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Abstract

A mathematical model of interacting hypercolumns in primary visual cortex (V1) is presented that incorporates details con-

cerning the geometry of local and long-range horizontal connections. Each hypercolumn is modeled as a network of interacting

excitatory and inhibitory neural populations with orientation and spatial frequency preferences organized around a pair of pin-

wheels. The pinwheels are arranged on a planar lattice, reflecting the crystalline-like structure of cortex. Local interactions within a

hypercolumn generate orientation and spatial frequency tuning curves, which are modulated by horizontal connections between

different hypercolumns on the lattice. The symmetry properties of the local and long-range connections play an important role in

determining the types of spontaneous activity patterns that can arise in cortex.

� 2003 Published by Elsevier Ltd.
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1. Introduction

One of the major simplifying assumptions in most

large scale models of cortical tissue is that the interac-
tions between cell populations are homogeneous and

isotropic, that is, the pattern of connections is i nvariant

under arbitrary rotations, translations and reflections in

the cortical plane (for a review see [21]). However, these

assumptions are no longer valid when the detailed mi-

crostructure of cortex is taken into account. This is ex-

emplified by the functional and anatomical organization

of primary visual cortex in cat and primates, which has a
distinctly crystalline-like structure. Consider, for exam-

ple, the distribution of cytochrome oxidase (CO) blobs

[26,27]. These regions, which are about 0.2 mm in dia-

meter and about 0.6 mm apart, coincide with cells that

are more metabolically active and hence richer in their

levels of CO. Moreover, the distribution of CO blobs is

correlated with a number of periodically repeating fea-

ture maps in which local populations of neurons re-
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spond preferentially to stimuli with particular properties

such as orientation, ocular dominance, and spatial fre-

quency [5–8,33] (see Figs. 1–3). It has thus been sug-

gested that the CO blobs could be the sites of
functionally and anatomically distinct channels of visual

processing [19,36,49,54].

Another manifestation of the crystalline-like struc-

ture of cortex is the distribution of singularities in the

orientation preference map, as revealed, for example, by

microelectrode recording [28,29,31] and optical imaging

[5–7]. These methods show that orientation preference

changes continuously as a function of cortical location
except at singularities or pinwheels, where the scatter or

rate of change of differing orientation preference label is

much higher, so that there is a weakening of orientation

selectivity at the population level. Away from the pin-

wheels there exist approximate linear zones within which

iso-orientation regions form parallel slabs. The linear

zones tend to cross the borders of ocular dominance

stripes at right angles, whereas the pinwheels tend to
align with the centers of ocular dominance stripes. CO

blobs are also located in the centers of ocular dominance

stripes and have a strong association with about half of

the orientation singularities. All of these features can be

seen in the optical image shown in Fig. 1.
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Fig. 1. Map of iso-orientation contours, ocular dominance boundaries

and CO blob regions of Macaque V1. Redrawn from [5].
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The distribution of spatial frequency preference

across cortex is less clear than that of orientation pref-

erence. However 2-DG studies [54] established that there

is a cortical map for spatial frequency in which low
Fig. 3. Map of iso-orientation contours and low spatial frequency preferences

to high. Redrawn from [8].

Fig. 2. Combined 2-DG and CO studies of V1. Regions of high DG uptake

regions of intersecting high DG and high cytox are coded yellow. Regions of

stimulus is an intermediate spatial frequency grating; in panel B it is a low spa

the cytox stains are spatially separated, whereas in panel B they overlap. Redr

reader is referred to the web version of this article.)
spatial frequency preference regions tend to coincide
with CO blobs, and intermediate preference regions tend

to avoid them. Fig. 2 shows some of these details. In-

triguingly, recent optical imaging data concerning spa-

tial frequency maps in cat suggest that those orientation

singularities which do not coincide with CO blobs cor-

respond to regions of high spatial frequency [8,33]. Fig.

3, for example, shows that some iso-orientation singu-

larities are surrounded by regions of low spatial fre-
quency preference located in a background of higher

spatial frequency preferences.

How does the crystalline-like structure of V1 manifest

itself anatomically? Two cortical circuits have been

fairly well characterized:

(1) There is a local circuit operating at sub-millimeter

dimensions consisting of a mixture of intracortical ex-
citation and inhibition. It has been suggested that such

circuitry provides a substrate for the recurrent amplifi-

cation and sharpening of the tuned response of cells to

local visual stimuli. The best known example is the ring

model of orientation preference and tuning [4,50], in
in Cat V1. Filled regions correspond to low spatial frequencies, unfilled

are color-coded red, regions of high CO staining are coded green, and

low DG uptake and low cytox activity are coded black. In panel A the

tial frequency one. It is apparent that in panel A the 2-DG uptake and

awn from [54]. (For interpretation with reference to colour artwork the



Fig. 4. Reconstruction of a tangential section through layers 2/3 of

macaque area V1, showing a CTB injection site and surrounding

transported orthograde and retrograde label. Redrawn from Ref. [1].
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which the local weights are assumed to vary as a func-
tion of the difference in orientation preference between

the pre-synaptic and post-synaptic cells. One of the basic

assumptions of the ring model is that the inhibitory

connections are more broadly tuned with respect to

orientation than the excitatory connections. This has

recently received experimental support in the ferret [47].

The most likely source of such inhibition is the basket

interneuron [37].
(2) The other circuit operates over a range of several

millimeters and is mediated by the horizontally spread-

ing axons of excitatory pyramidal neurons. These are

illustrated in Fig. 4. By matching anatomical projections

to optically imaged feature maps it has been found that

the horizontal connections in superficial layers II/III (of

cats and primates), which are broken into discrete ter-

minal fields with a very regular size and spacing [1,22–
25,46], tend to emphasize links between neurons with

similar functional properties [9,38,58]. Moreover, the

horizontal connections tend to link blob to blob regions

and interblob to interblob regions [58,59].

We conclude from these various experimental obser-

vations that the local and long-range circuitry of V1 has

a functional geometry, in the sense that the spatial dis-
tribution of connections is correlated with an underlying

set of feature maps. The feature maps in turn suggest

that V1 has a crystalline-like structure and can thus be

partitioned into fundamental domains or hypercolumns

[30,34].

In this paper we present a large-scale model of V1 and

its functional geometry, based on a lattice of interacting

hypercolumns. Each hypercolumn is modeled as a net-
work of interacting excitatory and inhibitory neural

populations with orientation and spatial frequency

preferences organized around a pair of pinwheels (see

Section 2). The pinwheels are arranged on a planar

lattice, reflecting the crystalline-like structure of cortex.

Following our own recent work on orientation and
spatial frequency tuning in a cortical hypercolumn
[13,14], the network topology of each hypercolumn is

taken to be that of a sphere, with the poles of the sphere

identified as low and high spatial frequency pinwheels

respectively (see Section 3). A model for the horizontal

connections linking different hypercolumns on the lat-

tice is then introduced, which incorporates some an-

isotropy in the distribution of the patches (see Section

4). We then shown how the symmetry properties of the
local and long-range connections play an important role

in determining the types of spontaneous activity pat-

terns that can arise in cortex (see Section 5). These

patterns consist of spatially extended tuning surfaces for

both orientation and spatial frequency.

We note that there are a number of reasons for being

interested in cortical pattern formation. One direct ap-

plication is to the theory of geometric visual hallucina-
tions [20], which has been a major focus of our own

recent work [10,15,16]. This theory proposes that the

spontaneous activity patterns generated in cortex are

seen as hallucinatory images in the visual field, whose

spatial scale is determined by the range of horizontal

connections and the retino-cortical map (see Section 6).

However, we also believe that such work can provide

insights into the normal functioning of the visual cortex.
Indeed, recent optical imaging experiments have re-

vealed that the cortex exhibits activity patterns in the

absence of external visual stimulation that resemble

those under conditions using single oriented stimuli [55].

Perhaps one way to understand the role of long range

horizontal connections in the contextual processing of

global stimuli is in terms of the way different stimuli

excite the basic eigenmodes of cortex as revealed under
hallucinatory conditions.
2. The cortex as a lattice of hypercolumns

On the basis of the 2-DG studies shown in Fig. 2,

De Valois and De Valois [17] proposed the models of V1

hypercolumns shown in Fig. 5 for cat and macaque.
These were modifications of the original icecube model

of a hypercolumn introduced by Hubel and Wiesel [28].

In the case of the cat, orientation and spatial frequency

preferences were taken to form orthogonal slabs sug-

gestive of a linear feature map (see Fig. 5A). This picture

was modified for macaque in order to include the CO

blobs. In the macaque the observation that the CO blob

regions respond preferentially to low spatial frequencies,
suggested that spatial frequency increases radially away

from the blobs. It is only relatively recently that CO

blobs have also been found in cat V1 [43]. Optical im-

aging studies of the associated spatial frequency map

[8,32,33] have suggested further modifications to the

original icecube model in which orientation and spatial

frequency preferences are organized around a pair of
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Fig. 5. (A) De Valois and De Valois’ modified icecube model of a Cat V1 hypercolumn. (B) The modified icecube model with CO blobs for Macaque

V1. Redrawn from [17].
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Fig. 6. Schematic diagram of a hypercolumn consisting of orientation

and spatial frequency preferences organized around a pair of pin-

wheels.

Table 1

Generators for the planar lattices and their dual lattices

Lattice L�1‘1 L�1‘2 L‘̂1 L‘̂2

Square ð1; 0Þ ð0; 1Þ ð1; 0Þ ð0; 1Þ
Hexagonal ð1; 0Þ 1

2
ð�1;

ffiffiffi
3

p
Þ ð1; 1ffiffi

3
p Þ ð0; 2ffiffi

3
p Þ

Rhombic ð1; 0Þ ðcos g; sin gÞ ð1;� cot gÞ ð0; csc gÞ
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orientation pinwheels corresponding to regions of high

and low spatial frequencies respectively (see Fig. 6).

Although the partitioning of the cortex into hyper-

columns has a degree of disorder, we assume that to a

first approximation each hypercolumn is a fundamental

domain K‘ of a planar lattice L of CO blobs with ‘ 2 L.
The lattice L is generated by two linearly independent

vectors ‘1 and ‘2:

L ¼ f‘ ¼ m1‘1 þ m2‘2 : m1;m2 2 Zg: ð2:1Þ

Let h be the angle between the two basis vectors ‘1 and
‘2. We can then distinguish three types of lattice ac-
cording to the value of h: square lattice ðh ¼ p=2Þ,
rhombic lattice ð0 < h < p=2; h 6¼ p=3Þ and hexagonal
ðh ¼ p=3Þ. Example fundamental domains for each of
these lattices are shown in Fig. 13 (see Section 4). After

rotation, the generators of the planar lattices are given

in Table 1. Also shown are the generators of the dual

lattice bL satisfying ‘̂i 
 ‘j ¼ di;j. The lattice spacing

L ¼ j‘1j ¼ j‘2j is taken to be the average width of a hy-
percolumn, that is, L � 1 mm.

Given the functional partitioning of cortex into a

lattice of hypercolumns, we now construct a dynamical
model of a single cortical layer. In order to proceed we

need to specify both the internal structure of each hy-

percolumn and how the hypercolumns are coupled to-

gether on the lattice. First, suppose that a local patch of
(excitatory and inhibitory) cells within a hypercolumn

can be uniquely labelled by the pair ð‘; P Þ where ‘ 2 L is
the position of the hypercolumn on the lattice and P
represents a set of feature preferences corresponding to

internal hypercolumn labels. Motivated by Fig. 6, we

take P ¼ fp;/g where p 2 ½pmin; pmax� denotes the spatial
frequency preference and / 2 ½0; pÞ the orientation

preference of a cell. (For simplicity, we neglect ocular
dominance here: this could be incorporated into the

model by introducing an additional discrete label for

left/right eye dominance). Typically, the bandwidth of a

hypercolumn is between three and four octaves, that is,

pmax � 2npmin with n ¼ 3:5. This is consistent with the
observations of Hubel and Wiesel [30], who found a two

octave scatter of receptive field sizes at each cortical

region they mapped. Let að‘; P ; tÞ denote the activity of
the population ð‘; P Þ at time time t, and suppose that a
evolves according to a Wilson–Cowan equation of the

form [56,57]

oað‘;P ; tÞ
ot

¼�aað‘;P ; tÞ þ hð‘;P ; tÞ

þ
X
‘02L

Z
wð‘;P j‘0;P 0Þrðað‘0;P 0; tÞÞDP 0: ð2:2Þ
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Fig. 7. Reduction of a hypercolumn. (A) Two identical rings of ori-

entation selective cells. (B) Two non-identical discs DH and DL of

orientation and spatial frequency selective cells, enclosing the high (H )
and low (L) orientation pinwheels respectively.

W(φ)
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Fig. 8. Schematic diagram illustrating the qualitative behaviour of the

local and long range horizontal weight distributions W ð/Þ, W Dð/Þ.
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Here a is a decay rate (associated with membrane
leakage currents or synaptic currents), hð‘; P ; tÞ is an
external input from the lateral geniculate nucleus

(LGN), and the distribution wð‘; P j‘0; P 0Þ is the strength
of connections from neurons at ð‘0; P 0Þ to neurons at
ð‘; P Þ with DP 0 an appropriately defined measure in

feature space. The nonlinear firing-rate function r is

assumed to be a smooth monotonically increasing

function of the form r½z�

r½z� ¼ 1

1þ e�cðz�fÞ ð2:3Þ

for constant gain c and threshold f.
We would now like to decompose w into local and

long-range parts reflecting the distinct cortical circuits

highlighted in Section 1. An attractive simplification

from a computational viewpoint is to assume that the

local connections mediate interactions within a hyper-

column whereas the patchy horizontal connections me-
diate interactions between hypercolumns. This suggests

a decomposition of the form

wð‘; P j‘0; P 0Þ ¼ d‘;‘0W ðP jP 0Þ þ bJDðj‘� ‘0jÞW DðP jP 0Þ;
ð2:4Þ

where W ðP jP 0Þ and W DðP jP 0Þ represent the dependence
of the local and long-range interactions on the feature

preferences of the pre- and post-synaptic cells, b is a

coupling parameter, and JDðxÞ with Jð0Þ ¼ 0 is a posi-

tive function that determines the variation in the
strength of the long-range interactions with Euclidean

distance on the lattice. However, as it stands, such a

model does not take into account the fact that the local

connections form a continuum across cortex so that, in

particular, they couple neighbouring hypercolumns by

forming connections across hypercolumn boundaries. In

order to incorporate this additional coupling into the

model, and to determine the detailed form of the local
coupling function W , it would be necessary to specify in
detail the spatial distribution of the orientation and

spatial frequency maps (see Fig. 1). This is the approach

taken by McLaughlin et al. [41], who have developed a

computational model of a hypercolumn that explicitly

incorporates details of the orientation map. However,

this model does not consider spatial frequency tuning

nor the effects of long range horizontal patchy connec-
tions [41]. An alternative approach is to consider a re-

duced model of a hypercolumn in which only a subset of

neurons within a hypercolumn are explicitly repre-

sented, with the remaining cells acting as an effective

background cell medium whose contribution is absorbed

into the various weight functions of Eq. (2.4).

One possibility is to highlight an annular region of

orientation selective cells (with fixed spatial frequency
preference) around each orientation pinwheel and to

take this as the reduced hypercolumn (see Fig. 7(A)). In

this reduction scheme the distinction between high and
low spatial frequency pinwheels is eliminated, leading to

a renormalized lattice L� with lattice spacing L=2. Each
hypercolumn is now labelled by the pair ð‘;/Þ, ‘ 2 L�,
and is taken to have the network topology of a ring.

Thus the weight distribution (2.4) and the evolution

equation (2.2) take the form

wð‘;/j‘0;/0Þ ¼ d‘;‘0W ð/ � /0Þ
þ bJDðj‘� ‘0jÞW Dð/ � /0Þ ð2:5Þ

and

oað‘;/; tÞ
ot

¼ �aað‘;/; tÞ þ
Z p

0

W ð/ � /0Þrðað‘;/0; tÞÞ d/
0

p

þ b
X
‘0 6¼‘

JDðj‘� ‘0jÞ
Z p

0

W Dð/ � /0Þ

� rðað‘0;/0; tÞÞ d/
0

p
þ hð‘;/; tÞ ð2:6Þ

with W ð/Þ, W Dð/Þ even, p-periodic functions of /. The
qualitative behaviour of the distributions W and W D for



pmin

pmax

orientation φ

spatial frequency p

Fig. 9. Spherical network topology. Orientation and spatial frequency

labels are denoted by ð/; pÞ with 06/ < p and pmin6 p6 pmax.
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this model is summarized in Fig. 8. The local weight
distribution W ð/Þ is assumed to consist of broadly

tuned inhibition and more narrowly tuned excitation

(the so-called ‘‘Mexican hat’’ function). On the other

hand, W Dð/Þ is taken to be a positive, narrowly tuned
distribution with W Dð/Þ ¼ 0 for all j/j > /c and

/c � p=2; the long-range connections thus link cells

with similar orientation preferences.

Eq. (2.6) describes a lattice of coupled ring networks,
each of which corresponds to the so-called ring model of

orientation tuning [4,50]. As has been shown previously,

local recurrent interactions within an isolated hypercol-

umn (idealized as a ring network) can amplify certain

Fourier components of network activity leading to sharp

orientation tuning curves, even when the LGN inputs are

weakly biased. This amplification mechanism provides

one explanation for the approximate contrast invariance
of the tuned response [4,50]. Equations similar to (2.6)

have subsequently been used to investigate how orien-

tation tuning is modulated by long range horizontal in-

teractions between hypercolumns [16,18,35, 42,51,52], as

well as the role of horizontal connections in the spon-

taneous generation of cortical activity patterns underly-

ing hallucinatory images [10,15]. However, it is clear that

these models neglect important features of the internal
structure of a hypercolumn illustrated in Fig. 6, namely

the presence of a pair of orientation pinwheels [5–7,44]

and associated variations in the spatial frequency selec-

tivity of cells [8,33]. This motivates the alternative re-

duction scheme for a hypercolumn shown in Fig. 7(B),

consisting of the union DL [ DH of two disc regions en-

closing the low (L) and high (H ) spatial frequency pin-
wheels respectively. Since the two discs are distinct, we
recover the original lattice L and the pair of feature labels
P ¼ fp;/g. It remains to specify the network topology of
the new hypercolumn model and the corresponding local

and long-range weight distributions W , W D.
3. Spherical model of a hypercolumn

We begin by discussing the internal structure of the

reduced hypercolumn model shown in Fig. 7(B). Sup-

pose that interactions with the background cortical tis-

sue leads to an effective identification or sewing together

of the two disc boundaries oDH and oDL. A well known

result from topology is that the resulting space is a

sphere. Identifying the north and south poles of the

sphere with the low and high spatial frequency pin-
wheels leads to our so-called spherical model of a cor-

tical hypercolumn [13,14] (see Fig. 9). It is important to

emphasize that the spherical topology is a mathematical

idealization of the effective pattern of local interactions

within a hypercolumn, and does not correspond to the

actual distribution of cells in the cortical plane. It turns

out that representing the hypercolumn as a sphere has a
number of desirable consequences [13,14]. In particular,

the associated dynamical model reproduces a number of

experimental observations regarding correlations be-
tween spatial frequency and orientation tuning curves

[33,39,40]. One particular example is the reduction in

orientation selectivity at high and low spatial frequency

pinwheels.

Let ðh;/Þ to be the angular coordinates on the sphere
with h 2 ½0; pÞ, / 2 ½0; pÞ then h determines the spatial
frequency preference p according to

h � QðpÞ ¼ p
logðp=pminÞ
logðpmax=pminÞ

: ð3:1Þ

That is, h varies linearly with log p. This is consistent
with experimental data that suggests a linear variation

of log p with cortical separation [33]. Given a spherical
topology, it is natural to construct a local weight dis-
tribution that is invariant with respect to coordinate

rotations of the sphere, that is, the symmetry group

O(3). This rotational symmetry, which generalizes the

O(2) circular symmetry of the ring model, implies that

the pattern of connections within the hypercolumn de-

pends only on the relative distance of cells on the sphere

as determined by their angular separation along geode-

sics or great circles. That is, given two points on the
sphere ðh;/Þ and ðh0;/0Þ their angular separation a is

cos a ¼ cos h cos h0 þ sin h sin h0 cosð2½/ � /0�Þ: ð3:2Þ
This suggests that the simplest non-trivial form for the

local weight distribution W ðP jP 0Þ with P ¼ ðh;/Þ and
P 0 ¼ ðh0;/0Þ is

W ðP jP 0Þ ¼ eW0 þ eW1ðcos h cos h0 þ sin h sin h0

� cosð2½/ � /0�ÞÞ: ð3:3Þ

The associated integration measure on the sphere is then
DP ¼ sin hdhd/=2p. In Fig. 10 we plot W ðP jP 0Þ as a
function of ðh;/Þ for h0 ¼ h, /0 ¼ 0 and eW1 > eW0. It can

be seen that away from the pinwheels (poles of the

sphere at h ¼ 0; p), cells with similar orientation excite
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each other whereas those with differing orientation in-

hibit each other. This is the standard interaction as-

sumption of the ring model [4,47,50]. On the other hand,

around the pinwheels, all orientations uniformly excite,
which is consistent with the fact that although the cells

around a pinwheel can differ greatly in their orientation

preference, they are physically close together within the

hypercolumn.

It is possible to construct a more general form of

O(3)-invariant weight distribution using spherical har-

monics. Any sufficiently smooth function f ðh;/Þ on the
sphere can be expanded in a uniformly convergent
double series of spherical harmonics

f ðh;/Þ ¼
X1
n¼0

Xn

m¼�n

anmY m
n ðh;/Þ: ð3:4Þ

The functions Y m
n ðh;/Þ constitute the angular part of the

solutions of Laplace’s equation in three dimensions, and

thus form a complete orthonormal set. The orthogo-

nality relation isZ p

0

Z p

0

Y m1�
n1

ðh;/ÞY m2
n2
ðh;/Þ sin hdhd/

2p

¼ 1

4p
dn1;n2dm1;m2 : ð3:5Þ

The spherical harmonics are given explicitly by

Y m
n ðh;/Þ ¼ ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
4p

ðn� mÞ!
ðnþ mÞ!

s
Pm
n ðcos hÞe2im/ ð3:6Þ

for nP 0 and �n6m6 n, where Pm
n ðcos hÞ is an associ-

ated Legendre function. (Note that we have adjusted the

definition of the spherical harmonics to take into ac-
count the fact / takes values between 0 and p.) The
action of SO(3) on Y m

n ðh;/Þ involves ð2nþ 1Þ � ð2nþ 1Þ
unitary matrices associated with irreducible representa-

tions of SUð2Þ [2]. From the unitarity of these repre-

sentations, one can construct an SO(3)-invariant weight

distribution of the general form

W ðP jP 0Þ ¼ 4p
X1
n¼0

eWn

Xn

m¼�n

Y m�
n ðh0;/0ÞY m

n ðh;/Þ ð3:7Þ
with eWn real. For simplicity, we neglect higher harmonic

contributions to W ðP jP 0Þ by setting eWn ¼ 0 for nP 2 so

that Eq. (3.7) reduces to Eq. (3.3) on rescaling eW1.
4. Anisotropic horizontal connections

Given that the long range horizontal connections

tend to link neurons with similar feature preferences,

one can construct an O(3)-invariant long range distri-

bution W D of the form

W DðP jP 0Þ ¼ H ½cos h cos h0 � sin h sin h0

� cosð2½/ � /0�Þ � cos a�; ð4:1Þ

where H ½x� ¼ 1 if xP 0 and is zero otherwise. The angle

a determines the degree of similarity in the orientation
and spatial frequency preference of the linked cells, and

hence the patch size. It follows that the distribution (2.4)

is invariant under the action of the group CL �Oð3Þ
where CL is the discrete symmetry group of the lattice L.
However, it is likely that in two dimensions the pattern

of patchy connections is more complicated than this.
For example, recent optical imaging experiments

combined with anatomical tracer injections suggest that

there is a spatial anisotropy in the distribution of patchy

horizontal connections, as illustrated in Fig. 11. It will

be seen from the left panel of Fig. 11 that the anisotropy

is particularly pronounced in the tree shrew, where dif-

fering iso-orientation patches preferentially connect to

neighboring patches in such a way as to form continu-
ous contours following the topography of the retino-

cortical map. That is, the major axis of the horizontal

connections tends to run parallel to the visuotopic axis

of the connected cells’ common orientation preference.

There is also a clear anisotropy in the patchy connec-

tions of primates, as seen in the right panel. However, in

this case most of the anisotropy can be accounted for by

the fact that there is a stretching in the direction or-
thogonal to ocular dominance columns [1,48]. It is

possible that when this stretching is factored out, there

remains a weak anisotropy correlated with orientation



Fig. 11. Lateral Connections made by V1 cells in Tree Shrew (Left panel) and Owl Monkey (Right panel) V1. A radioactive tracer is used to show the

locations of all terminating axons from cells in a central injection site, superimposed on an orientation map obtained by optical imaging. Redrawn

from [9,48].

Fig. 12. Cells at intermediate spatial frequencies send out horizontal

connections to cells in other hypercolumns in a direction parallel to

their common preferred orientation, whereas cells within blob regions

(at low spatial frequency pinwheels) connect to other blob regions in

an isotropic fashion (similarly for high spatial frequency pinwheels).

D6 D4 D2

Fig. 13. Holohedries of the plane.
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selectivity but this remains to be confirmed experimen-

tally. The possible functional role of this anisotropy has

been a major focus of our recent work on the dynamics

of orientation tuning in V1 [10,15,16].
Anisotropy in the horizontal connections can be in-

corporated into the coupled lattice model (2.2) by

modifying the weight distribution (2.4) along the fol-

lowing lines:

wð‘; P j‘0; P 0Þ ¼ d‘;‘0W ðP jP 0Þ þ bJDðj‘� ‘0jÞ
� W DðP jP 0ÞAgð/ � w‘;‘0 Þ ð4:2Þ

with w‘;‘0 ¼ argð‘� ‘0Þ, Agð/Þ ¼ Hðg � j/jÞ þ Hðg�
j/ þ pjÞ and W D given by Eq. (4.1). The parameter g
determines the degree of anisotropy, that is the angular

spread of the horizontal connections around the axis

joining cells with similar orientation preferences. An

elegant feature of the spherical model is that it naturally

incorporates the fact that, at the population level, there

is zero selectivity for orientation at the pinwheels. In

other words, the solution að‘; h;/Þ expanded in terms of
spherical harmonics is independent of / at h ¼ 0; p. This
implies that the lateral weight distribution (4.2) has to be

isotropic at the pinwheels. In order to incorporate any

anisotropy away from the pinwheels, we conclude that

the spread parameter has to be h-dependent, g ¼ gðhÞ
with gð0Þ ¼ gðpÞ ¼ p=2. This is illustrated in Fig. 12. It
is also possible that the coupling parameter b is itself

spatial frequency dependent. There is recent experi-
mental evidence indicating that some cells located out-

side the CO blobs have very little in the way of lateral

connections [59], thus leading to an effective reduction in

connectivity at the population level. Since the CO blobs

have a strong association with the orientation singular-

ities corresponding to low spatial frequencies [32,36] the

coupling may be larger around the low frequency pin-

wheels.
An interesting mathematical property of the aniso-

tropic weight distribution (4.2) is that it reduces the

symmetry group from CL �Oð3Þ to TL _þDn where TL
denotes the group of lattice translations and Dn, n ¼ 2, 4

or 6, is the lattice holohedry consisting of the set of

discrete rotations and reflections that preserve the lattice

(see Fig. 13). The associated group action is

‘s 
 ð‘; h;/Þ ¼ ð‘þ ‘s; h;/Þ; ‘s 2 TL;

n 
 ð‘; h;/Þ ¼ ðRn‘; h;/ þ nÞ;
j 
 ð‘; h;/Þ ¼ ðRj‘; h;�/Þ;

ð4:3Þ

where ðn; jÞ 2 Dn, Rn denotes the planar rotation

through an angle n and Rj denotes the reflection

ðx1; x2Þ 7! ðx1;�x2Þ. The corresponding group action on
a function a : L � S2 ! R is given by
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c 
 að‘; P Þ ¼ aðc�1 
 ð‘; PÞÞ for all c 2 TL _þDn ð4:4Þ

and the invariance of wlatðr; P jr0; P 0Þ is expressed as

c 
 wð‘; P j‘0; P 0Þ ¼ wðc�1 
 ð‘; P Þjc�1 
 ð‘0; P 0ÞÞ
¼ wð‘; P j‘0; P 0Þ:

It can be seen that the rotation operation comprises a

translation or shift of the orientation preference label /
to / þ n, together with a rotation or twist of the position
vector ‘ by the angle n. The spatial frequency is not
affected by rotations. The fact that the weight distribu-

tion is invariant with respect to this shift–twist action
has important consequences for the global dynamics of

V1 in the presence of anisotropic horizontal connections

[10,15].
5. Cortical pattern formation

Suppose, for concreteness, that there is a time-inde-
pendent external bias h such that að‘; P ; tÞ ¼ a0 is a fixed
point solution of Eq. (2.2). Setting að‘; P ; tÞ ¼ a0þ
ektað‘; P Þ and linearizing about the fixed point leads to
the eigenvalue equation

kað‘; P Þ ¼ �aað‘; PÞ

þ l
Z p

0

Z p

0

X
‘02L

wð‘; P j‘0; P 0Það‘0; P 0ÞDP 0 ð5:1Þ

with P ¼ ðh;/Þ, P 0 ¼ ðh0;/0Þ and DP 0 ¼ sin h0 dh0 d/0=4p.
Since the weight distribution w is bounded, it follows

that when the network is in a low activity state a0 such
that l ¼ r0ða0Þ � 0, any solution of Eq. (5.1) satisfies

Rek < 0 and the fixed point is linearly stable. However,

when the excitability of the network is increased, either

through the action of some hallucinogen or through

external stimulation, l increases. This can induce a
O l1

(A) l2

^

^

B.Z.

Fig. 14. Construction of the first Brillouin zone in (A) the recipr
Turing instability leading to the formation of sponta-
neous cortical activity patterns. In this section we derive

conditions for the onset of a Turing instability, and

discuss the nature of the resulting patterns. We do not

address the selection and stability of the patterns here: a

detailed review of weakly nonlinear analysis and am-

plitude equation methods is presented elsewhere [12].

Let us first consider the case of isotropic and homo-

geneous long-range connections. Substitution of Eqs.
(2.4), (3.3) and (4.1) into Eq. (5.1) gives

k þ a
l

� �
að‘; PÞ ¼

Z p

0

Z p

0

W ðP jP 0Það‘; P 0ÞDP 0

þ b
X
‘0 6¼‘

JDðj‘� ‘0jÞ

�
Z p

0

Z p

0

W DðP jP 0Það‘0; P 0ÞDP 0: ð5:2Þ

Since the weight distribution w is invariant under the
action of CL �Oð3Þ, it follows that the eigensolutions
are of the form

að‘; PÞ ¼ eik
‘Y m
n ðh;/Þ ð5:3Þ

for n 2 Z, �n6m6 n and k 2 bK � bL. Here k is re-
stricted to the first Brillouin zone bK of the reciprocal

lattice bL [3]. The first Brillouin zone is the fundamental

domain around the origin of the reciprocal lattice

formed by the perpendicular bisectors of the shortest
lattice vectors (of length 2p=L). Examples for the square
and hexagonal lattices are shown in Fig. 14. The cor-

responding eigenvalue k ¼ knðkÞ is ð2nþ 1Þ-fold degen-
erate such that

knðkÞ ¼ �a þ l eWn

h
þ beJ DðkÞ eW D

n

i
; ð5:4Þ

where eWn and eW D
n are the nth coefficients in the spherical

harmonic expansions of W and W D (see Eq. (3.7)) and
(B)

l1
^

l2
^

B.Z.

ocal square lattice and (B) the reciprocal hexagonal lattice.



Fig. 15. Tuning surfaces in the fp;/g plane for the spherical model of a
hypercolumn. Weight distribution is given by Eq. (3.3) with eW0 ¼ �1
and eW1 ¼ 1. The parameters of the compressive nonlinearity Q in Eq.

(3.1) are d ¼ 1:5 and p0 ¼ 2c=deg. (A) �h ¼ p=2 and �/ ¼ p=2, (B)
�h ¼ p=4 and �/ ¼ p=2.
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JDð‘Þ ¼ L2

4p2

Z
bK eJ DðkÞeik
‘ dk;

eJ DðkÞ ¼
X
‘2L

JDð‘Þe�ik
‘: ð5:5Þ

In the limiting case b ¼ 0, each isolated hypercolumn is

described by the spherical model [13,14]:

oað‘; P ; tÞ
ot

¼ �aað‘; P ; tÞ

þ
Z p

0

Z p

0

wðP jP 0Þrðað‘; P 0; tÞÞDP 0; ‘ 2 L:

ð5:6Þ

The eigenvalues Kn are now k-independent. Assuming

that eW1 > eWn for all n 6¼ 1, the condition for marginal

stability reduces to lc ¼ a= eW1. It can be shown that
there exists anO(3)-invariant submanifold of marginally

stable states involving linear combinations of the three

first order spherical harmonics [13]:

að‘; h;/Þ ¼
X

m¼0;�1
zmð‘ÞY m

1 ðh;/Þ ð5:7Þ

with z�1ð‘Þ ¼ z�1ð‘Þ and 2z�1z1 þ z0 independent of ‘. It
follows that the eigenmodes can be rewritten in the form

að‘; h;/Þ ¼ A½cos h cos �hð‘Þ þ sin h sin �hð‘Þ
� cosð2½/ � �/ð‘Þ�Þ�

¼ A
X

m¼0;�1
fmðh;/Þfmð�hð‘Þ; �/ð‘ÞÞ ð5:8Þ

with

f0ðh;/Þ ¼ cos h;

f1ðh;/Þ ¼ sin h cos 2/;

f�1 ¼ sin h sin 2/: ð5:9Þ

This solution represents a tuning surface for orientation
and spatial frequency with a solitary peak located at

ð�hð‘Þ; �/ð‘ÞÞ [13]. In Fig. 15 we show some typical tuning
surfaces obtained by numerically solving the rate equa-

tion (5.6) for fixed ‘ and projecting the solution onto the
ðp;/Þ-plane. Note that the tuning surface broadens

when the peak response is shifted towards either the

high or low spatial frequency pinwheel, reflecting the

reduction in orientation selectivity in these regions [14].
If the horizontal connections are now switched on,

there is a k-dependent splitting of the degenerate ei-

genvalue k1. Since, the long range connections are nar-
rowly tuned with respect to orientation and spatial

frequency, the corresponding spherical harmonic coef-

ficients eW D
n are only weakly dependent on n 2 Z. This

implies that the horizontal connections do not excite

other spherical harmonic components within a hyper-
column, and the condition for marginal stability of the

homogeneous fixed point is obtained from the eigen-

value equation
k1ðkÞ þ a
l

¼ a
lc

þ beJ DðkÞ; ð5:10Þ

where a positive factor eW D
1 has been absorbed into b.

Suppose that eJ DðkÞ has a minimum at k ¼ kc when
b < 0. The homogeneous fixed point is then marginally

stable at the critical value

blc ¼
alc

a þ blc
eJ DðkcÞ

: ð5:11Þ

Since eJ DðkÞ is invariant with respect to the corre-

sponding lattice holohedry Dn, all other wave vectors

related to kc by a discrete rotation will also be selected.

The marginally stable eigenmodes will thus be of the

form

að‘; h;/Þ ¼ Að‘Þ
X

m¼0;�1
fmðh;/Þfmð�h; �/Þ ð5:12Þ

for arbitrary constant phases �h, �/, and
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Að‘Þ ¼
X

j¼1;...;N
ujeikj
‘
h

þ �uje�ikj
‘
i
; ð5:13Þ

where uj is a complex amplitude with conjugate �uj. Here
N ¼ 2 for the square lattice with k1 ¼ kc and

k2 ¼ Rp=2kc, where Rn denotes rotation through an angle

n. Similarly, N ¼ 3 for the hexagonal lattice with
k1 ¼ kc, k2 ¼ R2p=3kc and k3 ¼ R4p=3kc.
As an illustrative example, consider a long range

distance function for the square lattice that satisfies

JDðjm‘1 þ n‘2jÞ ¼ dm;�1dn;0 þ dm;0dn;�1 þ A1dm;�1dn;�1

þ A2½dm;�2dn;0 þ dm;0dn;�2� ð5:14Þ

with A2 < A1 < 1. The corresponding Fourier transform

is

eJ DðkÞ ¼ 2ðcos kx þ cos ky þ A1½cosðkx þ kyÞ
þ cosðkx � kyÞ� þ A2½cos 2kx þ cos 2ky �Þ ð5:15Þ

for k ¼ ðkx; kyÞ. Contour plots of eJ DðkÞ as a function of
k are shown in Fig. 16 with k restricted to lie in the first
Brillouin zone. One can see that there is a global max-

imum at k ¼ 0 and four global minima, reflecting the
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Fig. 16. (A–C) Contour plot of eJ DðkÞ satisfying Eq. (5.15) for k ¼ ðkx; kyÞ
locations of global minima whereas filled square indicates location of

ðkx; kyÞ ¼ ð�p;�pÞ; (B) A1 ¼ 0:8 and A1 ¼ 0:6 with four minima inside the

ðkx; kyÞ ¼ ð�p; 0Þ and ðkx; kyÞ ¼ ð0;�pÞ; (D) Contour plot of eJ DðkÞ for nea
symmetry.
four-fold symmetry of the lattice. (Also shown is the
corresponding contour plot for nearest neighbour cou-

pling on an hexagonal lattice where there is a six-fold

symmetry). This means that in the excitatory regime

(b > 0) there is a bulk instability with respect to the

lattice, but a Turing instability with respect to orienta-

tion and spatial frequency. Thus each hypercolumn ex-

hibits a tuning surface with the same peak response. On

the other hand, in the inhibitory regime (b < 0) the
marginally stable modes have a critical wave number

kc 6¼ 0, implying that there is a Turing instability with

respect to both the internal and external degrees of

freedom.

The pattern generated by the eigensolution (5.12)

with kc 6¼ 0 consists of a distribution of tuning surfaces

across cortex whose peak response alternates between

the points ð�h; �/Þ and ðp � �h; �/ þ p=2Þ according to the
sign of the amplitude Að‘Þ. For wave vectors kc that are
commensurate with the lattice such alternations in sign

generate a periodic tiling of the cortical plane consisting

of stripes, hexagons or squares, whereas incommensurate

wave vectors generate quasiperiodic patterns. Interest-

ingly, if one highlights those regions of cortex that

correspond to high levels of activity one obtains patterns
-4 -3 -2 -1 0 1 2 3 4
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in the first Brillouin zone of the square lattice. Filled circles indicate

global maximum at origin. (A) A1 ¼ A2 ¼ 0 with four minima at

Brillouin zone boundary; (C) A1 ¼ 0:8, A2 ¼ 0 with four minima at

rest neighbour coupling on the hexagonal lattice showing a six-fold
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reminiscent of 2DG images. For example, if �h ¼ p=2
then the maximal response of each hypercolumn occurs

at h ¼ p=2 (intermediate spatial frequencies) and the

peak orientation alternates between �/ and the orthog-

onal orientation �/ þ p=2. One would then predict that
for intermediate spatial frequencies activity hotspots

would predominantly lie in the linear zones, just as in

Fig. 2A. On the other hand, if �h ¼ 0, p then the response
of each hypercolumn is approximately independent of
orientation preference and the maximal response alter-

nates between high and low spatial frequencies. Thus

one would expect the hotspots to coincide with either

high or low spatial frequency pinwheels, i.e. about 50%

should line up with CO blobs.

It turns out that if one allows for some anisotropy

in the horizontal connections along the lines of Eq.

(4.2), then the solutions that bifurcate from the ho-
mogeneous fixed point fall into one of three distinct

classes [12]:

ii(i) Odd oriented patterns

að‘; h;/Þ ¼ sin h
X

j¼1;...;N
ujeikj
‘
h

þ �uje�ikj
‘
i

� sinð2½/ � fj�Þ: ð5:16Þ

Each hypercolumn has a peak response at an in-

termediate spatial frequency and at an orientation
that is determined by a linear combination of plane

waves modulated by the odd p-periodic function
sinð2½/ � fj�Þ with fj the direction of the corre-

sponding wave vector, kj ¼ kcðcos fj; sin fjÞ.
i(ii) Even oriented patterns

að‘; h;/Þ ¼ sin h
X

j¼1;...;N
ujeikj
‘
h

þ �uje�ikj
‘
i

� cosð2½/ � fj�Þ: ð5:17Þ

Each hypercolumn has a peak response at an in-

termediate spatial frequency and at an orientation

that is determined by a linear combination of plane

waves modulated by the even p-periodic function
cosð2½/ � fj�Þ.

(iii) Non-oriented patterns

að‘; h;/Þ ¼ cos h
X

j¼1;...;N
ujeikj
‘
h

þ �uje�ikj
‘
i

ð5:18Þ

in which the peak response alternates between low
and high spatial frequency pinwheels.
The existence of these three types of solution reflects
the explicit breaking of O(3) symmetry, which induces a

splitting of the degenerate eigenmodes associated with

the three first-order spherical harmonics.
6. The retino-cortical map

Any spontaneously generated or stimulus-evoked

cortical activity pattern in V1 maps to a corresponding

real or hallucinatory image on the retina. Elsewhere we

have reconstructed such images in the case of the odd

and even oriented patterns given by Eqs. (5.16) and

(5.17) [10]. These patterns were first reduced to vector

fields on the cortical lattice L by determining the ori-
entation at which each hypercolumn had its maximal

response. The vector fields were then mapped back into

visual space under the inverse retino-cortical map,

leading to contoured images that reproduced a number

of common hallucinations. It is currently less clear how

to incorporate spatial frequency into this reconstruction,

although it is likely to generate textured as well as

contoured images. Here we shall restrict our discussion
to the simpler problem of how the retinal labels for

position, orientation and spatial frequency preference all

transform under the action of the retino-cortical map.

We approach this problem by considering the distribu-

tion of receptive field profiles across V1, and then show

how dilatation and rotation of a retinal image is

equivalent to translation of the corresponding activity

pattern in V1.
Assume that, for a single neuron, stimulus feature

preferences arise due to a weak feedforward bias in its

receptive field. A reasonable model of the two-dimen-

sional receptive field of a simple V1 neuron (in retinal

coordinates R ¼ fX ; Y g) is the difference of Gaussians

U0ðRÞ ¼
ffiffiffi
j

p

2prþ
exp

�
� 1

2r2þ
ðj2X 2 þ Y 2Þ

�
� a
2pr�

exp

�
� 1

2r2�
ðX 2 þ Y 2Þ

�
: ð6:1Þ

This represents a center-surround profile in which the

excitatory center is an ellipse with eccentricity j > 1

whose major axis runs along the Y -direction. The in-
hibitory surround is taken to be circular but with a

larger half width, r� > rþ. Taking the two dimensional

Fourier transform of u shows that

eU0ðqÞ ¼ exp

�
�

r2þq
2

2
ðj�2 cos2 u þ sin2 uÞ

�
� a exp

�
� r2�q

2

2

�
ð6:2Þ

for q ¼ fq;ug in polar coordinates. The function eU0ðqÞ
has a maximum at p ¼ fp;/g with / ¼ 0 and

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

r2� � j�2r2þ
ln

ffiffiffi
a

p
jr�

rþ

� �s
: ð6:3Þ

Setting rþ ¼ r and r� ¼ ĵr and taking ĵ, j, a to be
fixed, it follows that the spatial frequency p is inversely
proportional to the size r of the receptive field,
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p ¼ A
r
; A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

ĵ2 � j�2 ln
ffiffiffi
a

p
jĵ

h ir
ð6:4Þ

and we can rewrite U0 as

U0ðR; pÞ ¼
p

ffiffiffi
j

p

2pA
exp

�
� p2

2A2
ðj2X 2 þ Y 2Þ

�
� ap
2pĵA

exp

�
� p2

2A2ĵ2
ðX 2 þ Y 2Þ

�
: ð6:5Þ

We then define

UðRjR; pÞ ¼ U0ðT/½R� R�; pÞ ð6:6Þ
to represent the receptive field profile of a V1 neuron

centered at the retinal coordinate R ¼ fX ; Y g with ori-
entation preference / and spatial frequency preference

p, and

T/ ¼ cos/ � sin/
sin/ cos/

� 
: ð6:7Þ

Given a visual stimulus with intensity IðRÞ, the ef-
fective input to such a neuron will be of the form

hðR; pÞ ¼
Z

IðRÞUðRjR; pÞdR: ð6:8Þ

We now make the following ansatz: given a neuron with

orientation preference /, spatial frequency preference p
and receptive field center R, there exists a family of re-

ceptive fields generated by the action of dilatations and

rotations on the receptive field of the given neuron. This
ansatz is motivated by the idea that the representation of

images can be considered in terms of the cross-correla-

tion of an image with a template or filter that is equiv-

alent to a receptive field profile [45]. That is, given an

image in the visual field IðRÞ and a receptive field profile
UðRjR; pÞ, transformed via some symmetry group G,
then the cross-correlation of I and u with respect to
g 2 G is

hgðR; pÞ ¼
Z

IðRÞUðg�1RjR; pÞd2R: ð6:9Þ

Thus, let G be the group of dilatations R! aR and
rotations r! Twr in the retinal plane, where a > 0 and

Tw 2 SOð2Þ for 06w < 2p. It follows from Eq. (6.1) that

Uðg�1RjR; pÞ ¼ Uða�1T�wRjR; pÞ
¼ UðRjaTwR; a�1TwpÞ ð6:10Þ

which implies

hgðR; pÞ ¼ hðR0
; p0Þ; ð6:11Þ

where

R! R
0 ¼ aTwR ð6:12Þ

and

p! p0 ¼ a�1Twp: ð6:13Þ
The next major observation is that dilatations and ro-
tations in the retina correspond to translations in V1.

For there exists a well defined retino-cortical map

F : R! r between the receptive field center R and the

location r of a neuron in cortex. Except for a small re-

gion around the fovea, this map can be approximated

by the complex logarithm (see Fig. 17). That is, if

R ¼ fR;Hg in polar coordinates, then r � flogR;Hg
in Cartesian coordinates. Evidently if we introduce
the complex representation of R, Z ¼ R expðiHÞ, then
z ¼ log Z ¼ logRþ i �H ¼ xþ iy generates the complex

V1 representation. It follows that the action of dilata-

tions and rotations in the retina, Eq. (6.12), induces a

corresponding translation in the cortex

r! r0 ¼ F � aTw � F�1ðrÞ ð6:14Þ

such that

x0 ¼ xþ log a; y0 ¼ y þ w: ð6:15Þ

Moreover, writing Eq. (6.13) in polar coordinates shows

that there is a simultaneous shift in orientation and

spatial frequency according to

/ ! /0 ¼ / þ w; m ! m0 ¼ m � log a; ð6:16Þ

where m ¼ log p. Eqs. (6.15) and (6.16) imply that there is
a linear variation in orientation and (log) spatial fre-
quency across V1. Note that the decrease of spatial

frequency as one moves away from the fovea is consis-

tent with the observation that receptive fields tend to be

larger in the periphery.

Of course, the above picture is distorted at the local

level due to the presence of pinwheels. In order to in-

corporate this aspect, we imagine that the cortex is

partitioned into hypercolumns as detailed in Section 2,
with a given hypercolumn having a distribution of re-

ceptive field properties consistent with its underlying

pinwheel structure. We then assume that (on an ap-

propriately coarse-grained spatial scale) the receptive

field properties of all other hypercolumns are generated

by the action of dilatations and rotations as previously

described. It immediately follows that the relative area

of feature space covered by each hypercolumn is the
same. For example, although the range of spatial fre-

quencies within a hypercolumn is shifted downwards as

one moves away from the fovea, the bandwidth remains

invariant. It also follows that the cortical labels f/; mg
for orientation and (log) spatial frequency preference are

actually defined relative to the retinal coordinate R.

That is, if / ¼ /0 and m ¼ m0 at R ¼ ð1; 0Þ then

/ ¼ /0 � H; m ¼ m0 þ logR ð6:17Þ

at R ¼ fR;Hg. This makes the testable prediction that
the long range horizontal interactions tend to connect

regions of V1 with the same relative (rather than abso-

lute) orientation and spatial frequency preference.
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7. Discussion

We conclude from the above analysis that primary

visual cortex has a distinctly crystalline-like structure,

which is manifested by the distribution of CO blobs

and orientation pinwheels, and by the distribution of

patchy horizontal connections. In this paper we have

presented a large-scale dynamical model of this periodic

structure based on a lattice of interacting hypercol-

umns. Each hypercolumn is modeled as a network of
orientation and spatial frequency selective cells orga-

nized around a pair of pinwheels. We have shown that

the underlying crystalline structure can have a major

effect on the types of spontaneous activity patterns

generrated in cortex. In particular, doubly-periodic

patterns such as stripes, squares and hexagons can oc-

cur through spontaneous symmetry breaking of the

associated planar lattice group. Such activity patterns
are of particular interest, since they provide an expla-

nation for the occurrence of certain basic types of

geometric visual hallucinations. In previous continuum

models of cortical pattern formation, the double-
periodicty of the solutions was imposed by hand as a

mathematical simplification, rather than as a reflection
of a real physical lattice [10,20]. Thus our new work

provides a stronger link between the nature of hallu-

cinatory patterns and the actual structure of cortex.

Indeed, we hypothesize that the symmetries and length-

scales of these hallucinatory images are a direct con-

sequence of the geometry of cortical interactions as well

as the retino-cortical map.

It is clear that our model involves a number of major
simplifications. First, there is some degree of disorder in

the distribution of CO blobs and orientation pinwheels

so that it would be more appropriate to consider a dis-

ordered rather than an ordered lattice of hypercolumns.

Second, we have carried out a phenomenological re-

duction of the internal structure of each hypercolumn

along the lines illustrated in Fig. 7. Such a reduction

needs to be carried out in a more rigorous and system-
atic fashion, in order to fully account for how the local

and long-range connections are correlated with the two-

dimensional orientation and spatial frequency maps.

Alternatively, one could consider a continuum model of
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cortex that explicitly incorporates these correlations. A
preliminary analysis of such a model suggests that

double-periodicity in the feature maps can induce an

analog of Bloch waves found in crystalline solids [3], in

which activity patterns are localized around CO blobs or

around inter blob regions [11]. Finally, it would be in-

teresting to consider how the periodic structures high-

lighted in this paper actually develop in cortex, and

subsequently influence the development of other cortical
structures. Since many models of activity-based cortical

development involve some form of pattern forming in-

stability mediated by lateral connections [53], it is likely

that some of the techniques familiar in the study of or-

dered (and disordered) crystalline structures could also

be relevant here.
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