
U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

Physica D xxx (2003) xxx–xxx

Spatially periodic modulation of cortical patterns by3

long-range horizontal connections4

Paul C. Bressloff∗5

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA6

Received 10 June 2003; received in revised form 10 June 2003; accepted 29 June 20037

Communicated by J.P. Keener8

Abstract9

We analyze spontaneous pattern formation in a continuum model of primary visual cortex that incorporates spatially peri-10

odic inhomogeneities in the distribution of long-range horizontal connections. These inhomogeneities reflect the underlying11

crystalline-like structure of cortex, as exemplified by the distribution of cytochrome oxidase blobs. We first solve the linear12

eigenvalue problem for a primary Turing instability, and show how the resulting activity pattern can lock to the underlying13

cortical lattice when certain resonance conditions are satisfied. This result is then extended to the weakly nonlinear regime14

by performing a multiple scale perturbation expansion of the nonlocal integro-differential equation that determines cortical15

activity. The resulting amplitude equation describes the effects of long-wavelength modulations of a primary roll pattern in the16

presence of periodic inhomogeneities, and is shown to exhibit a commensurate–incommensurate transition analogous to that17

found in convective fluid systems with external periodic forcing. Extensions of our theory to models of cortical development18

are briefly discussed.19

© 2003 Published by Elsevier B.V.20

PACS: 87.19.La/sep 05.45.-a21

Keywords: Neural pattern formation; Visual cortex22

1. Introduction23

One of the major simplifying assumptions in most large-scale models of cortical tissue is that the interactions24

between cell populations are homogeneous and isotropic, that is, that they are invariant under the action of the25

Euclidean group of rigid body motions in the plane. Euclidean symmetry plays a key role in determining the types26

of activity patterns that can be generated spontaneously in these cortical networks[12,21]. For example, it is well27

known that a homogeneous network can undergo a Turing-like instability due to competition between short-range28

excitation and longer-range inhibition[19,48]. Moreover, amplitude equations can be derived to investigate the29

selection and stability of these patterns close to the primary instability, with the basic structure of these equations30

determined by the underlying symmetries[8,9,16,19,20].31
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However, the assumptions of homogeneity and isotropy are no longer valid when the detailed microstructure of32

cortex is taken into account. In fact, cortex has a distinctly crystalline-like structure at the millimeter length-scale33

[26]. This is exemplified by the distribution of cytochrome oxidase (CO) blobs found in the primary visual cortex34

(V1) of cats and primates. These regions, which are about 0.2 mm in diameter and about 0.6 mm apart, coincide with35

cells that are more metabolically active in response to visual stimuli, and hence richer in their levels of CO[25].36

Moreover, the distribution of the CO blobs is correlated with a number of periodically repeating feature maps in37

which local populations of neurons respond preferentially to stimuli with particular properties such as orientation,38

spatial frequency and left/right eye (ocular) dominance[36,43]. It has thus been suggested that the CO blobs are39

the sites of functionally and anatomically distinct channels of visual processing[28,41]. Another manifestation of40

the crystalline-like structure of cortex is the distribution of singularities or so-called pinwheels in the orientation41

preference map, where the scatter or rate of change of differing orientation preference label is much higher, so42

that there is a weakening of orientation selectivity at the population level. Away from the pinwheels there exist43

approximate linear zones within which iso-orientation regions form parallel slabs. The linear zones tend to cross44

the borders of ocular dominance stripes at right angles, whereas the pinwheels tend to align with the centers of45

ocular dominance stripes. CO blobs are also located in the centers of ocular dominance stripes and have a strong46

association with about half of the orientation singularities. All of these features can be seen inFig. 1.47

The periodic structure of visual cortex is reflected anatomically by the horizontally spreading connectional fields48

made by pyramidal neurons in the superficial layers of V1 (seeFig. 2). By matching anatomical projections with49

optically imaged feature maps, it has been shown that these horizontal connections, which extend several millimeters50

in cortex and are broken into discrete patches with a very regular size and spacing[23,24,38], tend to link neurons51

having common functional properties as determined, for example, by their proximity to CO blobs[7,31,49,50].52

The patchy nature of the horizontal connections immediately implies breaking of continuous rotation symmetry53

but not necessarily continuous translation symmetry. For it is possible that the horizontal connections are still54

homogeneous, depending only on the relative location of two points in cortex. However, there is growing evidence55

that there exist inhomogeneities that break continuous translation symmetry as well. For example, an interesting56

recent experimental finding is that some cells located within intermediate distances from CO blobs have very little in57

the way of horizontal connections[50], thus leading to an effective reduction in connectivity at the population level.58

This suggests that there is a spatially periodic variation in the overall strength or range of the horizontal connections59

that is correlated with the location of CO blobs. Another possible source of periodic inhomogeneity arises from60

the anisotropy in the patchy connectional field as seen inFig. 2. In some animals the direction of anisotropy is61

Fig. 1. Map of iso-orientation contours (light gray lines), ocular dominance boundaries (dark gray lines) and CO blob regions (shaded areas) of
macaque V1. Redrawn from[5].
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Fig. 2. Reconstruction of a tangential section through layers 2/3 of macaque area V1, showing a CTB injection site and surrounding transported
orthograde and retrograde label. Redrawn from[30].

correlated with the orientation preference map and thus rotates periodically across cortex[7]. Although the visual62

cortex is the most studied region of the brain, there is growing evidence that analogous periodic structures appear63

in other cortical areas such as the rat barrel cortex[2] and auditory cortex[37]. A particularly striking example is64

found in the prefrontal cortex[27,32]. Here pyramidal cells in superficial layers are segregated into stripes that are65

mutually connected via horizontally projecting axon collaterals, whereas neurons within the gaps between stripes66

do not have horizontal connections. The functional role of these stripes is currently unknown.67

In this paper we investigate how a spatially periodic inhomogeneity in the distribution of horizontal connections68

affects spontaneous pattern formation in a large-scale dynamical model of visual cortex. We treat the synaptic69

interactions mediated by the horizontal connections as an excitatory perturbation that generates a state-dependent,70

periodic forcing of an underlying homogeneous network. Under the assumption that the homogeneous network is71

close to a primary pattern forming instability, we use the method of multiple spatial and temporal scales to derive a72

form of Ginzburg–Landau amplitude equation. Our derivation explicitly takes into account the nonlocal nature of the73

neuronal interactions. The resulting amplitude equation describes the effects of long-wavelength modulations of a74

primary roll pattern and their coupling to the periodic forcing mediated by the horizontal connections. Following pre-75

vious work on periodically forced convective systems[29,15,46], we show that when the wavelength of the primary76

pattern is commensurate with the periodic modulation of the horizontal connections, the spontaneous activity pat-77

terns lock to the cortical lattice. That is, the activity patterns explicitly reflect the crystalline-like structure of cortex.78

The paper is organized along the following lines. Our cortical model of horizontal connections is introduced79

in Section 2and the linear eigenvalue problem for pattern formation in the presence of periodic inhomogeneities80

is presented inSection 3. The detailed derivation of the amplitude equation for a one-dimensional roll pattern81

based on the method of multiple scales is presented inSection 4, followed by an analysis of long-wavelength82

instabilities and commensurate–incommensurate transitions inSection 5. Finally, in Section 6we briefly discuss83

possible applications of our results to cortical development.84

2. Cortical model with long-range horizontal connections85

We model a layer of visual cortex as a continuous two-dimensional neural medium evolving according to the rate86

equation[11,21,47,48]87

τ
∂a(r, t)
∂t

= −a(r, t)+
∫

R2
w(r|r′)f(a(r′, t))dr′ + h0. (2.1)

88
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Table 1
Generators for the planar lattices and their dual lattices

Lattice �1 �2 �̂1 �̂2

Square (1,0) (0,1) (1,0) (0,1)

Hexagonal (1,0)
1

2

(
1,

√
3
) (

1,
−1√

3

) (
0,

2√
3

)
Rhombic (1,0) ( cosη, sinη) (1,− cotη) (0, cscη)

The scalar fielda(r, t) represents the local activity of a population of excitatory and inhibitory neurons at cortical89

positionr = (x, y) ∈ R2 at timet, τ is a membrane or synaptic time constant,h0 is a uniform external input, and90

the distributionw(r|r′) is the strength of connections from neurons atr′ to neurons atr. In the following we fix91

the units of time by settingτ = 1. The nonlinear firing-rate functionf is assumed to be a smooth monotonically92

increasing function of the form93

f(a) = 1

1 + e−γ(a−ζ) (2.2)
94

for constant gainγ and thresholdζ. Motivated by the anatomy highlighted inSection 1, we decompose the weight95

distributionw according to96

w(r|r′) = W0(|r − r′|)+ κwhoz(r|r′), (2.3)97

whereW0 represents isotropic and homogeneous local connections that depend on the Euclidean distance|r −r′| =98 √
(x− x′)2 + (y − y′)2, whoz represents the distribution of excitatory horizontal connections andκ is a positive99

coupling parameter. Experimentally it is found that the horizontal connections modulate rather than drive a neuron’s100

response to a visual stimulus[22,24,44], suggesting thatκ is small.101

In order to construct the distribution of long-range horizontal connectionswhoz, we first have to take into account102

the “patchiness” of these connections. Suppose that there exists a set of feature preferencesF(r) (such as ocular103

dominance, orientation and spatial frequency) that varies periodically with respect to a regular planar latticeL0:104

L0 = {(m1�1 +m2�2)d0 : m1,m2 ∈ Z}, (2.4)105

where�1 and�2 are the generators of the lattice andd0 is the lattice spacing, which is taken to be of the order 1 mm.106

Let θ be the angle between the two basis vectors�1 and�2. We can then distinguish three types of lattice according107

to the value ofθ: square lattice (θ = π/2), rhombic lattice (0< θ < π/2, θ �= π/3) and hexagonal (θ = π/3). After108

rotation, the generators of the planar lattices are given inTable 1. Also shown are the generators of thedual lattice109

L̂0 satisfying�̂i · �j = δi,j. Given the latticeL0, we can partition the cortex into a set of fundamental domains,110

each of which corresponds to a so-called functionalhypercolumn [36]. A hypercolumn is defined to be a region111

approximately 1 mm2 in surface area that contains two orientation pinwheels and one CO blob per ocular dominance112

column. The local connections span a single hypercolumn, whereas the patchy horizontal connections link cells113

with similar feature preferences in distinct hypercolumns.1 We implement the latter condition by introducing the114

doubly periodic feature mapP(r)115

P(r) = 1

2

2∑
i=1

cos

(
2πr · �̂i
d0

)
, (2.5)

116

1 Elsewhere we have developed an alternative model of visual cortex based on a lattice of coupled hypercolumns[11]. In this model cortical
position r is replaced by the set{�,F} with � ∈ L0 labeling a particular hypercolumn andF labeling the feature preferences of neurons
at a particular point within the hypercolumn. The associated weight distribution is decomposed into local and long-range parts according to
w(�,F|�′,F′) = W0(F|F′)δ�,�′ + κwhoz(�|�′)δ(F− F′).
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such that−1 ≤ P(r) ≤ 1 andP(r + �) = P(r) for all � ∈ L0. One can interpretP(r) as an index function that117

indicates the relative position ofr with respect to the latticeL. In particular, ifP(r) = P(r′) then the neurons atr118

andr′ have the same set of feature preferences.119

Assuming for the moment that the horizontal connections are homogeneous, we set120

whoz(r|r′) = Θ(P(r − r′)− P0)Θ(|r − r′| − d0)J0(|r − r′|) ≡ J(r − r′), (2.6)121

whereΘ denotes the Heaviside step function. HereP0, 0< P0 < 1, is a threshold that fixes the size of the patches,122

andJ0 determines the variation in the strength of the connections with cortical separation. IfP(r − r′) < P0 then123

the cells atr andr′ differ sufficiently in their given feature preferences so thatwhoz(r|r′) = 0, which means that124

the cells atr andr′ are not linked. Also note that the first cortical patch occurs at a minimum cortical separationd0.125

For concreteness, we assume thatJ0 decreases exponentially with cortical separation:126

J0(|r|) = K e−|r|/ξ (2.7)127

with ξ > d0. It follows from Eq. (2.6)that the total weight distribution(2.3) is translation invariant, sincew(r +128

s|r′ + s) = w(r|r′) for all s ∈ R2, but it is not rotation invariant due to the discrete rotation symmetry of the lattice129

L0. Consider, for example, a square latticeL0 for whichP(r) = [ cos(2πx/d0) + cos(2πy/d0)]/2. In Fig. 3(a)130

we present a two-dimensional contour plot ofJ(#r) as a function of cortical separation#r = r − r′, which shows131

the distribution of patchy connections. A corresponding cross-section ofJ along thex-axis is shown inFig. 3(b),132

together with an example of a local distributionW0.133

As we have highlighted inSection 1, there are a number of possible sources for a spatially periodic variation134

in the pattern of patchy connections as the location of the center of the distribution is shifted in the cortical plane.135

Eq. (2.6)will then have the more general form136

whoz(r|r′) = Θ(P(r − r′)− P0)Θ(|r − r′| − d0)J0(r|r′), (2.8)137

whereJ0 now includes the effects of periodic modulations. In order to motivate the detailed structure ofJ0, it is138

necessary to be more explicit regarding the biological interpretation of the latticeL0. Therefore, we now identifyL0139

with the distribution of CO blobs having a given eye preference. Such a lattice is interleaved with a second lattice of140

blobs having the opposite eye preference, which is given byLc0 = {d0�1/2+ �, � ∈ L0}. This is illustrated inFig. 4141

for a square lattice.2 The simplest example of a periodic modulation is motivated by the experimental observation142

that some cells located within intermediate distances from CO blobs in primary visual cortex have very little in the143

way of horizontal connections[50], thus leading to an effective reduction in connectivity at the population level.144

The fact that CO blobs also coincide with regions in which there is a large variation in orientation preference could145

also lead to denser horizontal connections around blobs. This suggests introducing a spatially periodic variation146

in the strength of the horizontal connections of the formJ0(r|r′) = [1 + D(r)]J0(|r − r′|) for some functionD147

that is doubly periodic with respect to the full lattice of CO blobsL = L0 ∪ Lc0, seeFig. 4. The functionD(r)148

is assumed to have zero mean, that is,
∫
D(r)dr = 0. CombiningEqs. (2.3), (2.6) and (2.8)shows that the total149

weight distribution(2.3) is of the form150

w(r|r′) = W0(|r − r′|)+ κ[1 +D(r)]J(r − r′). (2.9)151

2 Anatomical data indicates that the spacing between CO blobs across ocular dominance boundaries is smaller (around 350�m) then between
those in the same column (around 450�m) [25,33,50]. This would suggest a stretching of the latticeL0 in the direction orthogonal to the ocular
dominance columns by an approximate factor of 1.6. Interestingly, such a stretching accounts for most of the anisotropy in the distribution
of patchy connections shown inFig. 2 [6]. On the other hand, patchy feedback connections from extrastriate areas tend to be more strongly
anisotropic[3]. In this paper we eliminate the stretching due to ocular dominance columns by choosing appropriately scaled planar coordinates
r. We also assume that the local connections are isotropic with respect to these scaled coordinates.

PHYSD 3191 1–27
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Fig. 3. (a) Contour plot of the distributionJ(#r) as a function of cortical separation#r = r − r′ (in units of the lattice spacingd0) showing the
distribution of patchy connections on a square lattice. (b) Cross-section ofJ along thex-axis. An example of a local weight distributionW0 is
also shown, which is taken to be a Mexican hat function (seeEq. (3.6)).

It follows thatw(r +�|r′ +�) = w(r|r′) for all � ∈ L so that the weight distributionw is itself doubly periodic with152

respect toL. Finally, substitutingequation (2.9)into the cortical model(2.1) leads to the inhomogeneous equation153154

∂a(r, t)
∂t

= −a(r, t)+
∫

R2
W0(|r − r′|)f(a(r′, t))dr′ + κ[1 +D(r)]

∫
R2
J(r − r′)f(a(r′, t))dr′ + h0.

155

(2.10)156

Eq. (2.10)will be our starting point for the analysis of spontaneous cortical pattern formation inSections 3–5. We157

end this section by briefly indicating how to incorporate other sources of spatially periodic variations in the pattern158

of horizontal connections. An alternative interpretation of the results in Ref.[50] is that there is a periodic variation159

in the average range of the horizontal connections. One way to implement such a scheme is to replaceξ in Eq. (2.7)160

by ξ(r) = ξ[1 + χ(r)] such that, forχ(r)|r − r′| � ξ161

J0(r|r′) = K e−|r−r′|/ξ(r) ≈ J0(|r − r′|)
[
1 + χ(r)

ξ
|r − r′|

]
. (2.11)

162

Another source of inhomogeneity occurs when there is an anisotropy in the distribution of patchy connections that163

correlates with the orientation preference map[7]. This anisotropy, which is additional to any stretching associated164

with the ocular dominance columns, can be incorporated into our model by taking165

J0(r|r′) = J0(χ(r), Tθ(r)[r − r′]), J0(χ, r) = K e−
√
(1−χ)2x2+y2/ξ, (2.12)166

L R L R

d0

d0

Fig. 4. Two interlocking square lattices of CO blobs (filled circles) associated respectively with left (L) and right (R) eye ocular dominance
columns. Horizontal connections are assumed only to link CO blobs having the same eye preference.
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Fig. 5. Contour plot of an anisotropic distribution of patchy horizontal connections on a square lattice.

where167

Tθ =
(

cosθ − sinθ

sinθ cosθ

)
. (2.13)

168

Hereχ(r) andθ(r) determine the eccentricity and orientation of the resulting anisotropy. They are assumed to be169

doubly periodic with respect to the lattice of orientation pinwheels. Assuming thatχ|r − r′| � ξ, we have170

J0(r|r′) ≈ J0(|r − r′|)
(

1 + χ(r)
ξ|r − r′| [ cosθ(r)(x− x′)− sinθ(r)(y − y′)]2

)
. (2.14)

171

SubstitutingEq. (2.11)or (2.14)into (2.3) then leads to a generalization ofEq. (2.9)of the form172

w(r|r′) = W0(|r − r′|)+ κ
M∑
m=1

Dm(r)Jm(r − r′). (2.15)
173

For example, in the case of a periodically varying anisotropy,M = 4 with174

D1(r) = 1, J1(r) = J(r), (2.16)175

D2(r) = χ(r) cos2θ(r), J2(r) = x2

|r|ξ J(r), (2.17)
176

D3(r) = χ(r) sin2θ(r), J3(r) = y2

|r|ξ J(r), (2.18)
177

D4(r) = −2χ(r) cosθ(r) sinθ(r), J4(r) = xy

|r|ξ J(r). (2.19)
178

An example of an anisotropic distribution of patchy connections is shown inFig. 5.179

3. Linear eigenvalue problem for cortical pattern formation180

In this section we use perturbation methods to solve the linear eigenvalue problem for pattern forming instabilities181

in the presence of periodically varying inhomogeneous horizontal connections. (A preliminary version of this182
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analysis was briefly reported elsewhere[10].) For mathematical convenience, we impose the periodic boundary183

conditionsa(r +L�j) = a(r), j = 1,2 for all r ∈ R2, whereL determines the effective size of cortex and�j are the184

generators ofL0, seeTable 1. This will not significantly affect the nature of patterns within the bulk of the medium185

provided that the range of cortical interactions is much smaller thanL.186

3.1. Homogeneous weights187

Let us first consider the case of zero horizontal interactions by settingκ = 0 in Eq. (2.10)to obtain the homoge-188

neous and isotropic network equation189

∂a(r, t)
∂t

= −a(r, t)+
∫

R2
W0(|r − r′|)f(a(r′, t))dr′ + h0. (3.1)

190

We assume thatW0 ∈ L2(r), that is,
∫

R2 |W0(r)|2d2r <∞. There exists at least one fixed point solutiona(r) = a0191

of Eq. (3.1)such that192

a0 = W̄0f(a0)+ h0, (3.2)193

andW̄0 = ∫
W0(|r|)dr. If h0 is sufficiently small relative to the thresholdζ then this fixed point is unique and194

stable. Under the change of coordinatesa → a− h0, it can be seen that the effect ofh0 is to shift the threshold by195

the amount−h0. Thus there are two ways to increase the excitability of the network and thus destabilize the fixed196

point: either by increasing the external inputh0 or reducing the thresholdζ. The latter can occur through the action197

of drugs on certain brain stem nuclei which provides a mechanism for generating geometric visual hallucinations198

[8,19]. The local stability ofa0 is found by linearization: settinga(r, t) = a0 + eλta(r) and linearizing about the199

fixed point leads to the equation200

λa(r) = −a(r)+ µ
∫

R2
W0(|r − r′|)a(r′)dr′, (3.3)

201

whereµ = f ′(a0). Since the local weight distributionW0 is homogeneous, it follows that the eigenmodes are in202

the form of plane wavesa(r) = eik·r with wavenumberk. Substitution intoEq. (3.3)shows that the corresponding203

eigenvalues satisfy the dispersion relation204

λ = λ(k) ≡ −1 + µW̃0(k), (3.4)205

wherek = |k| andW̃0(k) is the Fourier transform ofW0(|r|)206

W̃0(k) =
∫

R2
W0(|r|)e−ik·r dr. (3.5)

207

Given the periodic boundary conditions ona, the wavevectorsk are constrained to lie on the latticek = ∑
j=1,2208

(2πmj/L)�̂j, where�̂j, j = 1,2, are the generators of the reciprocal latticeL̂0 (seeTable 1).209

We can use the dispersion relation(3.4)to determine conditions under which the homogeneous state loses stability210

leading to the formation of spatially periodic patterns. The standard mechanism for such an instability, which is the211

neural analog of the Turing instability in reaction–diffusion equations, is a combination of short-range excitation212

and long-range inhibition[19,48]. This can be represented by the so-called “Mexican hat” function (seeFig. 6(a)):213

W0(r) = W+
2πσ2+

e−r2/2σ2+ − W−
2πσ2−

e−r2/2σ2− (3.6)
214

with σ+ < σ− < d0 andW+σ2− > W−σ2+. The corresponding Fourier transform215

W̃0(k) = W+ e−(1/2)σ2+k2 −W− e−(1/2)σ2−k2
, (3.7)216

PHYSD 3191 1–27
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Fig. 6. Neural basis of the Turing mechanism. (a) Mexican hat interaction function showing short-range excitation and longer-range inhibition.
(b) Dispersion curvesλ(k) for Mexican hat function. If the excitabilityµ of the cortex is increased, the dispersion curve is shifted upwards
leading to a Turing instability at a critical parameterµc = W̃0(kc)

−1, whereW̃0(kc) = [maxkW̃0(k)]. Forµc < µ <∞ the homogeneous fixed
point is unstable.

has a maximum atk = kc �= 0 as shown inFig. 6(b). SinceW̃0(k) is bounded, it follows that when the network is217

in a low activity state such thatµ ≈ 0, any solution ofEq. (3.3)satisfies Reλ < 0 and the fixed point is linearly218

stable. However, when the excitability of the network is increased, either through the action of some hallucinogen219

or through external stimulation,µ increases and the fixed point becomes marginally stable at the critical value220

µc, whereµ−1
c = W̃0(kc) ≡ maxk{W̃0(k)}. Forµ > µc, the fixed point is unstable and there exists a band of221

wavevectorsk that have positiveλ and can thus grow to form spatially varying patterns. Sufficiently close to the222

bifurcation point these patterns can be represented as linear combinations of plane waves223

a(r) =
N∑
n=1

(An eikn·r + A∗
n e−ikn·r), (3.8)

224

where the sum is over all wavevectors lying within some neighborhood of the critical circle|kn| = kc. In the case225

of a large system sizeL, there will a large number of such excited modes. However, one usually considers regular226

patterns obtained by superposition ofN pairs of wavevectors distributed uniformly on the critical circle, that is,227

kn = Ωn−1k1 for n = 1, . . . , N with Ωn representing rotation through an angleπ/N. The casesN = 1,2,3228

correspond to roll, square and hexagonal (or triangular) patterns, respectively. Note that the solution(3.8)is defined229

up to a uniform translation inr, which corresponds to phase-shifts in the complex amplitudesAn.230

The above analysis can be extended to incorporate homogeneous but nonisotropic horizontal connections by231

takingκ > 0 andD(r) = 0 in Eq. (2.10). Setting232

W(r) = W0(|r|)+ κJ(r), (3.9)233

and repeating the linear stability analysis about the corresponding homogeneous fixed point, the dispersion relation234

(3.4)becomes235

λ = λ(k) ≡ −1 + µW̃(k). (3.10)236

Note thatλ(k) now depends on the direction as well as the magnitude ofk, since it is invariant with respect to237

the discrete rotation symmetry group of the dual latticeL̂0 defined inSection 2(seeTable 1), rather than the238

continuous rotation group. It follows that a particular wavevectork∗ will be selected by the Turing mechanism,239

together with all modes generated by discrete rotations of the dual lattice (ignoring accidental degeneracies). The240

eigenmodes will naturally tend to be low-dimensional patterns such as rolls and hexagons, that is, they will satisfy241
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Eq. (3.8)with kn = Ωn−1k∗ for n = 2, . . . , N andN = 2 if L0 is a square lattice orN = 3 if L0 is a hexagonal242

lattice. Thus the existence of a latticeL0 underlying the distribution of patchy horizontal connections provides a243

physical mechanism for generating low-dimensional, doubly periodic patterns. Such cortical activity patterns are of244

particular interest, since they provide a possible explanation for the occurrence of certain basic types of geometric245

visual hallucinations[8,19]. (In Euclidean symmetric models of cortical pattern formation, the double-periodicity246

of the solutions is imposed by hand as a mathematical simplification rather than reflecting the existence of a real247

lattice[8,19,21].)248

3.2. Inhomogeneous weights249

Now suppose that there exists a spatially periodic variation in the strength of horizontal connections as specified250

by the functionD(r) in Eq. (2.10). For the sake of simplicity, we will assume here thatD is doubly periodic with251

respect to the latticeL = {(m1�1+m2�2)d : m1,m2 ∈ Z} with the same lattice spacingd = d0/2 in both directions252

�1, �2; the analysis is easily extended to the more general case illustrated inFig. 4. Under this simplification the253

latticesL andL0 have the same discrete rotation symmetry group. The first point to note is thatEq. (2.10)no longer254

has a homogeneous fixed point solution. However, by introducing an appropriate inhomogeneity in the external255

input,h0 → h(r), it is possible to recover such a solution. Linearization then leads to the eigenvalue equation256

λa(r) = −a(r)+ µ
∫

R2
w(r|r′)a(r′)dr′ (3.11)

257

withw given byEq. (2.9). [Note that we could also linearize about the inhomogeneous fixed point associated with a258

constant inputh0: this would simply introduce additional doubly periodic contributions to the eigenvalue equation.]259

The double-periodicity ofD implies that260

w(r + �|r′) = w(r|r′ − �) for all � ∈ L. (3.12)261

From this relation it follows that the solutions ofEq. (3.11)are of the form3262

ak(r) = eik·ruk(r) (3.13)263

with uk(r + �) = uk(r) for all � ∈ L. In order to prove this, let us introduce the translation operatorT� such that264

T�f(r) = f(r + �) for any functionf . Then265266

T�

∫
R2
w(r|r′)a(r′)dr′ =

∫
R2
w(r + �|r′)a(r′)dr′ =

∫
R2
w(r|r′ − �)a(r′)dr′

267

=
∫

R2
w(r|r′)a(r′ + �)dr′ =

∫
R2
w(r|r′)T�a(r′)dr′. (3.14)

268

Defining the linear operator̂H according to269

Ĥa(r) = −a(r)+ µ
∫

R2
w(r|r′)a(r′)dr′, (3.15)

270

we haveT�Ĥ = ĤT�. Shur’s lemma then implies thatĤ andT� have simultaneous eigensolutions:271

Ĥa = λa, T�a = C(�)a. (3.16)272

3 In condensed matter physics solutions of Schrodinger’s equation for an electron in a periodic potential take this form and are called Bloch
waves[1]. Bloch waves are spatial analogs of the eigenfunctions arising in Floquet theory.
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SinceT�T�′ = T�+�′ , we have273

C(�)C(�′) = C(�+ �′), (3.17)274

which implies thatC(�) = eik·� and the result follows.275

Another way to establish the general form of the eigensolutions(3.13)is to introduce the Fourier series expan-276

sions277

D(r) =
∑

q

Dq eiq·r, q =
∑
j=1,2

2πnj
d
�̂j, (3.18)

278

and279

a(r) = 1

L2

∑
k

ak eik·r, k =
∑
j=1,2

2πmj
L

�̂j, (3.19)
280

where�̂j, j = 1,2, are the generators of the reciprocal latticeL̂ (seeTable 1). Eq. (3.11)then reduces to281

[λ+ 1 − µW̃0(k)]ak = κ
∑

q

Vq(k)ak−q, (3.20)
282

where283

Vq(k) = J̃ (k − q)[δq,0 +Dq], (3.21)284

andJ̃ (k) is the Fourier transform ofJ(r). Eq. (3.20)implies that the lateral interactions only couple together those285

coefficientsak, ak−q, ak−q′ , . . . whose wavevectors differ by a reciprocal lattice vector. In other words, if we fixk286

then287

a(r) =
∑

q

ak−q ei(k−q)·r = eik·ru(r), (3.22)
288

which is of the form(3.13)with u(r) given by the periodic function289

u(r) =
∑

q

ak−q e−iq·r. (3.23)
290

3.3. Perturbation theory291

It is generally not possible to find exact solutions of the eigenvalueequation (3.20). Therefore, we proceed by292

carrying out a perturbation expansion with respect to the small parameterκ that characterizes the relative weakness293

of the horizontal connections.4 Let kc be the critical wavenumber for a pattern forming instability whenκ = 0. We294

also defineNκ(kc) to be a small neighborhood of the critical circle|k| = kc. We then have to distinguish between295

two cases, based on whether or not the following degeneracy condition holds: there exists a reciprocal lattice vector296

Q such that297

|W̃0(k)− W̃0(|k − Q|)| = O(κ), k ∈ Nκ(kc), (3.24)298

and W̃0(k) − W̃0(|k − q|)| � κ for all q ∈ L̂ such thatq �= Q. Note that the exact degeneracy condition299

W̃0(k) = W̃0(|k − Q|) is only satisfied if|k| = |k − Q|. This means thatk must lie on the perpendicular bisector300

of the line joining the origin of the reciprocal latticêL to the lattice pointQ, as illustrated inFig. 7(a). Another301

4 The perturbation analysis is similar in structure to that used to solve the Schrodinger equation in aweak periodic potential[1].
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O Q

k k - Q

O
Q1

Q2

-Q1

-Q2

(a) (b)

π/d π/d

Fig. 7. (a) Ifk = |k − Q| thenk must lie on the bisector of the reciprocal lattice vectorQ. (b) Construction of the first Brillouin zone (shaded
region) in the reciprocal square lattice withQj = 2π�̂j/d.

useful concept is that of a Brillouin zone[1]. The first Brillouin zone is the fundamental domain around the origin302

of the reciprocal lattice formed by the perpendicular bisectors of the shortest lattice vectors (of length 2π/d). The303

example of a square lattice is shown inFig. 7(b). The higher-order Brillouin zones are similarly constructed using304

the perpendicular bisectors of larger lattice vectors. It follows that any point on the boundary of a Brillouin zone305

will satisfy the exact degeneracy condition.306

Nondegenerate case. First, suppose thatEq. (3.24)does not hold, that is, ifk ∈ Nκ(kc) then|W̃0(k)−W̃0(k−q)| �307

κ for all q ∈ L̂,q �= 0. This occurs, for example, if the critical circle lies well within the first Brillouin zone, see308

Fig. 8(a). We then fixk and look for solutions satisfyingak → 1 andak−q → 0,q �= 0, in the limitκ → 0. This309

corresponds to a small perturbation of the plane wave state eik·r. Eq. (3.20)implies that (forq �= 0)310

[λ+ 1 − µW̃0(|k − q|)]ak−q = κ
∑

q′
Vq′(k − q)ak−q−q′ , (3.25)

311

which can be rewritten in the form312

ak−q = κ V−q(k − q)ak

λ+ 1 − µW̃0(|k − q|) + κ
∑
q′ �=0

Vq′−q(k − q)ak−q′

λ+ 1 − µW̃0(|k − q|) . (3.26)

313

k*

first B.Z.

k∗

Q-k∗

(a) (b)

Fig. 8. Selected wavevectors on the critical circle for a square lattice. (a) Nondegenerate case: the critical circle lies well within the first Brillouin
zone. (b) Degenerate case: the critical circle intersects the border of the first Brillouin zone and there is a doubling up of the marginally stable
modes.
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The first term on the right-hand side will be an order of magnitude larger than the remaining terms provided that314

the degeneracy condition(3.24)does not hold. Therefore315

ak−q = κ V−q(k − q)ak

λ+ 1 − µW̃0(|k − q|) +O(κ2). (3.27)
316

Substituting this back intoEq. (3.20)gives317

[λ+ 1 − µW̃0(k)]ak = κV0(k)ak + κ2
∑
q �=0

Vq(k)V−q(k − q)ak

λ+ 1 − µW̃0(|k − q|) +O(κ3). (3.28)
318

Hence, replacing the denominator by the lowest-order contribution yields319

λ(k) = −1 + µW̃0(k)+ κV0(k)+ κ2
∑
q �=0

Vq(k)V−q(k − q)

µ[W̃0(k)− W̃0(|k − q|)] +O(κ3). (3.29)
320

To leading order inκ, the marginally stable modes will be those modes on the critical circle that maximize the term321

V0(k). SinceV0(k) is invariant with respect to discrete rotations of the dual latticeL̂, a particular wavevectork∗322

on the critical circle will be selected together with all modes generated by discrete rotations of the lattice. This is323

illustrated inFig. 8(a) for the square lattice. The eigenmodes will thus be of the form324

a(r) =
∑

i=1,... ,N

ui(r)eiki·r + c.c. (3.30)
325

with326

ui(r) = ci

1 + κ

∑
q �=0

e−iq·r V−q(k − q)

µ(W̃0(k)− W̃0(|k − q|)) +O(κ2)


 . (3.31)

327

HereN = 2 for the square lattice withk1 = k∗ andk2 = Rπ/2k∗, whereRθ denotes rotation through an angleθ.328

Similarly,N = 3 for the hexagonal lattice withk1 = k∗,k2 = R2π/3k∗ andk3 = R4π/3k∗.329

Degenerate case. Now suppose that the degeneracy condition(3.24)is satisfied for someQ ∈ L̂, which implies330

that the critical circle is close to a Brillouin zone boundary, seeFig. 8(b). This implies that there is an approximate331

twofold degeneracy,5 and we must treatEq. (3.20)separately for the two casesk andk − Q. Thus, to first-order in332

κ, Eq. (3.20)reduces to a pair of equations for the coefficientsak andak−Q:333 (
λ− E(k) κVQ(k)

κV−Q(k − Q) λ− E(k − Q)

)(
ak

ak−Q

)
= 0, (3.32)

334

whereE(k) = −1 + µ[W̃0(k) + κV0(k)]. Assume for the moment that the exact degeneracy conditionW̃0(k) =335

W̃0(|k − Q|) holds so thatk is on a Brillouin zone boundary. As a further simplification, letJ̃ (k − q) = J̃ (k) for336

all q ∈ L̂ so thatE(k − Q) = E(k). This is a good approximation when the patch sizeP0 is small. TakingD(r)337

to be a real, even function ofr so thatDQ = D−Q, it also follows thatV−Q(k − Q) = VQ(k). The above matrix338

equation then has solutions of the form339

λ±(k) = −1 + µ(W̃0(k)+ κ[V0(k)± VQ(k)]) (3.33)340

5 It is also possible to have a higher-fold degeneracy with|W̃0(k) − W̃0(|k − Qm|)| = O(κ) for a set of reciprocal lattice vectorsQm,m =
1, . . . ,M. The analysis is easily generalized to this case.
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with ak−Q = ±ak. Thus there is a splitting into even and odd eigenmodes341

a±k (r) = eik·r ± ei(k−Q)·r. (3.34)342

(If k is close to, but not on, the Brillouin zone boundary, there will be a slight mixing between the even and odd343

eigenmodes—this will not modify our conclusions significantly.) Letk± denote global maxima of the functions344

λ±(k) and setk∗ = k+ if λ+(k+) > λ−(k−) and k∗ = k− otherwise. It follows that the marginally stable345

eigenmodes will be of the approximate forma(r) = ∑
j=1,... ,N Aja

±
kj
(r)+c.c.with k1 = k∗ andkj, j = 2, . . . , N,346

related tok∗ by discrete rotations of the lattice. Even (+) modes will be selected whenk∗ = k+ and odd (−) modes347

whenk∗ = k−.348

3.4. Pinning of cortical patterns349

We conclude from the above perturbation analysis that for certain critical wavenumberskc the resulting cortical350

activity patterns are pinned to the underlying latticeL. This follows from the structure of the even and odd solutions351

(3.34), which are in the form of standing waves whose amplitudes vary as cos(Q·r/2)and sin(Q·r/2), respectively.352

Consider, for example, the simple case of a roll pattern along thex-axis withk∗ = (kc,0) and a square reciprocal353

lattice L̂ with generatorŝ�1 = (d−1,0) and �̂2 = (0, d−1), whered is the lattice spacing. Ifkc = π/d then354

Q = (2π/d,0) and the even/odd modes are of the form355

a+(x) = cos(1
2kcx), a−(x) = sin(1

2kcx). (3.35)356

Thus the even mode has extrema at sites on the latticeL (corresponding to CO blobs, say) whereas the odd mode has357

extrema between lattice sites (corresponding to inter-blobs, say). This is illustrated inFig. 9for a one-dimensional358

lattice. One might have expected the activity patterns inFig. 9to have theirmaxima at the CO blobs, since the latter359

are supposed to be sites of higher metabolic activity. However, it should be remembered that the staining of the360

blobs to CO occurs under conditions of normal vision. Thus the primary source of higher activity in this case is361

due to the external drive from the lateral geniculate nucleus (LGN) induced by visual stimuli. In this paper, on the362

other hand, we are considering spontaneous cortical activity in the absence of any visual stimuli. Thus, in the case363

of homogeneous cortical interactions, there is no intrinsic mechanism for ensuring that the peaks of spontaneous364

activity coincide with the CO blobs. We have shown that inhomogeneities in the horizontal connections that correlate365

with the distribution of CO blobs can break translation symmetry in such a way as to pin the activity pattern to the366

blobs along the lines ofFig. 9.367

The above result raises two important issues. First, under what circumstances will the wavenumber of the primary368

pattern lie close to a Brillouin zone boundary so that pinning occurs? Second, to what extent does the pinning of the369

pattern to the latticeL persist when nonlinearities are included? We will investigate the first issue in the remainder370

of this section and address the second issue inSections 4 and 5. In order to proceed, it is useful to consider a slightly371

even pattern odd pattern

CO blob

Fig. 9. Even and odd eigenmodes localized around blob and inter-blob regions.
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different form of the homogeneous patchy weight distributionJ(r) given byEq. (2.6):372

J(r) =
∑

�∈L0,� �=0

J0(|r|)G(r − �), (3.36)
373

whereG is a localized function that determines the size and shape of an individual horizontal patch. For simplicity,374

consider the limiting case in which the patch size is infinitesimal such thatG(r) → δ(r). The basic idea can now375

be illustrated by considering a one-dimensional version with376

J(x) =
∑
n�=0

J0(nd0)δ(x− nd0), (3.37)
377

whered0 is the patch spacing (seeSection 2). Taking the one-dimensional Fourier transform ofJ gives378

J̃ (k) =
∑
n�=0

J0(nd0)e
−iknd0. (3.38)

379

In the case of the exponential function(2.7)with K = 1, the sum over lattice sites may be performed explicitly to380

yield381

J̃ (k) = ed0/ξ cos(kd0)− 1

[ed0/ξ cos(kd0)− 1]2 + [ed0/ξ sin(kd0)]2
. (3.39)

382

It follows that for infinitesimal patch size, the Fourier transform of the homogeneous part of the horizontal weight383

distribution is a(2π/d0)-periodic function ofk and thus has an infinite set of global maxima and global minima.384

This infinite degeneracy is then broken by the local connections resulting in dispersion curves such as shown in385

Fig. 10. Given the range of the local connectionsW0, the maximum ofW̃(k) is likely to occur close to the peak386

kc ≈ 2π/d0. Finally, recall fromSection 2that the lattice spacingd0 of the patchy horizontal connections may differ387

from the periodicityd of the inhomogeneityD(r). This is illustrated inFig. 4for the case of CO blobs. Thus, in our388

one-dimensional example it is possible thatd0 = 2d and hencekc ≈ π/d. Note that the above argument is easily389

extended to the case of finite patch size: there is simply an additional factorG̃(k) multiplying the second term on390

the right-hand side ofEq. (3.39).391

-3 -2 -1 0 1 2 3
5

-0.1

0

0.1

0.2

0.3

wavenumber k (in units of 2π/d0)

W(k)
~

Fig. 10. Thin solid curve: Fourier transform̃W0(k) of a local Mexican hat weight distribution. Dashed curve: Fourier transformJ̃ (k) of long-range
weight distribution satisfyingEq. (3.39)with ξ = 2d0. Thick solid curve: Fourier transform of the total weight distributionW̃(k) = W̃0(k)+κJ̃(k)
for κ = 0.25.
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4. Multiple scale analysis of nonlocal cortical model392

In order to investigate the saturation, stabilization and selection of cortical patterns beyond the primary bifurca-393

tion point, it is necessary to carry out a nonlinear analysis ofEq. (2.10). In the vicinity of the bifurcation point,394

one can exploit a separation of time and space scales to derive a Ginzburg amplitude equation for the primary395

pattern along analogous lines to the analysis of fluid convection patterns[17,18,35,40,46]. However, the analysis396

of cortical patterns is complicated by the fact that the underlying integro-differentialequation (2.10)is nonlocal397

in space. In this section we develop a multiple scale perturbation expansion of this equation that takes into ac-398

count the nonlocal nature of the neuronal interactions. Note that previous studies of cortical pattern formation have399

focused on the selection and stability ofuniform amplitude roll, square and hexagonal patterns[12,19,21]. The400

analysis presented here extends this work by taking into account slow spatial phase modulations of the ampli-401

tude. It is well known from fluid convection that diffusion-induced long-wavelength phase modulations of primary402

patterns can induce secondary instabilities away from the bifurcation point[17,18,46]. A major reason for being403

interested in these phase instabilities in the case of the cortical model(2.10)is that they can couple to weak, spa-404

tially periodic variations in the strength of the horizontal connections as specified by the functionD(r). Such a405

coupling provides a nonlinear mechanism for pinning the pattern to the underlying cortical lattice, as explained in406

Section 5.407

4.1. Method of multiple scales408

For simplicity, we will restrict our analysis to spatial modulations of a roll pattern that are parallel to the critical409

wavevector, which is chosen to be in thex-direction. Since the amplitude of the pattern is theny-independent,410

Eq. (2.10)can effectively be reduced to the one-dimensional system411

∂a(x, t)

∂t
= −a(x, t)+

∫
W(x− x′)f(a(x′, t))dx′ + κD(x)

∫
J(x− x′)f(a(x′, t))dx′ + h0. (4.1)

412

HereW(x) = ∫
RW(r)dy, J(x) = ∫

R J(r)dy andD(x) = L−1
∫ L

0 D(r)dy. Let a(x, t) = a0 be a homogeneous413

fixed point solution ofEq. (4.1)whenκ = 0 (homogeneous horizontal connections). Linearizing about the fixed414

point leads to the dispersion relation415

λ(k) = −1 + µW̃(k), (4.2)416

whereW̃(k) is the Fourier transform of the weight distributionW(x). Suppose that the fixed point undergoes a417

primary pattern forming instability at the critical parameter valueµ = µc, whereµ−1
c = W̃(kc). Expanding the418

dispersion equation about the critical wavenumberkc and using the fact that̃W(kc) is a maximum gives419

λ(k) = −1+ (µc +#µ)
(
W̃(kc)+ 1

2
(k − kc)

2 d2W̃

dk2
(kc)+ · · ·

)
=#µW̃(kc)− α(k − kc)

2 + · · · , (4.3)
420

where#µ = µ − µc andα = −µcW̃
′′
0 (kc)/2 > 0. Introducing the small parameterε and setting#µ = ε2 we421

see that the unstable modes occupy a band of widthO(ε) and the rate of growth of the patterns isO(ε2). The422

interaction of two or more modes within the unstable band gives rise to a spatial modulation of the periodic pattern423

on a length-scale that isO(1/ε) compared to the pattern wavelength 2π/kc. Within a multiple scale perturbation424

expansion this suggests introducing a slow spatial scaleX = εx. Similarly, the slow growth rate of the patterns425

implies that there is a slow time scaleT = ε2t. Given these slow spatial and temporal scales, we define the following426
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multiple scale version of the integro-differential evolutionEq. (4.1):427428

ε2
∂a(x,X, T)

∂T
= −a(x,X, T)+

∫
W(x− x′)f(a(x′, X+ ε(x′ − x), T))dx′

429

+ κD(x)
∫
J(x− x′)f(a(x′, X+ ε(x′ − x), T))dx′ + h0. (4.4)

430

Note that we have explicitly taken into account the nonlocal shift in the slow spatial coordinateX by an amount431

ε(x′−x). The particular form ofEq. (4.4)is motivated by the observation that it satisfies the following two properties:432

(i) a perturbation expansion inε reproduces the dispersion relation(4.3); (ii) in the case of exponential weights it433

reduces to an equivalent multiple scale differential equation (seeAppendix A).434

In order to carry out a perturbation expansion ofEq. (4.4), we have to specify theε-dependence of the inhomo-435

geneityD and the couplingκ. For concreteness, we consider the periodic functionD(x) = D0[e2πix/d + e−2πix/d ]436

with the lattice spacingd satisfying thenear-resonance condition437

2π

d
= n

m
(kc + εq), n �= m (4.5)438

for integersn,m. If q ≡ 0 then the lattice spacingd is rationally related to the critical wavelength of the roll pattern.439

The amplitudeD0 of the spatial inhomogeneity can be absorbed intoκ so that, in terms of fast and slow variables440

D(x,X) = einkcx/m einqX/m + c.c. (4.6)441

Given this form forD, we carry out a perturbation expansion ofEq. (4.4)in three distinct coupling regimes: (i)442

κ = 0; (ii) κ = O(ε2); (iii) κ = O(ε). The smallness ofκ reflects both the relative strength of the horizontal443

connections and the amplitude of the inhomogeneity. In each case we substitute the series expansion444

a = a0 + εa1 + ε2a2 + ε3a3 + · · · (4.7)445

into Eq. (4.4)and expand the firing-rate functionf(a) as a Taylor series abouta0446

f(a) = f(a0)+ µ(a− a0)+ g2(a− a0)
2 + g3(a− a0)

3 + · · · , (4.8)447

whereg2 = f ′′(a0)/2, g3 = f ′′′(a0)/6. We also expandan(x′, X + ε(x′ − x), T) as a Taylor series in powers of448

ε(x′ − x). Finally, we collect terms at successive orders ofε to obtain a hierarchy of equations for the components449

an(x,X, T); solvability conditions arising from the higher-order equations then determine the amplitude equation450

for the slow behavior of the critical modea1:451

a1(x,X, T) = A(X, T)eikcx + A∗(X, T)e−ikcx, (4.9)452

whereA(X, T) represents a slowly varying envelope of the roll pattern. Assuming the near-resonance condition(4.5),453

we show that the amplitude equation in the presence of weak spatially periodic modulated horizontal connections454

takes the general form455

∂A

∂T
= ωA+ α∂

2A

∂X2
− β|A|2A+ γA∗n−1 einqX, (4.10)456

whereγ ∼ κm.457

An amplitude equation of the form(4.10)was previously derived within the context of fluid convection under458

external periodic forcing[15], where it was used to investigate commensurate–incommensurate transitions and459

quasiperiodic structures associated with the mismatch between the periodicities of the forcing and the critical mode.460

In Section 5we will reformulate these results in terms of the mismatch in the periodicities of cortical activity461
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patterns and the underlying functional architecture of cortex. Note that the general form of the amplitudeEq. (4.10)462

can be derived using symmetry arguments[15]. For example, the first two terms on the right-hand side can be463

obtained by Fourier–Laplace transforming the dispersion relation(4.3) and rescaling. In the homogeneous case464

(γ = 0), the amplitude equation is equivariant with respect to the transformationA → Aeiφ, which reflects the465

translation invariance of the system. The lowest-order nonlinear term that has this symmetry is a cubic. The final466

term on the right-hand side ofEq. (4.10)reflects a discrete phase symmetry that persists when the inhomogeneity467

D(r) satisfies the near-resonance condition(4.5). Note that symmetry arguments are not sufficient to determine468

the model-dependent coefficientsα, β, γ, ω, which can only be calculated explicitly by carrying out some form of469

perturbation expansion. Given the nonlocal nature of the original evolutionEq. (2.10), it is worthwhile presenting470

the details of this calculation here. Moreover, the actual value of the coefficients is important. First,α determines the471

effective coherence lengthξX of long-wavelength fluctuations according toξX = √
α/ε; the validity ofEq. (4.10)472

requires thatξX � L, whereL is the system size. Second, the sign ofβ determines whether or not the bifurcation473

is supercritical or subcritical. Third, all of the coefficients determine whether or not pinning occurs (seeSection 5).474

4.2. Case κ = 0475

Settingκ = 0 in Eq. (4.4)and expanding toO(ε3) leads to the following set of equations:476

a0 = W̄0f(a0)+ h0, (4.11)477

Ha1 = 0, (4.12)478

Ha2 = W ∗ [g2a
2
1 + µcQ1a1] ≡ b2, (4.13)479

Ha3 = −∂a1

∂T
+W ∗ [a1 + g3a

3
1 + 2g2a1a2 + µcQ2a1 + µcQ1a2 + 2g2a1Q1a1],≡ b3. (4.14)480

Here∗ denotes convolution with respect to the fast spatial variables481

W ∗ a(x) =
∫
W(x− x′)a(x′)dx′. (4.15)

482

H is the linear operator483

Ha = a− µcW ∗ a, (4.16)484

and485

W ∗Qna(x,X, T) = 1

n!

∫
W(x− x′)(x′ − x)n ∂

na(x′, X, T)
∂Xn

dx′. (4.17)
486

TheO(1) equation determines the fixed pointa0 whereas theO(ε) equation has the critical roll solution(4.9).487

A dynamical equation for the complex amplitudeA(X, T) can be derived by considering solvability conditions488

for the inhomogeneous linearEqs. (4.13) and (4.14), which have the formLan = bn for n = 2,3. Since the linear489

operatorH has a one-dimensional kernel, namely the critical mode(4.9), each inhomogeneous equation only has490

a solution ifbn is orthogonal to the kernel ofH†, the operator adjoint toH. If we define the inner product of two491

periodic functionsU(x), V(x) according to492

〈V |U〉 = 1

L

∫ L

0
V ∗(x)U(x)dx, (4.18)

493
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whereL is the system size, thenH is actually self-adjoint. Hence, settingV = eikcx we obtain the solvability494

conditions495

〈V |bn〉 = 0, (4.19)496

together with their complex conjugates. (Recall that under periodic boundary conditionskc = 2πnc/L for some497

integernc so thatV is anL-periodic function.)498

In order to simplify the calculation we takeg2 = 0, since this does not alter the structure of the resulting amplitude499

equation. TheO(ε2) Eq. (4.13)then becomesHa2 = µcW ∗Q1a1, where500501

W ∗Q1a1(x,X, T) =
∫
W(x− x′)(x′ − x)∂A(X, T)

∂X
eikcx′dx′ + c.c. = −i

∂A(X, T)

∂X

∂W̃(k)

∂k

∣∣∣∣∣
k=kc

= 0,
502

(4.20)503

sinceW̃ ′(kc) = 0. Hence, theO(ε2) Eq. (4.13)reduces toHa2 = 0 with solutiona2 ∼ a1. [In the caseg2 �= 0 there504

are also zeroth and second-order harmonic contributions toa2.] We are thus free to seta2 = 0 so that theO(ε3)505

solvability condition is506 〈
V |∂a1

∂T

〉
= 〈V |W ∗ [a1 + g3a

3
1 + µcQ2a1]〉. (4.21)

507

The termW ∗Q2a1 can be determined along similar lines toW ∗Q1a1 and we find that508509

W ∗Q2a1(x,X, T)= 1

2

∫
W(x− x′)(x′ − x)2∂

2A(X, T)

∂X2
eikcx′dx′ + c.c.

510

= −1

2
eikcx ∂

2A(X, T)

∂X2

∂2W̃

∂k2

∣∣∣∣∣
k=kc

+ c.c. (4.22)
511

The various inner products inEq. (4.21)can now be evaluated straightforwardly. For example512

〈V |W ∗ a3
1〉 = 1

L

∫ L

0
e−ikcxW̃(kc)

[
Aeikcx + A∗ e−ikcx

]3
dx = 3W̃(kc)A|A|2. (4.23)

513

Collecting together all our results then leads to the Ginzburg–Landau amplitudeEq. (4.10)with coefficients514

ω = W̃(kc), α = −1
2µcW̃

′′(kc), β = −3g3W̃(kc), γ = 0. (4.24)515

4.3. Case κ = O(ε2)516

Settingκ = ε2κ0 in Eq. (4.4)and expanding toO(ε3) generates additional terms inEqs. (4.13) and (4.14):517

Ha2 = b2 + κ0DJ̄f(a0), (4.25)518

Ha3 = b3 + κ0µcDJ ∗ a1, (4.26)519

whereJ̄ = ∫
J(x)dx andD is given byEq. (4.6). Assuming for simplicity thatg2 = 0, we find thatb2 = 0 so that520

Eq. (4.25)becomesHa2 = κ0DJ0f(a0), which has the particular solution521

a2(x,X, T) = κ0J̄f(a0)

1 − µcW̃(nkc/m)
D(x,X). (4.27)

522
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Note that we are free to set the complementary part ofa2 to be zero such thata2 does not contribute to theO(ε3)523

solvability condition. The latter reduces toEq. (4.21)with an additional term arising from the horizontal interactions:524 〈
V |∂a1

∂T

〉
= 〈V |W ∗ [a1 + g3a

3
1 + µcQ2a1]〉 + κ0µc〈V |DJ ∗ a1〉. (4.28)

525

The final inner product on the right-hand side can be evaluated as follows:526527

〈V |DJ ∗ a1〉 = 1

L

∫ L

0
e−ikcx[einkcx/m einqX/m + c.c.]J̃ (kc)[A(X, T)e

ikcx + c.c.] dx
528

= δ2m,n ei2qXJ̃ (kc)A
∗(X, T). (4.29)529

Hence, whenκ = O(ε2) and the near-resonance condition(4.5)holds withn = 2m, the resulting amplitude equation530

is given by(4.10)for n = 2, with the coefficientsω, α, β satisfyingEq. (4.24)and531

γ = κ0µcJ̃ (kc). (4.30)532

We conclude that if the periodicity of the horizontal connections is approximately half the wavelength of the roll533

pattern at the primary instability,d ≈ π/kc, then the corresponding synaptic interactions can couple to the cubic534

order amplitude equation.535

4.4. Case κ = O(ε)536

Settingκ = εκ0 in Eq. (4.4)and expanding toO(ε3) generates additional terms inEqs. (4.12)–(4.14):537

Ha1 = κ0DJ̄f(a0), Ha2 = b2 + κ0µcDJ ∗ a1, (4.31)538

Ha3 = b3 + κ0DJ ∗ [µca2 + µcQ1a1 + g2a
2
1]. (4.32)539

We takeD to be given byEq. (4.6)withp satisfying the near-resonance condition(4.5). The solution of the first-order540

Eq. (4.31)now consists of complementary and particular parts. If the complementary solution is taken to be a roll541

pattern along thex-axis then542

a1(x,X, T) = A(X, T)eikcx + Γ einkcx/m einqX/m + c.c., (4.33)543

where544

Γ = κ0J̄f(a0)

1 − µcW̃(nkc/m)
. (4.34)

545

Settingg2 = 0 and substitutingEq. (4.33)into (4.32), we find that the particular solution fora2 is546547

a2(x,X, T)=A0 +A1 ei(n/m)kcx ei(n/m)qX +A2 ei(2n/m)kcx ei(2n/m)qX
548

+[A+ ei(1+n/m)kcx ei(n/m)qX +A− ei(1−n/m)kcx e−i(n/m)qX]A(X, T)+ c.c., (4.35)549

where550

A0 = κ0µcΓ J̃(nkc/m)

1 − µcW̃(0)
, A± = κ0µcJ̃ (kc)

1 − µcW̃(nkc/m± kc)
, (4.36)

551

A1 = µcΓ W̃
′(nkc/m)

1 − µcW̃(nkc/m)

nq

m
, A2 = κ0µcΓ J̃(nkc/m)

1 − µcW̃(2nkc/m)
. (4.37)

552
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The associated solvability condition requires: (i)J̃ (kc/2) = 0 whenm = 2n; (ii) J̃ (kc) = 0 whenn = 2m (at least553

to the given order ofε). We choose the complementary part ofa2 to be zero.554

TheO(ε3) solvability condition can be written as555 〈
V |∂a1

∂T

〉
= 〈V |W ∗ [a1 + g3a

3
1 + µcQ2a1]〉 + µc〈V |W ∗Q1a2〉 + κ0µc〈V |DJ ∗ [Q1a1 + a2]〉. (4.38)

556

Eq. (4.35)together with theO(ε2) solvability conditions imply that〈V |W ∗ Q1a2〉 = 0. Eq. (4.17), (4.22) and557

(4.23)imply that558

W ∗Q2a1 = −1

2
eikcxW̃ ′′(kc)

∂2

∂X2
A(X, T)+ c.c.+ ΓW ∗Q2D (4.39)559

with560

W ∗Q2D = 1

2

(nq

m

)2
einkcx/m einqX/mW̃ ′′(nkc/m)+ c.c. (4.40)561

Thus562

〈V |W ∗Q2a1〉 = −1

2
W̃ ′′(kc)

∂2

∂X2
A(X, T). (4.41)563

Expandinga3
1 usingEq. (4.33)yields564

〈V |W ∗ a3
1〉 = g3W̃(kc)(3A|A|2 + 6|Γ |2A+ 3δn,3mA

∗2Γ e3iqX + Γ 3δ3n,m eiqX). (4.42)565

Eqs. (4.17), (4.22) and (4.33)show that566

J ∗Q1a1 = −i
∂A∗

∂X
eikcxJ̃ ′(kc)+ nqΓ

m
einkcx/m einqX/mJ̃ ′(nkc/m)+ c.c., (4.43)567

and hence (forn �= 2m,m �= 2n)568

〈V |DJ ∗Q1a1〉 = 0. (4.44)569

Finally, Eq. (4.35)implies that570

〈V |DJ ∗ a2〉 = A2J̃ (2kc/3)e
iqXδ3n,m + [A+J̃ ([1 + n/m]kc)+A−J̃ ([1 − n/m]kc)]A. (4.45)571

Combining all of the above results, we deduce that whenκ = O(ε) and the near-resonance condition(4.5) holds572

with n = 3m, the resulting amplitude equation is given by(4.10)for n = 3, with the coefficientsα, β satisfying573

Eq. (4.24), and574575

ω = W̃(kc)(1 + 6g3|Γ |2)+ κ0µc[A+J̃ ([1 + n/m]kc)+A−J̃ ([1 − n/m]kc)], γ = 3g3W̃(kc)Γ.576

(4.46)577

Similarly, if m = 3n then we obtainEq. (4.10)for n = 1 with γ given by578

γ = κ0µcA2J̃ (
2
3kc). (4.47)579

5. Commensurate–incommensurate transitions in cortex580

The amplitudeEq. (4.10)was previously derived using symmetry arguments within the context of a convective581

fluid system with spatially periodic forcing[15]. By studying solutions of this equation, it was shown how competition582
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between the periodicities of the external forcing and the critical modes of a primary pattern forming instability583

could lead to commensurate–incommensurate transitions mediated by soliton-like phase disturbances[15,29]. In584

this section we review the basic theory of commensurate–incommensurate transitions, and discuss its implications585

for cortical pattern formation.586

First, it is useful to rewriteEq. (4.10)in the rescaled form587

∂A

∂T
= ωA+ ∂2A

∂X2
− |A|2A+ γA∗n−1 einqX, (5.1)588

whereX→ X/
√
α,A→ √

βA, q → √
αq andγ → γβ(2−n)/2. SettingA = ReiΘ, we obtain the pair of equations589

∂R

∂T
= ωR− R3 + ∂2R

∂X2
−
(
∂Θ

∂X

)2

R+ γRn−1 cos [n(Θ− qX)], (5.2)
590

and591

R
∂Θ

∂T
= R∂

2Θ

∂X2
+ 2

∂R

∂X

∂Θ

∂X
− γRn−1 sin [n(Θ− qX)]. (5.3)592

These have stationary solutions of the form593

Θ = Θ0(X) = qX + pπ

n
, R = R0 (5.4)594

with R0 satisfying595

ω − q2 − R2
0 + γ(−1)pRn−2

0 = 0 (5.5)596

for integersp. These represent uniform roll patterns corresponding to the unstable band of modes close to the597

primary instability.598

We investigate the stability of the stationary solutions by substituting599

R = R0 + r(X, T), Θ = Θ0(X)+ φ(X, T) (5.6)600

into Eqs. (5.2) and (5.3)and expanding to first-order inφ, r. This yields the pair of linear equations601

∂r

∂T
= −Ωrr + ∂2r

∂X2
− 2R0q

∂φ

∂X
, (5.7)602

and603

∂φ

∂T
= −Ωφφ + ∂2φ

∂X2
+ 2q

R0

∂r

∂X
(5.8)

604

with605

Ωr = −[ω − q2 − 3R2
0 + (−1)p(n− 1)γRn−2

0 ], (5.9)606

and607

Ωφ = (−1)pγnRn−2
0 . (5.10)608

It immediately follows fromEqs. (5.8) and (5.10)that the stationary solutions for oddp are unstable with respect609

to phase perturbations, sinceΩφ < 0. Now supposeΩr � Ωφ > 0 for evenp, so that the amplitude perturbations610

r adiabatically follow the phase fluctuationsφ. We can then make the approximation611

Ωrr = −2R0q
∂φ

∂X
, (5.11)612
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which leads to the following phase equation forΦ = Θ− qX [15]:613

∂Φ

∂T
= ∆∂

2Φ

∂X2
−K sin(nΦ) = − δV

δΦ
, (5.12)614

where615

∆ = 1 − 4q2

Ωr
, K = γRn−2

0 , (5.13)
616

and617

V =
∫ [

∆

2
(∂XΦ+ q)2 − K

n
cos(nΦ)

]
dx. (5.14)

618

Eq. (5.12)is identical to the sine-Gordon equation used to describe commensurate–incommensurate transitions in619

solids, for which structural configurations correspond to minima of the effective potentialV [4]. For the purposes620

of the current discussion, we will neglect theq-dependence of∆ and assume that it is fixed. We note, however, that621

it is possible for∆ to become negative asq increases, leading to the analog of an Eckhaus instability (see[17,46]622

for more details). From well known properties of the sine-Gordon equation, the following results then hold:623

1. There exists a critical valueq0 defined by624

q2
0 = 16K

nπ2#
, (5.15)625

such that whenq < q0 the minimum of the potentialV corresponds to a locked stateΦ = 2πp/n. Recall thatq626

is a measure of the mismatch between the spatial frequencies of the primary roll pattern and the cortical lattice627

as specified by the near-resonance condition(4.5). It follows that when this mismatch is sufficiently small, the628

activity pattern is pinned to the lattice witha(x) ∼ cos(2πmx/nd). In the particular casen = 2 this corresponds629

to the even mode shown inFig. 9. Thus our nonlinear analysis has established that the even (odd) mode is stable630

(unstable) to phase fluctuations and that the pinning of the stable mode persists over a range of values of the631

pattern wavenumber.632

2. When the mismatchq > q0, the minimum of the potentialV occurs for soliton-like solutions of the sine-Gordon633

equation. A single soliton solution is of the form634

Φ(X) = 4

n
tan−1exp

(√
nKX

)
. (5.16)635

This describes a kink centered atX = 0 that separates two regions of the roll pattern each of which is com-636

mensurate with the cortical lattice, one with phaseΦ = 0 and one with phaseΦ = 2π/n. More generally, the637

solutions are regularly spaced solitons as illustrated inFig. 11. The average phase-shift of the roll pattern per638

unit length is then639

ρ = 2π

nl
, (5.17)640

wherel is the separation between neighboring kinks. Equivalently,ρ is a measure of the soliton density. It can641

be shown that642

ρ

q
= 4

π2
K(η)E(η), (5.18)

643

whereK andE are complete elliptic integrals of first and second kind, andη satisfies the equation644

q0

q
= πη

2E(η)
. (5.19)

645
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cortical position x

Φ

2π/n

4π/n

6π/n

l

Fig. 11. Multi-soliton solution to the sine-Gordon equation that describes regions of the roll pattern that are commensurate with the cortical
lattice separated by domain walls of mean separationl.

An asymptotic analysis of these equations establishes thatρ ∼ log(q− q0) for q → q0 [4]. We conclude that if646

the mismatch between the periodicities of the activity pattern and cortical lattice is increased such thatq > q0,647

then there is a commensurate–incommensurate transition to a state in which the activity pattern is no longer648

pinned to the lattice due to the formation of soliton-like phase defects.649

6. Discussion650

In this paper we have shown how periodic inhomogeneities in the distribution of long-range horizontal connections651

can lock spontaneously formed activity patterns in visual cortex to an underlying lattice of periodic feature maps.652

There are a number of interesting issues that arise from this: (i) We have focused on the distribution of CO blobs in653

visual cortex, since this is one candidate structure for breaking the translation symmetry of cortex. However, the same654

methods could also be applied to other lattice-like structures such as the distribution of orientation singularities. The655

CO blobs appear to coincide with about half the singularities, namely those associated with low spatial frequencies656

[26]. (ii) We have assumed for simplicity that the cortex has a regular crystalline-like structure. A more realistic657

model would need to take into account the effects of topological and substitutional disorder within this structure.658

(iii) Our mechanism for the pinning of cortical patterns assumes that there exist long-wavelength phase fluctuations659

as described by solutions of the amplitudeEq. (4.10). The validity of this equation requires that the size of cortex660

is sufficiently large to support such fluctuations, with the latter having an effective coherence length of
√
α/ε.661

Otherwise, boundary effects are likely to play an important role.662

It is important to emphasize that the cortical activity patterns discussed in this paper do not generate the underlying663

feature maps, rather they occur in a neural medium that has a set of feature maps hardwired into it. For example, if664

a(r) is the activity at positionr in the cortical sheet andF(r) represents the corresponding feature preferences of665

the neurons atr, then the level of activity codes for these particular features. The feature mapsF(r) are themselves666

determined by the feedforward projections to the cortex from the LGN. An interesting question is how the feedfor-667

ward connections develop in the immature cortex in order to form the feature maps in the first place? Consider as668

an example the development of ocular dominance columns. Activity-based developmental models typically involve669

some Hebbian-like competitive mechanism for the modification of left/right eye feedforward connections under670
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the assumption that the intracortical connections are fixed[43]. Intracortical interactions consisting of short-range671

excitation and longer-range inhibition mediate a pattern forming instability with respect to the feedforward synap-672

tic weights, which can lead to the formation of alternating stripes of left and right eye dominated columns[42].673

Interestingly, the intracortical interactions are usually taken to be homogeneous, so there is no intrinsic mechanism674

for aligning the centers of the columns with the CO blobs, as is observed in macaques, for example[36]. This675

latter property is clearly seen in the optical imaging data ofFig. 1, and is further illustrated schematically inFig. 4.676

We hypothesize that such an alignment may be due to a pinning mechanism analogous to the one considered in677

this paper. In order for pinning of the feedforward connections to occur, there must exist some source of spatial678

inhomogeneity in the lateral interactions that correlates with the CO blobs early in development. There is growing679

experimental evidence to support such a claim. For example, the spacing and packing arrangement of CO blobs680

is not affected by strabismus in macaques[33] nor by early visual deprivation in cats[34]. The lack of influence681

of visual experience on their development suggests that the CO blobs may reflect an innate columnar organization682

within the immature cortex that follows the arrangement of intrinsic chemical markers. A number of anatomical683

markers are arranged in a patchy fashion during development, including the NMDA receptor, which plays a key role684

in experience-dependent plasticity[45]. These markers could mediate the lateral interactions early in development685

as well as provide a substrate for the formation of the patchy horizontal connections[13,39,14].686
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Appendix A690

In this appendix we show that our prescription for introducing a slow spatial scale into the nonlocal integro-691

differential Eq. (4.4)is consistent with the corresponding scaling used in PDEs. Since the treatment of time is692

identical in both cases, we focus on the following time-independent integral equation693

a(x) =
∫ ∞

−∞
W(x− x′)f(a(x′))dx′. (A.1)

694

In the case of an exponential weight distribution,W(x) = e−|x|/2, the convolution over space can be eliminated695

using the identity696

(1 − ∂xx)W(x− x′) = δ(x− x′), (A.2)697

where∂xx = ∂2/∂x2. That is,Eq. (A.1)is equivalent to the differential equation698

(1 − ∂xx)a(x) = f(a(x)). (A.3)699

Let us now apply the operator 1− ∂xx to the corresponding multiple scale version ofEq. (A.1)700

a(x,X) =
∫ ∞

−∞
W(x− x′)f(a(x′, X+ ε(x′ − x)))dx′, (A.4)

701

which we can rewrite as702

a(x, X̂+ εx) =
∫ ∞

−∞
W(x− x′)f(a(x′, X̂+ εx′))dx′, (A.5)

703
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under the change of coordinatesX̂ = X− εx. This gives704

(1 − ∂xx)a(x, X̂+ εx) = f(a(x, X̂+ εx)), (A.6)705

or706

(1 − [∂x + ε∂X]2)a(x,X) = f(a(x,X)). (A.7)707

Eq. (A.7)is the expected multiple scale version of the differentialEq. (A.3).708
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