
Wo(lk — Q|) holds so thak is on a Brillouin zone boundary. As a further simplification, Jék — ) = J(k) for
allq e L so thatE(k — Q) = E(k). This is a good approximation when the patch $Pgds small. TakingD(r)
to be a real, even function ofso thatDg = D_q, it also follows thatV_q(k — Q) = Vqo(k). The above matrix
equation then has solutions of the form

A (K) = =14 pu(Wo(k) + k[Vo(k) £ Vo (K)]) (3.33)

5 It is also possible to have a higher-fold degeneracy With(k) — Wo(lk — Q)| = O(k) for a set of reciprocal lattice vecto,,, m =
1,..., M. The analysis is easily generalized to this case.
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341 with ax_q = Fak. Thus there is a splitting into even and odd eigenmodes
342 aki(r) = gkt £ k-Qr, (3.34)

343 (If k is close to, but not on, the Brillouin zone boundary, there will be a slight mixing between the even and odd
344 eigenmodes—this will not modify our conclusions significantly.) ketdenote global maxima of the functions

345 Ai(k) and setk* = k4 if A;(ky) > A_(k-) andk* = k_ otherwise. It follows that the marginally stable

346 €igenmodes will be of the approximate foatn) = ijl,...,N Ajafi(r)+c.c. withky = k*andk;, j=2,..., N,

347 related tdk* by discrete rotations of the lattice. Even)(modes will be selected whéef = k. and odd ¢) modes

348 whenk* = k_.

349 3.4. Pinning of cortical patterns

350 We conclude from the above perturbation analysis that for certain critical wavenukghieesresulting cortical
351 activity patterns are pinned to the underlying latiit€T his follows from the structure of the even and odd solutions
352 (3.34) which are in the form of standing waves whose amplitudes vary a€x0$2) and sin(Q-r /2), respectively.

353 Consider, for example, the simple case of a roll pattern along-tivés withk* = (k¢, 0) and a square reciprocal
354 lattice £ with generatorsil = (d~1,0) and?» = (0,d~1), whered is the lattice spacing. lkc = x/d then

355 Q = (27/d, 0) and the even/odd modes are of the form

356 at (x) = cos(3kex), a”(x) = sin(3kex). (3.35)

357 Thusthe even mode has extrema at sites on the lait{cerresponding to CO blobs, say) whereas the odd mode has

a58  €xtrema between lattice sites (corresponding to inter-blobs, say). This is illustrdied @for a one-dimensional

359 lattice. One might have expected the activity patterri§gn 9to have theimaxima at the CO blobs, since the latter

360 are supposed to be sites of higher metabolic activity. However, it should be remembered that the staining of the
361 blobs to CO occurs under conditions of normal vision. Thus the primary source of higher activity in this case is
362 due to the external drive from the lateral geniculate nucleus (LGN) induced by visual stimuli. In this paper, on the
s63 Other hand, we are considering spontaneous cortical activity in the absence of any visual stimuli. Thus, in the case
364 Of homogeneous cortical interactions, there is no intrinsic mechanism for ensuring that the peaks of spontaneous
365 activity coincide with the CO blobs. We have shown thatinhomogeneities in the horizontal connections that correlate
366 With the distribution of CO blobs can break translation symmetry in such a way as to pin the activity pattern to the
367 blobs along the lines dfig. 9.

368 The above result raises two important issues. First, under what circumstances will the wavenumber of the primary
369 Pattern lie close to a Brillouin zone boundary so that pinning occurs? Second, to what extent does the pinning of the
370 pattern to the lattic&€ persist when nonlinearities are included? We will investigate the first issue in the remainder
371 Ofthis section and address the second issi&eitions 4 and.3n order to proceed, it is useful to consider a slightly

even pattern odd pattern

| VA | | VA | | II/I/\I /\II }

CO blob

Fig. 9. Even and odd eigenmodes localized around blob and inter-blob regions.
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different form of the homogeneous patchy weight distributiar given byEqg. (2.6)
Jry= Y J(rhGr — o, (3.36)
£€L0,0#0

wheregG is a localized function that determines the size and shape of an individual horizontal patch. For simplicity,
consider the limiting case in which the patch size is infinitesimal suchGl@t — §(r). The basic idea can now
be illustrated by considering a one-dimensional version with

J(x) = Jo(ndo)8(x — ndo), (3.37)
n#0
wheredy is the patch spacing (s&ection 2. Taking the one-dimensional Fourier transforn/ajives
J(k) =" Jo(ndo) e "% (3.38)
n#0

In the case of the exponential functi7)with K = 1, the sum over lattice sites may be performed explicitly to
yield

elo/& cos(kdg) — 1
[e0/& cos(kdg) — 1] + [e40/% sin (kdp)]2”

It follows that for infinitesimal patch size, the Fourier transform of the homogeneous part of the horizontal weight
distribution is a(2x/dp)-periodic function ofc and thus has an infinite set of global maxima and global minima.
This infinite degeneracy is then broken by the local connections resulting in dispersion curves such as shown in
Fig. 10 Given the range of the local connectioWs, the maximum of (k) is likely to occur close to the peak

k¢ ~ 2m/dp. Finally, recall fromSection Zhat the lattice spacingp of the patchy horizontal connections may differ

from the periodicityd of the inhomogeneity)(r). This is illustrated irFig. 4for the case of CO blobs. Thus, in our
one-dimensional example it is possible thgt= 2d and hencé&. ~ 7/d. Note that the above argument is easily
extended to the case of finite patch size: there is simply an additional fa¢gtpmultiplying the second term on

the right-hand side dtq. (3.39)

Jk) =

(3.39)

0.3

wavenumber k (in units of 217dg)

Fig. 10. Thin solid curve: Fourier transforiy (k) of a local Mexican hat weight distribution. Dashed curve: Fourier transfg#nof long-range
weight distribution satisfyingq. (3.39)with £ = 2d. Thick solid curve: Fourier transform of the total weight distributi@k) = Wo (k)4 J (k)
for k = 0.25.
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4. Multiple scale analysis of nonlocal cortical model

In order to investigate the saturation, stabilization and selection of cortical patterns beyond the primary bifurca-
tion point, it is necessary to carry out a nonlinear analysigaf(2.10) In the vicinity of the bifurcation point,
one can exploit a separation of time and space scales to derive a Ginzburg amplitude equation for the primary
pattern along analogous lines to the analysis of fluid convection paftefris,35,40,46]However, the analysis
of cortical patterns is complicated by the fact that the underlying integro-differegiation (2.10)s nonlocal
in space. In this section we develop a multiple scale perturbation expansion of this equation that takes into ac-
count the nonlocal nature of the neuronal interactions. Note that previous studies of cortical pattern formation have
focused on the selection and stability wfiform amplitude roll, square and hexagonal pattd19,21] The
analysis presented here extends this work by taking into account slow spatial phase modulations of the ampli-
tude. It is well known from fluid convection that diffusion-induced long-wavelength phase modulations of primary
patterns can induce secondary instabilities away from the bifurcation [dgirit8,46] A major reason for being
interested in these phase instabilities in the case of the cortical rfid8)is that they can couple to weak, spa-
tially periodic variations in the strength of the horizontal connections as specified by the fubgtipnSuch a
coupling provides a nonlinear mechanism for pinning the pattern to the underlying cortical lattice, as explained in
Section 5

4.1. Method of multiple scales

For simplicity, we will restrict our analysis to spatial modulations of a roll pattern that are parallel to the critical
wavevector, which is chosen to be in thalirection. Since the amplitude of the pattern is theimdependent,
Eq. (2.10)can effectively be reduced to the one-dimensional system

Ba(;, 9 = —a(x,t) + / W(x — x) fla(x', ) dx’ 4+ kD(x) / J(x — x') fla(x', £)) dx + ho. 4.1)

Here W(x) = [ W(r)dy, J(x) = [ J(r)dy andD(x) = L1 fOL D(r) dy. Leta(x, t) = ap be a homogeneous
fixed point solution ofEq. (4.1)whenx = 0 (homogeneous horizontal connections). Linearizing about the fixed
point leads to the dispersion relation

Ak) = =1+ uWk), 4.2)

where W (k) is the Fourier transform of the weight distributid¥(x). Suppose that the fixed point undergoes a
primary pattern forming instability at the critical parameter value= pc, whereug?! = W (k). Expanding the
dispersion equation about the critical wavenumtand using the fact tha¥ (kc) is a maximum gives

d2w

- 1
Ak) = =1+ (uc+ Ap) (W(kc) + 5k = kc)ZW

(ke) +> =AuW(ke) —atk — ko) +---,  (4.3)

whereApu = p — puc anda = —MCWg(kc)/Z > 0. Introducing the small parameteand settingAu = ¢2 we

see that the unstable modes occupy a band of widih) and the rate of growth of the patterns@s?). The
interaction of two or more modes within the unstable band gives rise to a spatial modulation of the periodic pattern
on a length-scale that 9(1/¢) compared to the pattern wavelengti/2.. Within a multiple scale perturbation
expansion this suggests introducing a slow spatial skate ex. Similarly, the slow growth rate of the patterns
implies that there is a slow time scdle= £?¢. Given these slow spatial and temporal scales, we define the following
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433 multiple scale version of the integro-differential evolutigg. (4.1)

X
420 SZW =—a(x, X, T) + / W(x —x) fla(x', X + e(x’ —x), D) dx’

430 +kD(x) / Jx = x) fla(x', X + e(x' — x), D) dx’ + ho. (4.4)

431 Note that we have explicitly taken into account the nonlocal shift in the slow spatial coordinatean amount

432 g(x’—x). The particular form oEg. (4.4)is motivated by the observation that it satisfies the following two properties:
433 (i) a perturbation expansion mreproduces the dispersion relati@h3); (ii) in the case of exponential weights it
434 reduces to an equivalent multiple scale differential equationAppendix A).

435 In order to carry out a perturbation expansioreof. (4.4) we have to specify the-dependence of the inhomo-
436 geneityD and the coupling. For concreteness, we consider the periodic funciion) = Dg[e*/4 4 e~27ix/d]

437 with the lattice spacing satisfying thenear-resonance condition

2

n
438 7 = ;(kc +eq), n#m (4.5)

439 forintegers:, m. If ¢ = 0 then the lattice spacingis rationally related to the critical wavelength of the roll pattern.
440 The amplitudeDg of the spatial inhomogeneity can be absorbed inso that, in terms of fast and slow variables

41 D(x, X) = gnkex/m gnaX/m 4 ¢ ¢ (4.6)

442 Given this form forD, we carry out a perturbation expansionkx. (4.4)in three distinct coupling regimes: (i)
a3k = 0; (i) k = O(@?); (i) k = O(e). The smallness of reflects both the relative strength of the horizontal
444 connections and the amplitude of the inhomogeneity. In each case we substitute the series expansion

445 a=ap+ eai + e%ar + 3az + - - 4.7)
446 into Eq. (4.4)and expand the firing-rate functigfia) as a Taylor series aboug
447 fl@) = fao) + pla — ao) + ga(a — ao)* + ga(a — ap)® + - -+ , (4.8)

448 wWheregz = f"(ao)/2, g3 = f"(ao)/6. We also expand, (x', X + ¢(x’ — x), T) as a Taylor series in powers of

449 ¢(x’ — x). Finally, we collect terms at successive orders tif obtain a hierarchy of equations for the components
450 ay(x, X, T); solvability conditions arising from the higher-order equations then determine the amplitude equation
451 for the slow behavior of the critical moda:

452 ai(x, X, ) = A(X, T) €% + A*(X, D e, (4.9)

453 whereA (X, T) represents a slowly varying envelope of the roll pattern. Assuming the near-resonance c¢hdéition
454 we show that the amplitude equation in the presence of weak spatially periodic modulated horizontal connections
455 takes the general form

dA A ) _1 iraff
456 T = wA + el BIAI“A + yA*"—+"d", (4.10)
457 wherey ~ ™.
458 An amplitude equation of the forif#.10)was previously derived within the context of fluid convection under
459 external periodic forcingl5], where it was used to investigate commensurate—incommensurate transitions and
460 quasiperiodic structures associated with the mismatch between the periodicities of the forcing and the critical mode.
461 In Section 5we will reformulate these results in terms of the mismatch in the periodicities of cortical activity
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patterns and the underlying functional architecture of cortex. Note that the general form of the antjuit(#lé0)

can be derived using symmetry argumefitS]. For example, the first two terms on the right-hand side can be
obtained by Fourier—Laplace transforming the dispersion relddd) and rescaling. In the homogeneous case
(y = 0), the amplitude equation is equivariant with respect to the transformatien A €%, which reflects the
translation invariance of the system. The lowest-order nonlinear term that has this symmetry is a cubic. The final
term on the right-hand side &q. (4.10)reflects a discrete phase symmetry that persists when the inhomogeneity
D(r) satisfies the near-resonance conditfdrb). Note that symmetry arguments are not sufficient to determine
the model-dependent coefficientss, y, w, which can only be calculated explicitly by carrying out some form of
perturbation expansion. Given the nonlocal nature of the original evolHiip12.10) it is worthwhile presenting

the details of this calculation here. Moreover, the actual value of the coefficients is importand &@trmines the
effective coherence lengty of long-wavelength fluctuations accordingég = /a/«; the validity of Eq. (4.10)
requires thatx <« L, whereL is the system size. Second, the sigrafetermines whether or not the bifurcation

is supercritical or subcritical. Third, all of the coefficients determine whether or not pinning occu&eEam 5.

42. Casexk =0

Settingk = 0 in Eq. (4.4)and expanding t@(¢%) leads to the following set of equations:

ap = Wo f(ao) + ho, (4.11)

Hay =0, (4.12)

Hap = W  [goaf + pncQiai] = bo, (4.13)
da

Haz = _B_Tl + Wx[a1+ g3a:13 + 2grara + pcQoa1 + ucQraz + 2g2a1Q1a1], = bs. (4.14)

Heresx denotes convolution with respect to the fast spatial variables
W xa(x) = / W(x — xa(x") dx’. (4.15)

‘H is the linear operator
Ha =a— ucW *xa, (4.16)

and

n ana(x/v X’ T) d_x/.

4.17
X (4.17)

W s Qua(x, X, T) = n_l|,/ W(x —x)(x' — x)
The O(1) equation determines the fixed pointwhereas th&(¢) equation has the critical roll solutiqd.9).

A dynamical equation for the complex amplitud€X, 7) can be derived by considering solvability conditions
for the inhomogeneous line&qgs. (4.13) and (4.14yhich have the fornCa, = b, for n = 2, 3. Since the linear
operatorH has a one-dimensional kernel, namely the critical m@d@), each inhomogeneous equation only has
a solution ifb, is orthogonal to the kernel GET, the operator adjoint t@{. If we define the inner product of two
periodic functiond/(x), V(x) according to

L
(VIU) = %/0 V() U(x) dx, (4.18)
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a2 whereL is the system size, theH is actually self-adjoint. Hence, settirig = €% we obtain the solvability
495 conditions

496 (V|b,) =0, (4.19)

497 together with their complex conjugates. (Recall that under periodic boundary condi(ien®mn./L for some
498 integern, so thatV is anL-periodic function.)
499 In order to simplify the calculation we tale = 0, since this does not alter the structure of the resulting amplitude
59 equation. Tha)(2) Eq. (4.13)then become$lar = ucW % Q1a1, where
W Quai(x, X, T) = / Wix —x)(x' — x)w gkeX'dy’ 4+ c.c. = —iM W k) =0,
502 X 0X ok =3

503 (4.20)

504 sinceW’(ke) = 0. Hence, the)(¢?) Eq. (4.13yeduces td{a, = 0 with solutiona, ~ 3. [In the case # O there
s05 are also zeroth and second-order harmonic contributions.}dVe are thus free to seb = 0 so that tha)(e3)
506 Solvability condition is

d
so7 < a1> = (VIW x[a1 + g3a5 + peQail). (4.21)

VI—
oT

ggg The termW x Qoaq can be determined along similar linesitox Q1a1 and we find that

1 PAX, T i
510 W Qoar(x, X, T) = E / Wx — x’)(x/ — X)ZT e'ka dx’ + C.C.
1, PAX,T) #PW
=—Zgkx 7~ c.C. 4.22
511 2 X2 ok? + (4.22)
k=k¢

512 The various inner products Bq. (4.21)can now be evaluated straightforwardly. For example

1 L : 13 A
(VIWsad) = = f e KX T (ko) [A gker 4 4% e""c"] dr = 3W (ko)A A% (4.23)
513 L Jo
514 Collecting together all our results then leads to the Ginzburg—Landau amitudd.10)with coefficients

515 w=Wk), a=—3uW'ke), B=-3gsW(ke), y=0. (4.24)
516 4.3. Casex = O(£2)

517 Settingc = £%kg in Eq. (4.4)and expanding t®(s%) generates additional termsHys. (4.13) and (4.14)
518 Hap = by + koDJ f(ag), (4.25)
519 Haz = b3 + koucDJ * ag, (4.26)

520 whereJ = [ J(x)dx andD is given byEq. (4.6) Assuming for simplicity thag> = 0, we find that, = 0 so that
521 EQ. (4.25)becomediaz = xoDJg f(ao), which has the particular solution

r(x. X.T) = xoJ f(ao)

————— D(x, X). 4.27
s22 = e (nke/m) @20
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Note that we are free to set the complementary patbdb be zero such that, does not contribute to th@(s3)
solvability condition. The latter reduceskaq. (4.21)with an additional term arising from the horizontal interactions:

da
<v|8_;> = (VIW x [a1 + gaa} + pucQzail) + kopc(V|DI * az). (4.28)

The final inner product on the right-hand side can be evaluated as follows:

1 rt . ) ) B )
(VIDI* ay) = - / g ikex[ginkex/m @nGX/m 4 ¢ c1T(ke)[A(X, T) €%* + c.c]dx
0

= 82m.n 2% T (ko) A* (X, D). (4.29)

Hence, wher = O(£2) and the near-resonance condit{@rb)holds withn = 2m, the resulting amplitude equation
is given by(4.10)for n = 2, with the coefficients, «, 8 satisfyingEq. (4.24)and

y = koped (ke). (4.30)

We conclude that if the periodicity of the horizontal connections is approximately half the wavelength of the roll
pattern at the primary instability, ~ =/ k¢, then the corresponding synaptic interactions can couple to the cubic
order amplitude equation.

4.4. Casek = O(e)

Settingk = ko in Eq. (4.4)and expanding t@(¢%) generates additional termsHuys. (4.12)—(4.14)
Hay = koDJ f(ag), Har = by + koucDJ * as, (4.31)
Hagz = bz + koD * [pcaz + cQuar + g2as]. (4.32)

We takeD to be given byEQ. (4.6)with p satisfying the near-resonance conditfdrb). The solution of the first-order
Eq. (4.31)now consists of complementary and particular parts. If the complementary solution is taken to be a roll
pattern along the-axis then

a1(x, X, T) = A(X, T) e¥e* 4 [ dnkex/m gnaX/m 4 ¢ ¢ (4.33)
where
_ xoJ f(ao)
1 — jucW(nke/m)
Settingg> = 0 and substitutingeg. (4.33)into (4.32), we find that the particular solution fap is

(4.34)

ax(x. X, T) = Ag + Ay &/ mkex gin/maX | A, o @n/mkex i (2n/m)aX

+[Ay ei(l+n/m)kcx ei(n/m)qX + A ei(lﬂl/m)kcx efi(n/m)qX]A(X’ 7) + c.c., (4.35)
where
Ao = KOMCFJ(TIkc/m)’ Ay = K?Mcj(kc) ’ (4.36)
1—ucW(@O 1— pucW(nke/m =% ke)
L= ,uCFWN(nkC/m) @ Ay = KoﬂcFNJ(nkc/m) ‘ (4.37)
1— ucWinke/m) m 1— pcW(2nke/m)
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The associated solvability condition requires:Aikc/2) = 0 whenm = 2x; (i) J(kc) = 0 whenn = 2m (at least
to the given order of). We choose the complementary partgfto be zero.
The O(&®) solvability condition can be written as

a
<V|§> = (VIW * [a1 + g3d3 + 1cQ2a1]) + pc{VIW x Q1az) + kope(V|DI* [Qiaz + az]). (4.38)

Eq. (4.35)together with thed(s?) solvability conditions imply thatV|W % Qias) = 0. Eq. (4.17), (4.22) and
(4.23)imply that

1., . - e
W % Qra; = -5 e'kcxW”(kc)ﬁA(X, T)+c.c.+TWx QoD (4.39)
with
1 2 . .
W % QoD = > (m) glkex/m naX/m i7" (nk./m) + c.c. (4.40)
m
Thus
1., &
(VIW % Qpa1) = _EW (kc)mA(X, 7). (4.41)

Expandingz? usingEq. (4.33)yields

(VIW % a3) = gaW(ke)(3A|A|2 + 6| T"A + 38, 3, A*2T 3% 4 353, ,, %), (4.42)
Egs. (4.17), (4.22) and (4.33how that

J % Qag = —i 88";; &k ' (ke) + % glkex/m dnaX/m 3/ (nk./m) + c.c., (4.43)
and hence (fon # 2m, m # 2n)

(VIDJ* Qia1) = 0. (4.44)
Finally, Eq. (4.35)implies that

(VIDJ % ag) = A2J (2ke/3) €83, + [A4 T(1 + n/mlke) + A_T([1 — n/m]ko)]A. (4.45)

Combining all of the above results, we deduce that whea O(¢) and the near-resonance conditi@n5) holds
with n = 3m, the resulting amplitude equation is given @10)for n = 3, with the coefficients:, 8 satisfying
Eq. (4.24) and

w = W(ke)(1 + 6g3|I"1?) + wopc[ A+ T ([ + n/mlke) + A-J([1 — n/mlko)]. v = 3gaW(ke) I
(4.46)

Similarly, if m = 3n then we obtairkq. (4.10)for n = 1 with y given by
y = koucA2J (5ko). (4.47)
5. Commensur ate-incommensur ate transitionsin cortex

The amplitudeEq. (4.10)was previously derived using symmetry arguments within the context of a convective
fluid system with spatially periodic forcirj@5]. By studying solutions of this equation, it was shown how competition
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583 between the periodicities of the external forcing and the critical modes of a primary pattern forming instability
584 could lead to commensurate—incommensurate transitions mediated by soliton-like phase distiiba2@e

585 this section we review the basic theory of commensurate—incommensurate transitions, and discuss its implications
586 for cortical pattern formation.

587 First, it is useful to rewrité=q. (4.10)in the rescaled form

A 32A 1
o5 op =OAt 5 - |AIPA 4 yA* "X, (5.1)
580 whereX — X/a, A — /BA,q — Jagandy — yB@ /2 SettingA = R€®, we obtain the pair of equations
R s PR [(30)\? i
— =wR—R ——|—) R R~ cos(® — gX)], 5.2
o gpmoR— R+ 55— (57) Rt yrtoosh(e - ) 52
501 and
3O 30 _3IR IO :
— yR"Lsin[n(® — gX)]. (5.3)

aT ~ "ox2 T oX ox
593 These have stationary solutions of the form

T
w  ©=000) =gX+ L R=Ro (5.4)
505 With Rg satisfying
596 w—q°— R% + )/(—l)I’Rgf2 =0 (5.5)

597 for integersp. These represent uniform roll patterns corresponding to the unstable band of modes close to the
598 primary instability.
599 We investigate the stability of the stationary solutions by substituting

600 R=Ro+rX, D), O =0pX)+ (X, T (5.6)
601 into Egs. (5.2) and (5.3nd expanding to first-order i\, r. This yields the pair of linear equations

or 9%r ¢
602 3T = - r+ X2 2R0qa—X, (5.7)
603 and

a¢p 2y 2q or

“ -0 I 5.8
604 T 9Pt 5x2 T Ro0x 8
605 With
606 2, = —[w—¢* = 3R3+ (=DP(n — DyRY 2, (5.9)
607 and
608 Q4 = (-1)PynR 2, (5.10)

609 It immediately follows fromEgs. (5.8) and (5.1@hat the stationary solutions for ogidare unstable with respect
610 to phase perturbations, sinfx, < 0. Now suppos&2, >> §24 > 0 for evenp, so that the amplitude perturbations
611 r adiabatically follow the phase fluctuatiopsWe can then make the approximation

¢
612 ,r = —2Roqﬁ, (5.11)
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which leads to the following phase equation o= ® — gX [15]:

@ 2p b
g =Aa——ICsin(nq>)=——V, (5.12)
aT 9X2 5P
where
2
A=1-2Y , K =yRy2, (5.13)
2
and
A K
V= / [E(axcp +9?-= cos(n¢)] dx. (5.14)
n

Eq. (5.12)is identical to the sine-Gordon equation used to describe commensurate—incommensurate transitions in
solids, for which structural configurations correspond to minima of the effective pot&{#ql For the purposes
of the current discussion, we will neglect thelependence ol and assume that it is fixed. We note, however, that
it is possible forA to become negative asincreases, leading to the analog of an Eckhaus instability[{S646]

for more details). From well known properties of the sine-Gordon equation, the following results then hold:

1. There exists a critical valug defined by
(5.15)

such that wheg < go the minimum of the potentiab corresponds to a locked stabe= 27p/n. Recall thaly
is a measure of the mismatch between the spatial frequencies of the primary roll pattern and the cortical lattice
as specified by the near-resonance condiffbB). It follows that when this mismatch is sufficiently small, the
activity pattern is pinned to the lattice witfix) ~ cos(2rmx/nd). In the particular case = 2 this corresponds
to the even mode shown frg. 9. Thus our nonlinear analysis has established that the even (odd) mode is stable
(unstable) to phase fluctuations and that the pinning of the stable mode persists over a range of values of the
pattern wavenumber.

2. When the mismatch > go, the minimum of the potentidf occurs for soliton-like solutions of the sine-Gordon
equation. A single soliton solution is of the form

P(X) = ;tan‘lexp<«/nlcx) ) (5.16)

This describes a kink centered ¥t= 0 that separates two regions of the roll pattern each of which is com-
mensurate with the cortical lattice, one with phase- 0 and one with phasé = 2x/n. More generally, the
solutions are regularly spaced solitons as illustratefign 11 The average phase-shift of the roll pattern per
unit length is then

2r
= — 5.17
P= (5.17)

wherel is the separation between neighboring kinks. Equivaleptig,a measure of the soliton density. It can
be shown that

4
= SKmE. (5.18)
q T

whereK andE are complete elliptic integrals of first and second kind, asdtisfies the equation
q0 n
— = . 5.19
q 2E(m) (519)
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cortical position x

Fig. 11. Multi-soliton solution to the sine-Gordon equation that describes regions of the roll pattern that are commensurate with the cortical
lattice separated by domain walls of mean separdtion

An asymptotic analysis of these equations establishegthalog(g — ¢go) for ¢ — go [4]. We conclude that if

the mismatch between the periodicities of the activity pattern and cortical lattice is increased sych it

then there is a commensurate—incommensurate transition to a state in which the activity pattern is no longer
pinned to the lattice due to the formation of soliton-like phase defects.

6. Discussion

Inthis paper we have shown how periodic inhomogeneities in the distribution of long-range horizontal connections
can lock spontaneously formed activity patterns in visual cortex to an underlying lattice of periodic feature maps.
There are a number of interesting issues that arise from this: (i) We have focused on the distribution of CO blobs in
visual cortex, since this is one candidate structure for breaking the translation symmetry of cortex. However, the same
methods could also be applied to other lattice-like structures such as the distribution of orientation singularities. The
CO blobs appear to coincide with about half the singularities, namely those associated with low spatial frequencies
[26]. (i) We have assumed for simplicity that the cortex has a regular crystalline-like structure. A more realistic
model would need to take into account the effects of topological and substitutional disorder within this structure.
(iif) Our mechanism for the pinning of cortical patterns assumes that there exist long-wavelength phase fluctuations
as described by solutions of the amplitugig. (4.10) The validity of this equation requires that the size of cortex
is sufficiently large to support such fluctuations, with the latter having an effective coherence lengtly «of
Otherwise, boundary effects are likely to play an important role.

Itisimportantto emphasize that the cortical activity patterns discussed in this paper do not generate the underlying
feature maps, rather they occur in a neural medium that has a set of feature maps hardwired into it. For example, if
a(r) is the activity at positiom in the cortical sheet and(r) represents the corresponding feature preferences of
the neurons at, then the level of activity codes for these particular features. The feature/Aigpare themselves
determined by the feedforward projections to the cortex from the LGN. An interesting question is how the feedfor-
ward connections develop in the immature cortex in order to form the feature maps in the first place? Consider as
an example the development of ocular dominance columns. Activity-based developmental models typically involve
some Hebbian-like competitive mechanism for the modification of left/right eye feedforward connections under
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the assumption that the intracortical connections are f#8H Intracortical interactions consisting of short-range
excitation and longer-range inhibition mediate a pattern forming instability with respect to the feedforward synap-
tic weights, which can lead to the formation of alternating stripes of left and right eye dominated c¢fhns
Interestingly, the intracortical interactions are usually taken to be homogeneous, so there is no intrinsic mechanism
for aligning the centers of the columns with the CO blobs, as is observed in macaques, for efg@hplais

latter property is clearly seen in the optical imaging dat&igf 1, and is further illustrated schematicallyfig. 4.

We hypothesize that such an alignment may be due to a pinning mechanism analogous to the one considered in
this paper. In order for pinning of the feedforward connections to occur, there must exist some source of spatial
inhomogeneity in the lateral interactions that correlates with the CO blobs early in development. There is growing
experimental evidence to support such a claim. For example, the spacing and packing arrangement of CO blobs
is not affected by strabismus in macaq(@3] nor by early visual deprivation in caf84]. The lack of influence

of visual experience on their development suggests that the CO blobs may reflect an innate columnar organization
within the immature cortex that follows the arrangement of intrinsic chemical markers. A number of anatomical
markers are arranged in a patchy fashion during development, including the NMDA receptor, which plays a key role
in experience-dependent plasticityb]. These markers could mediate the lateral interactions early in development

as well as provide a substrate for the formation of the patchy horizontal conne/di®)88,14]
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Appendix A

In this appendix we show that our prescription for introducing a slow spatial scale into the nonlocal integro-
differential Eq. (4.4)is consistent with the corresponding scaling used in PDEs. Since the treatment of time is
identical in both cases, we focus on the following time-independent integral equation

a(x) = /Oo W(x — ) fla(x)) dx’. (A1)

In the case of an exponential weight distributié¥(x) = e~*1/2, the convolution over space can be eliminated
using the identity

(1= 3 W(x — x') = 8(x — X)), (A.2)
wheredy = 3%/0x2. That is,Eq. (A.1)is equivalent to the differential equation
(1 = dpda(x) = fla(x)). (A-3)
Let us now apply the operator- dx to the corresponding multiple scale versior&af. (A.1)
a(x, X) = / - W(x — x') fla(x', X + e(x’ = x))) d’, (A.4)
—c0
which we can rewrite as

a(x, X + ex) = / W(x —x') fla(x', X + ex')) dx/, (A.5)
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under the change of coordinat&s= X — ex. This gives

(1 — dpalx, X + ex) = fla(x, X + ex)), (A.6)
or

(1 — [3 + £0x]®)a(x, X) = fla(x, X)). (A7)

Eqg. (A.7)is the expected multiple scale version of the differerttial (A.3).
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