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A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized
to detect important features of visual images, namely local orientation and spatial frequency. Given the
existence in V1 of dual maps for these features, both organized around orientation pinwheels, we con-
structed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented
by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respect-
ively, to high and low spatial-frequency preferences.

In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states
on the sphere. We show how cortical amplification through recurrent interactions generates a sharply
tuned, contrast-invariant population response to both local orientation and local spatial frequency, even
in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of
our model is that this response is non-separable with respect to the local orientation and spatial frequency
of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-
frequency tuning towards that of the closest pinwheel at non-optimal orientations.

In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency prefer-
ence, unlike that for orientation preference, does not generate a faithful representation when amplified by
recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN
activity to generate a faithful representation, thus providing a new functional interpretation of the role of
this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken
to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the
two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency
representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate
the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive
fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression.
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1. INTRODUCTION

A prominent feature of the functional architecture of the
visual cortex (V1) is the existence of an orderly retinotopic
mapping of the visual field onto its surface, with left and
right halves of the visual field mapped onto the left and
right V1, respectively. Superimposed upon this are
additional maps reflecting the fact that neurons respond
preferentially to stimuli with particular features such as
orientation and ocularity (Hubel & Wiesel 1977; Ober-
mayer & Blasdel 1993; Swindale 1996). Maps of both
ocularity and orientation preference have been well
characterized in cat and monkey, via microelectrode rec-
ording (Hubel & Wiesel 1962, 1968, 1977) autoradio-
graphic studies using proline (Wiesel et al. 1974) or 2-
deoxyglucose (2-DG) (Hubel et al. 1978), and optical
imaging (Blasdel & Salama 1986; Bonhoeffer & Grinvald
1991; Blasdel 1992). The topography revealed by these
methods has several characteristic features (Obermayer &
Blasdel 1993). (i) Orientation preference changes continu-
ously as a function of cortical location, except at singular-
ities or pinwheels. (ii) There exist linear zones, ca.
750 �m × 750 �m in area (in macaques), bounded by pin-
wheels, within which iso-orientation regions form parallel
slabs. (iii) Linear zones tend to cross the borders of ocular
dominance stripes at right angles; pinwheels tend to align
with the centres of ocular dominance stripes. All these fea-
tures can be seen in the optical image shown in figure 1.

These observations suggest that the microstructure of
V1 is spatially periodic with a period of ca. 1 mm (in
primates). The fundamental domain of this tiling of the
cortical plane is the hypercolumn (Hubel & Wiesel 1974),
which contains the full range of orientation preferences
��[0,�] organized around pinwheels, with one set of pref-
erences for each ocular dominance column. The identifi-
cation of the hypercolumn as a basic cortical module is
still somewhat controversial (LeVay & Nelson 1991).
However, it has proved a very useful conceptual tool in
the development of large-scale dynamic models of cortical
function. In its original form, the hypercolumn was
organized in terms of linear zones of orientation prefer-
ence slabs and ocular dominance columns, as shown in
figure 2a. This was later modified to include the cyto-
chrome oxidase (CO) blobs observed in the macaque by
Horton & Hubel (1981) (see figure 2b) and only later
found in the cat (Murphy et al. 1995). The blobs are
regions of cells that are more metabolically active and
hence richer in their levels of CO. They tend to be located
at the centres of ocular dominance stripes and have a
strong association with approximately half the orien-
tation singularities.

The fact that orientation preference is a periodic quan-
tity suggests that the internal structure of a hypercolumn
can be idealized as a ring of orientation-selective wedges
or patches. In the past decade, several network models
have appeared based on such an idealization (Ben-Yishai
et al. 1995, 1997; Somers et al. 1995, 1998; Vidyasagar et
al. 1996; Mundel et al. 1997; Li 1999; Bressloff et al.
2000; Dragoi & Sur 2000; Stetter et al. 2000; Bressloff &
Cowan 2002a). These models have been used to investi-
gate the role of intra-cortical interactions in orientation
selectivity and tuning. The classical model of Hubel &
Wiesel (1962) proposes that the orientation preference of
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Figure 1. Iso-orientation (light) and ocular dominance (dark)
contours in a small region of macaque VI (redrawn from
Blasdel 1992, with permission).

a cortical neuron arises primarily from the geometric
alignment of the receptive fields of thalamic neurons in
the lateral geniculate nucleus (LGN) projecting to it. This
has been confirmed by several recent experiments (Reid &
Alonso 1995; Ferster et al. 1997). However, there is also
growing experimental evidence suggesting the importance
of intra-cortical feedback for orientation tuning. For
example, the blockage of extracellular inhibition in the
cortex leads to considerably broader tuning (Sillito 1975;
Nelson et al. 1994). Moreover, intracellular measurements
indicate that direct inputs from the LGN to neurons in
layer 4 of the visual cortex provide only a fraction of the
total excitatory inputs relevant to orientation selectivity
(Douglas et al. 1995). Several modelling studies have
shown how local recurrent interactions within an isolated
cortical hypercolumn (idealized as a ring network) can
amplify certain Fourier components of network activity
leading to sharp orientation tuning curves, even when the
LGN inputs are weakly biased (Ben-Yishai et al. 1995,
1997; Somers et al. 1995; Bressloff et al. 2000). Such an
amplification mechanism provides one possible expla-
nation for the approximate contrast invariance of the
tuned response. Subsequently, more large-scale models of
a cortex, based on a system of coupled ring networks, have
been used to investigate how orientation tuning is modu-
lated by long-range interactions between hypercolumns
(Mundel et al. 1997; Somers et al. 1998; Li 1999; Dra-
goi & Sur 2000; Stetter et al. 2000; Bressloff & Cowan
2002a).

Although ring models have been quite successful in
accounting for some aspects of the response properties of
hypercolumns, they have several limitations. For example,
they do not take into account the two-dimensional struc-
ture illustrated in figure 1, in which iso-orientation pin-
wheels alternate with linear zones, nor the presence of
ocular dominance columns. More significantly, for our
interest, they also neglect the spatial frequency selectivity of
V1 neurons. Such selectivity has been observed in many
physiological experiments. Recordings from cat and mon-
key striate cortex have established that a large number of
cells are narrowly tuned to spatial frequency. Figure 3, for
example, shows the responses of several macaque monkey
V1 cells to oriented gratings. The average bandwidth is
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Figure 2. (a) Hubel and Wiesel’s original icecube model of a
V1 hypercolumn, redrawn for the cat. (b) The icecube
model with CO blobs for macaque V1.
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Figure 3. Spatial frequency and orientation selectivity of cells
in macaque V1. The thresholded response of several cells is
plotted as a function of stimulus spatial frequency and
orientation. The results are shown in log-polar coordinates
with orientation given by the polar angle and spatial
frequency by the radius (on a logarithmic scale) (redrawn
from De Valois et al. 1982, with permission).

between one and two octaves, which covers a small
fraction of the total range of spatial frequencies
(approximately six to eight octaves in the fovea) to which
the macaque is sensitive (De Valois & De Valois 1988).
As in the case of psychophysical studies (Kelly & Magnu-
ski 1975), two-dimensional stimuli, such as checker-
boards, provide strong evidence that neurons are tuned to
two-dimensional spatial frequencies. In fact, there is con-
siderable physiological evidence to suggest that cortical
neurons act like band-pass filters for both orientation and
spatial frequency, so that a hypercolumn implements a
localized or windowed two-dimensional spatial-frequency
filtering of a stimulus, rather than simply performing local
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edge detection (Webster & De Valois 1985; Jones &
Palmer 1987).

The distribution of spatial-frequency preference across
the cortex is less clear than that of orientation preference.
Nevertheless, based on the 2-DG studies available at the
time (see Tootell et al. 1981), De Valois & De Valois
(1988) introduced the models of V1 hypercolumns shown
in figure 4. In the macaque, it was found that the CO blob
regions were sites of cells that responded preferentially to
low spatial frequencies, which suggested that spatial
frequency increased radially, away from the blobs. This
impression has recently been extended by optical studies
of the spatial-frequency map in the cat (Bonhoeffer et al.
1995; Hübener et al. 1997; Issa et al. 2000). These studies
indicate that: (i) both orientation and spatial-frequency
preferences are distributed almost continuously across
cortex; (ii) spatial-frequency preferences at both extremes
of the continuum tend to be located at orientation pin-
wheels (i.e. the pinwheels that do not coincide with CO
blobs correspond to regions of high spatial frequency); and
(iii) around the pinwheels iso-orientation and iso-fre-
quency preference contours are approximately orthogonal
(see figure 5). Note that in most local neighbourhoods of
the region of V1 shown in figure 5 one can identify a low
and a high spatial frequency pinwheel connected by a lin-
ear zone. In a few cases, high spatial frequency pinwheels
are connected by linear zones. However, they tend to be
sited in different ocular dominance columns.

Motivated by such considerations, we introduce a mini-
mal model of a hypercolumn that: (i) includes both orien-
tation and spatial frequency preferences; (ii) incorporates
the orientation preference pinwheels; and (iii) exhibits
sharply tuned responses in the presence of recurrent inter-
actions and weakly biased LGN inputs. For simplicity, we
restrict ourselves to a single ocular dominance column and
a single cortical layer. In the ring model of orientation
tuning the synaptic weights are taken to depend on the
difference between the orientation preference of pre- and
post-synaptic neurons, which naturally leads to a ring or
circular network topology. Given that spatial frequency is
not a periodic variable within a hypercolumn, we cannot
extend the ring model by including a second ring so that
the network topology becomes a torus. The simplest
choice is to assume the topology is a cylinder, as shown
in figure 6. This leads to a network response that is separ-
able with respect to the two stimulus features. However,
recent experimental results suggest that although separ-
ability appears to hold in the linear zones of the orientation
map, there is significant non-separability close to the
orientation pinwheels (Maldonado et al. 1997; Issa et al.
2000; Mazer et al. 2002). Combining this with the
assumption that each hypercolumn typically contains two
orientation pinwheels per ocular dominance column, and
that these correspond respectively to the two extremes of
spatial frequency within the hypercolumn, we introduce
the network topology of a sphere to model a hypercolumn,
with its two pinwheels identified as the north and south
poles, respectively (see figure 7).

It is important to distinguish between the network top-
ology shown in figure 6 or 7, which deals with synaptic
weights as a function of orientation and spatial-frequency
preference labels, and the actual two-dimensional spatial
arrangement of neurons within a single cortical layer (see
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Figure 4. (a) De Valois and De Valois’ modified icecube model of a cat V1 hypercolumn. (b) The modified icecube model
with CO blobs for macaque V1 (redrawn from De Valois & De Valois 1988, with permission).

Figure 5. Map of iso-orientation preference contours (black
lines), ocular dominance boundaries (white lines), and
spatial frequency preferences of cells in the cat V1 (redrawn
from Issa et al. 2000, with permission). Red regions
correspond to low spatial-frequency preference, violet to
high.

figure 4). As in the ring model, the spherical model of a
hypercolumn is an abstraction from a complicated set of
experimental results such as those presented in figures 1
and 5. The model does not account for all of the details
apparent in these figures. In fact, it should also be noted
that optical imaging data are inherently noisy so that some
of the conclusions regarding the spatial frequency map
and the nature of orientation pinwheels are still quite con-
troversial. Nevertheless, we believe that the analysis of
conceptual models such as the one presented in this paper
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Figure 6. A cylindrical network topology. Spatial-frequency
preference decreases from top to bottom whereas orientation
preference varies around the circumference of the cylinder.

can lead to insights into the true nature of the action of
V1.

PART I: MEAN-FIELD THEORY

In Part I, we present a dynamic theory of orientation
and spatial-frequency tuning in a cortical hypercolumn
whose network topology is taken to be spherical. As we
have already indicated in § 1, this topology naturally
accommodates the two orientation preference pinwheels
(within a single ocular dominance column), which are
located at the poles of the sphere, as well as the two-
dimensional curvilinear coordinate system we choose to
represent orientation and spatial-frequency preferences
within a hypercolumn. Explicit solutions for localized
activity states on the sphere are obtained using a mean-
field approach (Ben-Yishai et al. 1995; Hansel & Sompol-
insky 1997). We thus show how cortical amplification
through recurrent interactions generates a sharply tuned,
contrast-invariant population response to both orientation
and spatial frequency. A major prediction of our model is
that this response is non-separable with respect to these
stimulus features due to the presence of the pinwheels. (A
preliminary version of the spherical model has been
reported briefly elsewhere (Bressloff & Cowan 2002b). In
particular, we used a perturbative amplitude equation
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Figure 7. A spherical network topology. High and low
spatial-frequency pinwheels are located at the poles of the
sphere.

approach to establish the basic principle of cortical ampli-
fication via spontaneous symmetry breaking. However,
our analysis was restricted to the weakly nonlinear regime.
Here, we greatly extend the analysis using the mean-
field approach.)

2. DETAILS OF THE SPHERICAL MODEL

We assume that a hypercolumn is parametrized by two
cortical labels, which represent the orientation preference
��[0,�) and spatial-frequency preference p�[pmin,pmax] of
a local patch or column of cells. Typically, the bandwidth
of a hypercolumn is between three and four octaves, that
is, pmax � 2npmin with n = 4. This is consistent with the
observations of Hubel & Wiesel (1974), who found a two-
octave scatter of receptive field sizes at each cortical region
they mapped. Motivated by the optical imaging data
described in § 1, we assume that the network topology is
a sphere S2 with the two pinwheels identified as the north
and south poles, respectively (see figure 7). If we take
(�,�) to be the angular coordinates on the sphere with
��[0,�), ��[0,�) then � determines the spatial-frequency
preference p according to

� � Q( p) = �
log( p/pmin)

log( pmax/pmin)
. (2.1)

That is, � varies linearly with logp. This is consistent with
experimental data that suggest a linear variation of logp
with cortical separation (Issa et al. 2000). This leads to
the spherical coordinate system shown in figure 8.

Let a(�,�,t) denote the activity of a local population of
cells on the sphere with angular coordinates (�,�). The
evolution equation for the state a(�,�,t) is taken to be of
the form

∂a(�,�,t)
∂t = �a(�,�,t) � [I(�,�,t) � �]�, (2.2)
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Figure 8. Spherical network topology. Orientation and
spatial-frequency labels are denoted by (�,p) with 0 � � 	 �
and pmin � p � pmax.

where � is a threshold and I(�,�,t) is the total synaptic cur-
rent,

I(�,�,t) = �
S2
w(�,���,�
)a(�
,�
,t)D(�
,�
) � h(�,� )

(2.3)

with D(�,� ) = sin�d�d�/2� the integration measure on
the sphere. Here w represents the distribution of recurrent
interactions within the hypercolumn and h(�,�) is a
weakly biased input from the LGN. Equation (2.2) is the
natural extension of the activity-based ring model of orien-
tation tuning considered by Ben-Yishai et al. (1995,
1997). To generalize the amplification mechanism of the
ring model to the spherical model (equation (2.2)), we
first construct a weight distribution that is invariant with
respect to coordinate rotations and reflections of the
sphere, that is, the symmetry group O(3). This spherical
symmetry, which generalizes the O(2) circular symmetry
of the ring model, implies that the pattern of connections
within the hypercolumn depends only on the relative dis-
tance of cells on the sphere as determined by their angular
separation along geodesics or great circles. That is, given
two points on the sphere (�,�) and (�
,�
) their angular
separation � is (see figure 8)

cos� = cos�cos�
 � sin�sin�
cos(2[� � �
]). (2.4)

This suggests that the simplest non-trivial form for the
weight distribution w is

w(�,���
,�
) = W0 � W1(cos�cos�

� sin�sin�
cos(2[� � �
])). (2.5)

In figure 9, we plot w as a function of (�,�) for �
 = �,
�
 = 0 and W1 � W0. It can be seen that away from the
pinwheels (poles of the sphere at � = 0,�), cells with simi-
lar orientation excite each other whereas those with dif-
fering orientation inhibit each other. This is the standard
interaction assumption of the ring model (Ben-Yishai et
al. 1995; Somers et al. 1995), which has recently received
experimental support (Roerig & Chen 2002). However,
around the pinwheels, all orientations uniformly excite,
which is consistent with the fact that although the cells
around a pinwheel can differ greatly in their orientation
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 = � and plot w as a function of � and �. (a) Contour plot of w on the sphere
with light and dark regions corresponding to excitation and inhibition, respectively. (b) Surface plot of w in the (�,� )-plane.

preference, they are physically close together within the
hypercolumn.

It is possible to construct a more general form of O(3)-
invariant weight distribution using spherical harmonics. Any
sufficiently smooth function a(�,�) on the sphere can be
expanded in a uniformly convergent double series of
spherical harmonics

a(�,�) = ��
n = 0

�n
m = �n

anmYm
n (�,�). (2.6)

The functions Ym
n (�,�) constitute the angular part of the

solutions of Laplace’s equation in three dimensions, and
thus form a complete orthonormal set. The orthogonality
relation is

�
S2
Ym1∗

n1
(�,�)Ym2n2

(�,�)D(�,�) =
1

4�
�n1,n2

�m1,m2
. (2.7)

The spherical harmonics are given explicitly by

Ym
n (�,� ) = (�1)m�(2n � 1)

4�

(n � m)!
(n � m)!

Pm
n (cos�)e2im�

(2.8)

for n  0 and � n � m � n, where Pm
n (cos�) is an associa-

ted Legendre function. (Note that we have adjusted the
definition of the spherical harmonics to take into account
the fact that � takes values between 0 and �.) The action
of SO(3) on Ym

n (�,� ) involves (2n � 1) × (2n � 1) unitary
matrices associated with irreducible representations of
SU(2) (Arfken 1985). From the unitarity of these rep-
resentations, one can construct an O(3) invariant weight
distribution of the general form

w(�,���
,�
) = 4���
n = 0

Wn �n
m = �n

Ym∗
n (�,� )Ym

n (�
,�
) (2.9)

with Wn real. For simplicity, we shall neglect higher har-
monic contributions to w by setting Wn = 0 for n  2 so
that equation (2.9) reduces to equation (2.5) on resca-
ling W1.

Finally, the weakly biased LGN input h(�,�) is assumed
to be of the form

h(�,�) = C[1 � � � �(cos�cos�
� sin�sin�cos(2[� � �]))]. (2.10)

This represents a unimodal function on the sphere with a
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single peak at (�,�). Here, C is the effective contrast of
the input and � measures the degree of bias. In fact, equ-
ation (2.10) is the projection of the feed-forward input
from the LGN onto the zeroth and first order spherical
harmonics. The a posteriori justification for this is based
on the idea that recurrent interactions within the hypercol-
umn amplify these particular components of the feed-for-
ward input, therefore higher order harmonics can be
neglected (Bressloff & Cowan 2002b). We also note that
recent optical imaging experiments provide strong support
for the role of recurrent interactions in cortical amplifi-
cation (Sharon & Grinvald 2002). Rectification arising
from the firing rate characteristics of cortical cells then
leads to a sharply tuned, contrast-invariant response to
both orientation and spatial frequency (see § 3). The peak
response, which is located at (�,�), is assumed to faith-
fully encode the spatial frequency ps and orientation �s of
an external visual stimulus, that is, � = Q( ps) and � = �s.
However, as we discuss in Part II, the relationship
between � and ps is far from straightforward. The trans-
formation from visual stimulus to cortical input is typically
described in terms of a convolution with respect to a feed-
forward receptive field modelled, for example, as a differ-
ence of Gaussians (Hawken & Parker 1987). If the low-
order spherical harmonic components of the resulting
feed-forward input to a hypercolumn are now amplified,
one finds that the cortical spatial frequency is shifted rela-
tive to the stimulus frequency—there is no corresponding
shift in orientation. In other words, the network does not
faithfully encode the stimulus spatial frequency unless an
additional filtering operation is introduced. We suggest, in
Part II, that feedback from V1 back to LGN (Murphy et
al. 1999) can modulate LGN activity to produce a faithful
encoding of spatial frequency. However, we ignore these
subtleties here and proceed with the form of LGN input
given by equation (2.10).

3. STATIONARY LOCALIZED STATES

It is convenient to introduce real versions of the first-
order harmonics,

f0(�,�) = cos�,
f�(�,� ) = sin�cos2�, f�(�,� ) = sin�sin2�, (3.1)

so that equations (2.5) and (2.10) can be rewritten in
the form
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w(�,���
,�
) = W0 � W1 �
m = 0, ±

fm(�,�)fm(�
,�
) (3.2)

and

h(�,�) = �1 � � � � �
m = 0, ±

fm(�,�)fm(�,�)�, (3.3)

with

�
m = 0, ±

fm(�,� )fm(�
,�
)

equal to the angular separation of (�,�) from (�
,�
). Sub-
stituting equations (2.3), (3.2) and (3.3) into the evolution
equation (2.2) then gives

∂a(�,�,t)
∂t = �a(�,�,t)

� �I0(t) � �
m = 0, ±

Im1 (t)fm(�,�)�
�

, (3.4)

where

I0(t) = C(1 � �) � W0R0(t) � �, (3.5)

Im1 (t) = C�fm(�,�) � W1Rm
1 (t) (3.6)

and R0, Rm
1 are the order parameters

R0(t) = �
S2
a(�,�,t)D(�,�), (3.7)

Rm
1 (t) = �

S2
a(�,�,t)fm(�,�)D(�,�). (3.8)

Following along similar lines to the analysis of the ring
model (Ben-Yishai et al. 1995; Hansel & Sompolinsky
1997), we studied fixed-point solutions of equation (3.4)
in which the activity surface is centred at the peak of the
LGN input (�,�). That is,

a(�,�) = �I0 � �
m = 0, ±

Im1 fm(�,�)�
�

. (3.9)

Such a solution is self-consistent provided that at the fixed
point Rm

1 = R1 fm(�,�) for some R1. Given such a fixed-
point solution, we define the network gain G as the ratio
between the maximal activity and the contrast relative to
threshold

G =
a(�,�)
C � �

. (3.10)

It is useful to distinguish between broad and narrow
activity profiles a(�,�). We say that the profile is broad
when all the cells are above threshold. That is, I(�,�)
 � and hence a(�,�) � 0 for all (�,�)�S2. However, a
narrow profile is one for which a(�,�) is only non-zero
over a subdomain � = {�,��0 � � 	 �0(�),0 � � 	 �}
� S2: this is what we mean by a localized state. The closed
curve � = �0(� ) determines the boundary of the localized
state on the sphere. Note that although the two-
dimensional activity profile on the sphere is localized, it is
not necessary that the resulting orientation tuning curves
should, themselves, be localized (see § 4).
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(a) Broad activity profile
The analysis of a broad activity profile is relatively

straightforward, since the fixed point equation (3.9)
reduces to

a(�,�) = I0 � �
m = 0, ±

Im1 fm(�,� ), (3.11)

which can be substituted into equations (3.7) and (3.8)
to give R0 = I0 and Rm

1 = Im1 /3. It follows from equations
(3.5) and (3.6) that

R0 =
C(1 � �) � �

1 � W0
, Rm

1 = R1 fm(�,�), R1 =
C�/3

1 � W1/3
(3.12)

and

a(�,�) = R0 � 3R1 �
m = 0, ±

fm(�,�)fm(�,�). (3.13)

Since �m fm(�,�)2 = 1, we deduce that the gain is

G = (C � �)�1�C(1 � �) � �

1 � W0
�

C�

1 � W1/3
�. (3.14)

In terms of the effective stimulus tuning

� =
�C

C � �
(3.15)

we can re-express the gain as

G =
1 � �

1 � W0
�

�

1 � W1/3
. (3.16)

Note that in the absence of any tuning or bias in the LGN
input (� = 0), we have � = 0 and the broad activity profile
reduces to the homogeneous state

a(�,�) =
C � �

1 � W0
(3.17)

with gain G = 1/(1 � W0).
The existence and stability of a broad activity profile

will depend on both � and the weights W0,W1. First, since
amin = R0 � 3R1 must be positive we require � 	 �c where

1
�c

= 1 �
1 � W0

1 � W1/3
. (3.18)

(When � � �c the state is narrowly tuned, see below.)
Second, a simple linear stability analysis shows that the
broad activity profile is only asymptotically stable pro-
vided that

W0 	 1, W1 	 3. (3.19)

At W0 = 1 the system undergoes a bulk amplitude insta-
bility in which the activity across the network uniformly
diverges. However, at W1 = 3 there is a pattern-forming
instability associated with the bifurcation to a narrowly
tuned or localized state. Indeed, as we establish below,
when the spatial modulation of cortical recurrent interac-
tions is sufficiently large, such a localized state can emerge
spontaneously from the homogeneous state in the absence
of any bias from the LGN input (� = 0).

(b) Narrow activity profile
To simplify our analysis, we assume for the moment

that the centre of the activity profile is fixed at the low
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frequency pinwheel, that is, � = 0. (The general solution
can then be generated by carrying out an SO(3) rotation
on the sphere.) In this particular case, a state is narrowly
tuned if there exists �c 	 � such that a(�,�) = 0 for all
�c � � � �, 0 � � 	 �. The cut-off angle �c satisfies the
equation

I0 � �
m

Im1 fm(�c,�) = 0, 0 � � 	 �. (3.20)

Taking moments of the fixed point equation (3.9) with
respect to the zeroth and first order spherical harmonics,

R0 = I0� �c

0
��

0

D(�,�)

� �
m = 0, ±

Im1� �c

0
� �

0

fm(�,�)D(�,�) (3.21)

and

Rn
1 = I0� �c

0
� �

0

fn(�,�)D(�,�)

� �
m = 0, ±

Im1� �c

0
� �

0

fn(�,�)fm(�,�)D(�,�) (3.22)

and performing the integration over �,� then gives

R0 =
I0[1 � cos�c]

2
�

I0
1[1 � cos2�c]

8
, (3.23)

R0
1 =

I0[1 � cos2�c]
8

�
I0

1[1 � cos3�c]
6

(3.24)

and

R ±
1 =

I ±
1 [2 � 3cos�c � cos3�c]

12
. (3.25)

It is useful to introduce the functions

A0(�c) =
1 � 2cos�c � cos2�c

4
(3.26)

and

A1(�c) =
2 � 3cos�c � cos3�c

12
. (3.27)

Since f ± (0,�) = 0 for all �, it follows from equations
(3.6) and (3.25) that

R ±
1 [1 � W1A1(�c)] = 0. (3.28)

Provided that W1A1(�c) � 1, we deduce that R ±
1 = 0 and

hence I ±
1 = 0. Setting I0

1 = I1 and R0
1 = R1, the condition for

�c reduces to

I0 � I1cos�c = 0, (3.29)

with (see equations (3.23) and (3.24))

I0 = C(1 � �) � W0R0 � �, I1 = C� � W1R1. (3.30)

Substituting into equations (3.23) and (3.24) gives
R0 = A0(�c)I1 and R1 = A1(�c)I1 so that

R0 =
�CA0(�c)

1 � W1A1(�c)
(3.31)

and
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R1 =
�CA1(�c)

1 � W1A1(�c)
. (3.32)

Given the critical angle �c and the effective input I1, the
resulting localized state takes the form

a(�,�) = [I1(cos� � cos�c)]� (3.33)

when centred about the � = 0 pinwheel. The correspond-
ing gain defined by equation (3.10) is

G =
I1(1 � cos�c)

C � �
. (3.34)

By performing an SO(3) rotation, it immediately follows
that a localized state centred at the point (�,�) on the
sphere is

a(�,�) = �I1( �
m = 0, ±

fm(�,�)fm(�,�) � cos�c)�
�

. (3.35)

Thus, a is only non-zero if the angular separation of (�,�)
from (�,�) is less than the critical angle �c. It follows that
the boundary of the localized state � = �0(� ) is given by
the equation

�
m = 0, ±

fm(�,�)fm(�0(� ),�) = cos�c. (3.36)

We now determine properties of the localized state in dif-
ferent parameter regimes using a similar analysis to that
of the ring model (Hansel & Sompolinsky 1997).

(i) Weak cortical modulation (W0 	 1,W1 	 3)
For sufficiently weak cortical modulation, as defined by

the condition W1 	 3, a non-trivial activity profile only
exists in the presence of a biased LGN input (� � 0).
Whether or not this state is broadly or narrowly tuned
will depend on the stimulus parameter �. We have already
established that the broadly tuned state exists only if
� 	 �c (see equation (3.18)). However, when � � �c there
exists a narrowly tuned state with critical angle �c determ-
ined self-consistently from equations (3.29) and (3.30),

�cos�c �
I0

I1
=
C(1 � �) � �

C�
[1 � W1A1(�c)]

� W0A0(�c),

that can be rearranged to give

1
�

= 1 �
W0A0(�c) � cos�c

1 � W1A1(�c)
. (3.37)

Note that �c � � for �  �c. In figure 10 we plot the criti-
cal angle �c as a function of �. The corresponding gain of
the localized state is

G = �� 1 � cos�c

1 � W1A1(�c)
� (3.38)

where we have used equations (3.34) and (3.30).
It follows from equation (3.18) that if W0,W1 � 0 then

�c � 0.5 so that a stimulus with � 	 1/2 and contrast
C � � will necessarily generate a broad activity profile.
Introducing global inhibition by taking W0 	 0 and
W1 � 0 can sharpen the response by lowering �c : �c

� 1/(2 � �W0�). However, the gain is also lowered when
the level of inhibition is increased since G � �(1
� cos�c) and the cortical inhibition reduces �c. Increasing
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Figure 10. Critical angle �c for the width of the localized
state as a function of the stimulus-tuning parameter � in the
case of weak cortical modulation W1 � 0. Solid line: W0 = 0;
dashed line: W0 = �2.

the degree of cortical modulation W1 for fixed W0 also
reduces �c such that beyond the critical value W1 = 3 we
have �c = 0 and a localized state can be generated even in
the absence of a feed-forward bias �.

(ii) Marginal phase and strong cortical modulation (� = 0,
W0 	 Wc, W1 � 3)

When W1 � 3 the unique broadly tuned state (equation
(3.13)) is unstable, so that any non-homogeneous state
must be narrowly tuned. In the absence of an LGN bias
(� = 0) the former reduces to an unstable homogeneous
state (equation (3.17)). Inspection of equation (3.32)
shows that a localized state persists when � = 0 provided
that

1 = W1A1(�c). (3.39)

Since A1(�c) 	 1/3 for 0 � �c � �, it follows that W1 �
3 is a necessary condition for a narrowly tuned activity
profile to occur when � = 0. The location (�,�) of the
centre of the localized state is now arbitrary since the LGN
input is homogeneous. In other words, there is a con-
tinuum of localized states on the sphere, which form a
manifold of marginally stable fixed points, and the system
is said to be in a marginal phase. In such a phase, a nar-
rowly tuned state spontaneously breaks the underlying
SO(3) symmetry of the network, which is possible because
the spatial modulation of the cortical interactions is suf-
ficiently strong.

In the marginal phase, the critical angle �c is determined
by equation (3.39) and is thus independent of W0. Equa-
tions (3.31) and (3.32) imply that

R0

R1
=

A0(�c)
A1(�c)

= W1A0(�c). (3.40)

Combining this with equations (3.30) and (3.20) and set-
ting � = 0 then gives

I1 = �
C � �

cos�c � W0A0(�c)
(3.41)

and R1 = I1/W1. The corresponding gain (equation
(3.34)) is
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Figure 11. Phase diagram for the spherical model in the case
of a homogeneous input � = 0.
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Figure 12. Variation of critical angle �c (dashed line) and
gain G (solid line) as a function of cortical modulation W1

in the case of homogeneous input � = 0. The gain is shown for
W0 = �10.

G = �
1 � cos�c

cos�c � W0A0(�c)
(3.42)

that can be rewritten as

G = �
1 � cos�c

A0(�c)
1

Wc � W0
(3.43)

where

Wc = �
cos�c

A0(�c)
. (3.44)

Equation (3.43) implies that a second condition for the
existence of a marginal localized state is that W0 	 Wc.
Performing a stability analysis shows that as W0

approaches Wc the system undergoes an amplitude insta-
bility analogous to that of the homogeneous state when
W0 = 1 and W1 	 3 (see Appendix A). The phase diagram
for the stability of the various states in the presence of a
homogeneous input is shown in figure 11. The variation
of the critical angle �c and gain G as a function of W1 is
plotted in figure 12.
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In the case of strong cortical modulation, the presence
of a weak input bias (0 	 � � 1) will not affect the width
of the activity profile but will explicitly break the hidden
SO(3) symmetry by locking the centre of the response
(�,�) to the peak of the LGN input. This establishes a
recurrent mechanism for the joint contrast invariance of
orientation and spatial-frequency tuning curves (see § 4).
Particular examples of localized states on the sphere are
illustrated in figure 13 for �c = �/3 and various optimal
spatial frequencies � and orientations �. It can be seen
that the differing solutions are related by a rotation of the
sphere, which reflects the underlying SO(3) symmetry.
Finally, note that to simplify our analysis of the spherical
model, we have considered a one-population model in
which inhibitory and excitatory cell populations have been
collapsed into a single equivalent population. Such a sim-
plification greatly reduces the number of free parameters
of the system. The basic insights gained from the one-
population model can be used to develop the mean-field
theory of a more realistic two-population model. This is
presented in Appendix B.

4. ORIENTATION AND SPATIAL-FREQUENCY
TUNING CURVES

Our mean-field analysis of the spherical model has gen-
erated exact solutions for two-dimensional localized states
on the sphere, which correspond to population tuning sur-
faces for orientation and spatial-frequency preferences
within a hypercolumn. A useful representation of the
response is obtained by projecting the localized states onto
the (p,�)-plane. Surface plots of the resulting activity pro-
files in the marginal phase are shown in figure 14 for
� = 90° and either (a) � = �/2 (corresponding to an inter-
mediate spatial frequency p � 1.2 cycles deg�1) or (b)
� = �/3 (corresponding to a lower spatial frequency
p � 1.2 cycles deg�1). Tuning curves for orientation and
spatial frequency can then be extracted by taking vertical
cross-sections through the tuning surface. Various
examples are presented in figures 15–17. In particular,
figure 15 illustrates the contrast invariance of the response
with respect to both orientation and spatial frequency. In
the marginal phase contrast, invariance is exact, since both
the width �c and the gain G are independent of contrast
(see equations (3.39) and (3.43)). Interestingly, approxi-
mate contrast invariance also holds for weak cortical
modulation (small W1), since �c is a slowly varying func-
tion of the synaptic parameter � over a broad parameter
regime (see figure 11).

Figure 14 shows that projecting the spherical tuning
surface onto the (�,�)-plane breaks the underlying O(3)
symmetry of the sphere. Consequently, the shape of the
planar tuning surface varies under shifts in the location of
the peak of the tuning surface. This distortion is a direct
consequence of the existence of pinwheels, which are
incorporated into our model using a spherical topology,
and implies that the responses to orientation and spatial
frequency are inseparable. That is, the activity profile can-
not be written in the form a(�,�) = U(�)V(�). However,
we expect approximate separability to occur at intermedi-
ate spatial frequencies (away from the pinwheels). The
non-separability of the response generates a behaviour that
is consistent with some recent experimental observations.
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(i) At high and low spatial frequencies (towards the
pinwheels), there is a broadening of the tuned
response to orientation. This is illustrated in figure
16a where we plot orientation tuning curves a(�,�)
as a function of � for various optimal spatial fre-
quencies �. It can be seen that the width increases
towards the low (and high) orientation pinwheel. No
such broadening occurs for the corresponding spa-
tial-frequency tuning curves as shown in figure 16b.
In our model, the reduction of orientation selectivity
around the pinwheels is an aggregate property of a
population of cells. Interestingly, it has been found
experimentally that individual neurons close to pin-
wheels are actually orientation selective (O’Keefe et
al. 1998), but there is a broad distribution of orien-
tation preferences within the pinwheel region so that
the average response of the population is only weakly
orientation selective. Note that our results differ
from those of McLaughlin et al. (2000) who found
a sharpening of orientation tuning near pinwheels.
We attribute this difference to the SO(3) symmetry
we impose on the weighting function w(�,�|�
,�
).

(ii) There is a systematic shift and narrowing of spatial-
frequency tuning curves at non-optimal orien-
tations—the shift is towards the closest pinwheel
(see figure 17). There is some suggestion of spatial
frequency shifts in recent optical imaging data (Issa
et al. 2000). Note, however, that one difference
between our model prediction and the data is that
the latter appear to indicate a downward rather than
an upward shift in response at high spatial fre-
quencies. (A downward shift is also consistent with
feed-forward receptive field properties, see figure
21.) We suggest in § 7 that the downward shift could
be reversed by cortico-geniculate feedback (after
some delay).

Another useful representation of the response is to con-
sider contour plots of the activity profile in the (�,�)-plane
as shown in figure 18. Here, we use polar coordinates with
radius � and polar angle �. This figure further illustrates
the non-separability of the response. We define �� as the
width of the activity profile at the optimal orientation �
and �� as the width of the activity profile at the optimal
spatial frequency �. It follows from equation (3.35) that
�� = 2�c, irrespective of the position of the centre of the
localized state. However, �� varies with the optimal fre-
quency �, reaching a minimum at � = �/2. Sufficiently
close to the pinwheels, � 	 �c/2 or � � � � �c/2, we have
�� = �, which implies that although the response is
localized on the sphere it is broadly tuned for orientation.
Finally, in figure 19 we show a log-polar plot of various
localized responses, which is at least suggestive of the sin-
gle cell data reproduced in figure 3. We select a narrow
tuning width for ease of illustration since the data in figure
3 are thresholded.

We emphasize that the results presented in this section
describe the response of a cortical hypercolumn to a fixed
visual stimulus (population tuning curves) rather than the
response of a single cell to a range of stimuli (single-cell
tuning curves). The non-separability arising from the pin-
wheels is thus a population effect and may be reduced or
even absent at the single-cell response. Interestingly,
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φ = π/2 φ = π3 /4

θ = π

Figure 13. Two-dimensional plot of the tuning surface on the sphere associated with the localized solution (equation (3.35)).
The activity a(�,� ) is plotted as a function of (�,� ) for fixed width �c = �/3 and various optimal spatial frequencies � and
orientations �: (a) � = �/4, � = 90°. (b) � = �/2, � = 135°. (c) � = 0, � = 0°. Light and dark regions denote high and low
activities, respectively. The figures are related to each other by a rotation of the sphere.
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Figure 15. Contrast invariance of (a) orientation and (b) spatial-frequency tuning curves for W1 = 19.2 and W0 = �10 and a
homogeneous input (� = 0). The critical angle �c = �/3 and the gain G = 4. Curves correspond to contrasts (i) C = 0.2, (ii)
C = 0.1, and (iii) C = 0.05 relative to threshold �.

recent single-cell recordings suggest that there is approxi-
mate separability of orientation and spatial-frequency tun-
ing curves except at low and high spatial frequencies
(Mazer et al. 2002), which is consistent with our popu-
lation results.
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PART II: RECEPTIVE FIELDS AND
CORTICO-GENICULATE FEEDBACK

In Part II, we show that if the low-order spherical har-
monic components of the filtered feed-forward input to a
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Figure 17. Spatial-frequency tuning curves a(�,� ) as a function of � for various orientations � = � � ��: (i) �� = 0°, (ii)
�� = 14° (iii) �� = 28°. In the case of (a) a low optimal frequency � = �/3 there is a downward shift in the peak of the
response, whereas there is an upward shift in the case of (b) a high optimal frequency � = 2�/3.

hypercolumn are amplified by recurrent interactions, then
the spatial frequency at which the cortical response is opti-
mal is shifted relative to the stimulus frequency—there is
no corresponding shift in orientation. In other words, the
network does not faithfully encode the stimulus spatial fre-
quency. This shift in spatial frequency is not an artefact
of the particular spherical network topology. A similar
conclusion would obtain for any recurrent mechanism that
amplifies both orientation and spatial-frequency compo-
nents of the LGN input. We propose that the feedback
pathway from V1 back to LGN, recently investigated in
cats (Murphy et al. 1999), modulates LGN activity to pro-
duce a faithful encoding of spatial frequency. Using linear
filter theory, we show that if the feedback from a cortical
cell is taken to be approximately equal to the reciprocal
of the corresponding feed-forward receptive field (in the
two-dimensional Fourier domain), then the mismatch
between the feed-forward and cortical frequency represen-
tations is eliminated (at least at the linear level). We pre-
dict that for intermediate spatial frequencies, the cortico-
geniculate innervation pattern is oriented in a direction
related to the orientation bias of its V1 origin. However,
for high and low spatial frequencies, no direction of inner-
vation should exist.
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5. FEED-FORWARD RECEPTIVE FIELDS

One possible model of the two-dimensional receptive
field of a simple cell (in retinal coordinates r = (x,y)) is the
difference of Gaussians (Hawken & Parker 1987):

u(r) =
	�

2���

exp��
1

2�2
�

(�2x2 � y2)�
�

�

2���

exp��
1

2�2
�

(x2 � y2)�. (5.1)

This represents a centre-surround profile in which the
excitatory centre is an ellipse with eccentricity � � 1
whose major axis runs along the y-direction. The inhibi-
tory surround is taken to be circular but with a larger half-
width, �� � ��. The parameter � is a measure of the
degree of feed-forward orientation selectivity due to the
alignment of LGN circular receptive fields along the verti-
cal direction (� = 0). Taking the two-dimensional Fourier
transform of u gives

U(k) = exp��
�2

� k2

2
(��2cos2� � sin2�)�

� �exp� �
�2

� k2

2 �, (5.2)



Orientation and spatial-frequency tuning P. C. Bressloff and J. D. Cowan 01tb0039.13

  = 0˚

 = 45˚

 = 90˚

  = 135˚

 = 0˚

 = 135˚

 = 45˚

  = 90˚

(a) (b)

  = 0˚

 = 45˚

 = 90˚

  = 135˚

 = 0˚ = 90˚

 = 45˚

 = 135˚

(c) (d )

φ

φ

φ

φ

φ φ

φ φ

φ

φ

φ

φ

φ φ

φ

φ

Figure 18. Polar plots of localized activity state a(�,� ) for fixed width �c = �/3, fixed optimal orientation � = 0° and increasing
optimal spatial frequency �: (a) � = �/6, (b) � = �/3, (c) � = �/2 and (d ) � = 2�/3. Here, � is taken to be the polar angle and
� the radius in the plane such that the origin represents the low-frequency pinwheel at � = 0, whereas the outer circle
represents the high-frequency pinwheel at � = �. Darker regions correspond to higher levels of activity. In each figure, �� = 2�c

is indicated by the thick horizontal line and �� is indicated by the thick arc, reaching a minimum at � = �/2.

45˚

0˚180˚

225˚

90˚

270˚

135˚

315˚

(a)

(b)
(c)

0.5
1

4
8

(d)

2

Figure 19. Log-polar plot of various localized activity states
for fixed width �c = �/6 and various optimal orientations �
and spatial frequencies P = Q�1(�): (a) P = 1 cycles deg�1,
� = 0°, (b) P = 2 cycles deg�1, � = 90°, (c) P = 3 cycles
deg�1, � = 135° and, (d ) P = 4 cycles deg�1, � = 45°. Here �
is taken to be the polar angle and log2p the radius.

for k = (k,�) in polar coordinates. The function U has a
maximum at p = ( p,�) so that U(p)  U(k) for all k, with
� = 0,� and

p = � 4
�2

� � � � 2�2
�

ln�	����

��
�. (5.3)
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Setting �� = � and � = �̂� and taking �̂,�,� to be fixed, it
follows that the spatial-frequency preference p is inversely
proportional to the size � of the receptive field,

p =
A
�

, A = � 4
�̂2 � ��2ln[	���̂] (5.4)

and we can rewrite u as

u(r�p) =
p	�

2�A
exp��

p2

2A2(�2x2 � y2)�
�

�p
2��̂A

exp��
p2

2A2�̂2(x
2 � y2)�. (5.5)

Now consider a cell with receptive field profile centred
at the retinal coordinate r̂ with (feed-forward) orientation
preference � and spatial frequency preference p. Given a
visual stimulus of intensity i(r), the effective input from
the LGN to the cell will be of the form

hLGN(r̂�p) = �i(r)u(r̂ � r�p)dr (5.6)

where u(r�p) = u(T�r�p) and

T� = 
cos� �sin�

sin� cos�
�. (5.7)

Taking the Fourier transform of equation (5.6) gives

HLGN(k�p) = I(k)U(k�p), (5.8)

where

U(k�p) = exp��
A2k2

2p2 (��2cos2(� � � ) � sin2(� � � ))�
� �exp��

�̂2A2k2

2p2 �. (5.9)
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Figure 20. LGN input hLGN to a single cell obtained by filtering a sinusoidal grating with the difference-of-Gaussians receptive
field (5.5) for a range of stimulus spatial frequencies ps and orientations �s (with zero spatial phase). Parameters of the LGN
receptive field are � = 1.5, �̂ = 3 with a variable level of surround inhibition �. (a) Input (in units of the stimulus contrast Cs)
as a function of stimulus frequency ps for a fixed spatial-frequency preference p = 1 and � = �s. The units of spatial frequency
are taken to be cycles deg�1. (b) The corresponding input as a function of stimulus orientation �s for a fixed orientation
preference � = 90� and p = ps.
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� = 2. All other parameters as in figure 20.

In the particular case of a sinusoidal grating of contrast
Cs, spatial frequency ps and orientation �s,

i(r) = Cscos[ ps(xcos�s � ysin�s)], (5.10)

we have

hLGN(r̂�p) = CsU(ps�p)cos(ps·r̂). (5.11)

Thus, when the grating is centred in the receptive field of
the neuron, so that r = 0, hLGN(0�p) = CsU(ps�p), i.e. the
resulting LGN input is given by the Fourier transform of
the receptive field multiplied by the stimulus contrast Cs,
as expected.

In figure 20a we plot the resulting LGN input as a func-
tion of stimulus frequency ps for � = �s, p = 1 and various
levels of surround inhibition �. It can be seen that for rela-
tively low levels of inhibition, the LGN acts like a low-
pass spatial-frequency filter with a shallow maximum at
ps = p. When the inhibition is increased, however, the pro-
file is sharpened and the LGN acts more like a band-pass
filter. The corresponding input profile as a function of
orientation preference � is shown in figure 20b for
�s = 90°. The response has a shallow maximum at
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� = �s, with a relatively large constant background compo-
nent that decreases with increasing surround inhibition
and increasing �. There is also a spatial frequency shift in
the LGN input at non-optimal orientations (� � �s),
which is always to lower frequencies. This follows from
equations (5.9) and (5.11), because when � � �s there is
an effective reduction in the anisotropy parameter � of the
form ��2 � ��2(cos2(�s � � ) � sin2(�s � �)). Such a
reduction reduces the spatial frequency at which the input
reaches a maximum, see equation (5.3), and this is true
for all spatial frequencies as shown in figure 21 for
p = 4 cycles deg�1 This should be contrasted with the cor-
responding shift in the cortical response, which is to higher
frequencies (see figure 17b).

6. SPHERICAL HARMONIC PROJECTION OF THE
LGN INPUT

Now consider a cortical hypercolumn whose cells are
parametrized by the orientation preference ��[0,�] and
spatial-frequency preference p�[ pmin,pmax], with the pair
(p,�) determined by the feed-forward receptive field
properties of the cells (see § 5). Following Part I, we
assume that the network topology is a sphere with angular
coordinates (�,�), where � is related to the spatial-
frequency preference p according to equation (2.1). We
have already shown how amplification and rectification of
certain spherical harmonic components of a weakly biased
LGN input can generate orientation and spatial-frequency
tuning. We are now interested in the consequences of sel-
ecting out these particular harmonic components without
worrying about the additional rectification stage. There-
fore, we restrict our analysis to linear theory and treat the
cortex as a linear filter carrying out the transformation
hLGN → PhLGN where P denotes the projection onto the
zeroth and first-order spherical harmonic components and
hLGN is the total feed-forward input from the LGN (see
figure 22). (At first sight, this may be confusing since we
took h = PhLGN to be the input to the cortex in Part I. We
are essentially decomposing the operation of the cortex
into two distinct parts: (i) selection through amplification
hLGN → PhLGN and (ii) tuning through amplification and
rectification PhLGN → a.)

Suppose, for the moment, that the receptive field
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Figure 22. Schematic diagram of feed-forward pathways. A visual stimulus i is convolved with a feed-forward receptive field u
to generate a cortical input hLGN = u�i. (The convolution operator � is defined in equation (7.3).) Recurrent interactions within
V1 amplify low-order spherical harmonic components to generate response h = PhLGN. The contour plot of a difference-of-
Gaussians receptive field profile is shown in retinal coordinates. The length scale is in units of the range of feed-forward
excitation. Dark and light regions represent excitatory and inhibitory afferents, respectively. Parameters of the LGN receptive field are
� = 1.5, �̂ = 3 and � = 0.5.

centres of all neurons within a given hypercolumn are
located at the same retinal coordinate r̂. Then hLGN(r̂�p),
for fixed r̂, determines the LGN input distribution across
the hypercolumn. Projecting onto the first-order harmon-
ics, it follows that

h(�,�) � PhLGN(r̂�Q�1(�),�) = h0

� �
m = 0, ±

hm1 fm(�,�), (6.1)

where

h0 =
1

2���

0
��

0

hLGN(r̂�Q�1(�),� )sin�d�d� (6.2)

and

hm1 =
3

2���

0
��

0

fm(�,�)hLGN(r̂�Q�1(�),�)sin�d�d�. (6.3)

Note that for the resulting distribution h(�,�) to be a
well-defined function on the sphere, it must be inde-
pendent of � at � = 0,�. Equations (5.6) and (5.9) then
require that � = 1 at the pinwheels, in other words, the
average orientation preference of receptive fields at the
pinwheels must be zero. Hence, the existence of a non-
zero preference away from the pinwheels implies that the
orientation-selectivity parameter � has to be spatial-
frequency dependent. For concreteness, we take

� = �(�) � �0 sin2(�)� cos2(�), (6.4)

with �0 � 1 so that the selectivity is maximal at intermedi-
ate spatial frequencies and zero at the pinwheels.

We now calculate h(�,�) for a sinusoidal grating with
stimulus frequency ps, orientation �s and zero spatial
phase (r̂ = 0). We use the identities cos(2�) = 2 cos2� � 1
= 1 � 2 sin2� and

ex cos2� = I0(x) � 2 �
n  1

In(x) cos(2n�), (6.5)

where In(x) is the modified Bessel function of integer order
n. Equation (5.9) can then be expanded as

U(k�p) = ��
n = 0

Un(k�p)cos2n(� � �), (6.6)
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where

U0(k�p) = exp��
��A2k2

2p2 �I0
�
��A2k2

2p2 � � �exp��
�̂2A2k2

2p2 �
(6.7)

and

Un(k�p) = 2exp��
��A2k2

2p2 �In
�
��A2k2

2p2 � (6.8)

for n � 0 with � ± = (1 ± ��2)/2. Setting hLGN(0�p)
= CsU(ps�p) and using equations (6.1)–(6.3) and (6.6), we
find that

h0 = Csh0( ps), h0
1 = Csh1( ps) (6.9)

and

h�
1 = Csh2( ps)cos�s, h�

1 = Csh2( ps)sin�s, (6.10)

with

h0( ps) =
1
2� pmax

pmin

U0( ps�p)sin(Q( p))dQ( p), (6.11)

h1( ps) =
3
4� pmax

pmin

U0( ps�p)sin(2Q( p))dQ( p) (6.12)

and

h2( ps) =
3
4� pmax

pmin

U1( ps�p)sin2(Q( p))dQ( p). (6.13)

Substitution of equations (6.9) and (6.10) into equation
(6.1) recovers the form assumed for h in equation (2.10)
of Part I, namely,

h(�,�) = C�(1 � �) � � �
m = 0, ±

fm(�,�)fm(�,� )�
= C(1 � �) � � C(cos�cos� � sin�sin� (6.14)

cos(2[� � �])),

where

� = Q̃( ps), � = �s (6.15)

C(1 � �) = Csh0( ps), C� = Cs�( ps) (6.16)

and
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Figure 23. Plot of cortical spatial frequency � = Q̃( ps) as a
function of stimulus spatial frequency ps for the difference-
of-Gaussians receptive field with �0 = 1.5, �̂ = 3 and various
levels of inhibition �. The dotted line � = Q̃( ps) corresponds
to a faithful encoding of spatial frequency.

Q̃( ps) = tan�1
h2( ps)
h1( ps)

, �( ps) = 	h1( ps)2 � h2( ps)2. (6.17)

The phase Q̃( ps) is plotted as a function of stimulus fre-
quency in figure 23 for various levels of feed-forward inhi-
bition �. This clearly shows that � = Q̃( ps) � Q( ps)—there
is a strong magnification of the representation of spatial
frequency in the intermediate range, with small changes
in ps inducing large changes in the location � of the peak
of the tuned response. Thus, there is a mismatch between
the spatial frequency encoded by the hypercolumn (given
by �) and the input spatial frequency ps of the stimulus.
In figure 24 we plot the variation of h0(ps) and �(ps) with
stimulus frequency. These functions determine the effec-
tive contrast C and bias � according to equation (6.16) so
that, in particular, the contrast C = h0(ps) � �(ps). In the
mean-field analysis of § 3, we showed that under amplifi-
cation and rectification a localized activity state is gener-
ated whose amplitude varies as �C (weak cortical
modulation) or as C (strong cortical modulation, weak
bias 1). We see from figure 24 that the projection onto
spherical harmonics leads to a non-trivial dependence of
the response amplitude on stimulus frequency. This
appears to be inconsistent with physiological (Issa et al.
2000) and psychophysical (De Valois & De Valois 1988)
data that indicate that the response amplitude is a unim-
odal function that peaks at a single intermediate fre-
quency. Another interesting observation regarding figure
24, is that the LGN bias � cannot be assumed small across
the entire spatial-frequency range.

The origin of the mismatch � � Q( ps) is the assump-
tion that recurrent cortical interactions amplify both orien-
tation and spatial-frequency components of the LGN
input. Such a mismatch would not occur if Fourier modes
with respect to the orientation label � alone were ampli-
fied, as in the ring model of orientation tuning (Ben-Yishai
et al. 1995). In such a case, one can represent the effective
LGN input for a fixed spatial frequency preference p by

h(� ) = C(1 � �) � Ccos(2[� � �s)] (6.18)
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with, see equation (6.6),

C(1 � �) = U0( ps�p), C� = U1( ps�p). (6.19)

Suppose that the stimulus frequency ps is fixed and we
plot U0,1(ps|p) as a function of the spatial-frequency pref-
erence p. The results are shown in figure 25. At the opti-
mal orientation � = �s the spatial-frequency dependence
of the input is given by the effective contrast
C = U0( ps�p) � U1( ps�p). It can be seen from figure 25 that
C peaks when the spatial-frequency preference is approxi-
mately equal to the stimulus frequency, p = ps, so that the
network response now faithfully encodes the stimulus.
However, the resulting spatial-frequency tuning curves are
neither sharply tuned nor contrast invariant. (These tun-
ing curves are directly given by C since there is no ampli-
fication with respect to p). One way to achieve more
realistic tuning curves, is to posit that recurrent interac-
tions also amplify spatial-frequency components of the
LGN input along the lines of the spherical model. One
then has to tackle the resulting mismatch between stimu-
lus frequency and response frequency.

7. RENORMALIZING THE LGN INPUT

It follows from the above analysis that if the cortex
amplifies the first-order spherical harmonic components
of a stimulus, then to generate a faithful representation of
spatial frequency, � = Q( ps), the LGN input cannot be
determined only by the feed-forward receptive field
properties of single neurons. In other words, another fil-
tering operation, P, must exist that converts Q̃( ps) into
Q( ps). Of course, an alternative possibility is that the pro-
posed amplification mechanism is itself invalid. However,
we expect a similar conclusion to hold for any feed-for-
ward or recurrent mechanism that amplifies two-dimen-
sional Fourier components of the stimulus—the basic
problem lies with the fact that the response is inseparable
with respect to the orientation and spatial frequency lab-
els. It therefore remains to be discussed, what are the poss-
ible mechanisms for the filtering action P that effectively
renormalizes the feed-forward LGN input.

(a) Feed-forward mechanisms
One possible feed-forward mechanism is patch averag-

ing. For simplicity, we have assumed that every cortical
cell within a local patch has the same receptive field profile
u, equation (5.5), with identical parameters �,�,�̂ and
receptive field centres r̂. In reality, there will be a distri-
bution of receptive fields so that the filter action P could
arise from some form of patch averaging. For example,
figure 23 indicates that if there were some variation in the
level of feed-forward inhibition �, then this would smooth
out the response. A more realistic source of variation is
that of receptive field positions within each cortical col-
umn. Let the distribution of centres within a patch be
�(r̂�p), where the degree of scatter may depend on p, the
spatial frequency preference of the patch. Equation (6.3)
is then modified according to

hm1 =
3

2���

0
��

0

fm(�,�)� �dr̂�(r̂�Q�1(�))hLGN(r̂�Q�1(�),�)�
sin�d�d� (7.1)
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ps for (a) � = 0.5 (b) � = 1.0. Other parameter values as in figure 23.

spatial frequency p

pe
rc

en
ta

ge
 o

f 
st

im
ul

us
 c

on
tr

as
t

pe
rc

en
ta

ge
 o

f 
st

im
ul

us
 c

on
tr

as
t

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0.5 1 2 4 8

spatial frequency p

0.5 1 2 4 8

(a) (b)
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frequency preference p for fixed stimulus frequency ps: (a) ps = 1 cycles deg�1 and (b) ps = 4.0 cycles deg�1. Other parameter
values as in figure 23 for � = 0.5.

and similarly for equation (6.2). Such averaging may be
expected to smooth cortical responses.

A second feed-foward mechanism is a non-trivial map-
ping of the cortical labels. The projection of the LGN
input onto the low-order spherical harmonics given by
equations (6.2) and (6.3) assumes that the cortical labels
for orientation and spatial frequency (p,�) are determined
completely by properties of the feed-forward receptive
fields (see § 5). This is the classical Hubel–Wiesel mech-
anism for generating the feature preferences of a cell. We
have shown that such identification leads to a mismatch
in the representation of spatial frequency within the cor-
tex. One possible way to eliminate such a mismatch is to
allow for a non-trivial mapping between properties of the
receptive field and the cortical labels that regularizes the
projection of the LGN input and, hence, generates a faith-
ful representation of spatial frequency. This mapping
reflects the fact that the actual spatial frequency and orien-
tation preference of a cell is determined by a combination
of feed-forward and recurrent interactions. A renormaliz-
ation scheme of this form would require the development
of a pattern of innervation from LGN to cortex that
involves some form of feedback from cortex to LGN to
implement an error correcting procedure. But such feed-
back can itself provide a direct mechanism for renormaliz-
ing the LGN input, as we describe below.

(b) Cortico-geniculate feedback
We constructed a recurrent filter that converts the feed-

forward or bare receptive field u into an effective or renor-
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malized one, namely u∗, such that the renormalized
LGN input

h∗
LGN(r̂�p) = �i(r)u∗(r̂ � r�p)dr (7.2)

projects faithfully onto its spherical harmonic compo-
nents. Inverse Fourier transforming the recurrent filter
then determines the pattern of feedback connections from
V1 to LGN. First, suppose that a cortical cell with recep-
tive field centre r̂, spatial-frequency preference p and
orientation preference �, has a distribution of feedback
connections v(r � r̂�p) to LGN cells that innervate
cortical cells with the same feature preference and shifted
centre at r, i.e. the LGN cells make cortical connections
with a weighting function u(r̂ � r�p). In other words, we
assume that localized patches in the cortex and LGN are
reciprocally related (Murphy et al., 1999; Guillery et al.
2001) (see figure 26). Such a principle also seems to hold
with respect to feedback from extra-striate to striate areas
(Angelucci et al. 2001).

Within the framework of linear filter theory, we assume
the output activity of the cortex consists of the spherical
harmonic components of the renormalized LGN input. (A
more complete calculation would need to take into
account amplification and rectification of PhLGN.) We
write this output activity in the form Pu∗ � i(r̂), where i is
the input stimulus and f � g for arbitrary functions f,g
denotes the convolution
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Figure 26. Schematic diagram showing reciprocally related
regions in V1 and LGN. (a) Feed-forward projections and
(b) feedback projections.

[ f � g](r) = �
R2
f(r)g(r � r
)dr
. (7.3)

We then assume that (see figure 27)

u∗ � i = u�[i � v � P[u∗ � i ]]. (7.4)

Taking the Fourier transform of this equation using the
convolution theorem,

U∗(k�p)I(k) = U(k�p)I(k)[1 � V(k�p)PU∗(k�p)] (7.5)

for k = (k,�) in polar coordinates. Rearranging this equ-
ation leads to the result

V(k�p) =
U∗(k�p) � U(k�p)
U(k�p)PU∗(k�p)

. (7.6)

As a further simplification, suppose U∗ � U = P[U∗ � U ]
so that

V(k�p) =
1

U(k�p)�1 �
PU(k�p)
PU∗(k�p)�. (7.7)

Both PU(k|p) and PU∗(k|p) can be expressed in terms
of zeroth and first-order spherical harmonics:

PU(k�p)
PU∗(k�p)

= � C(k)
C∗(k)� (7.8)

×
(1 � �(k)) � �(k)(cos�(k)cos� � sin�(k)sin�cos(2[� � �]))

(1 � �∗(k)) � �∗(k)(cos�∗(k)cos� � sin�∗(k)sin�cos(2[� � �]))
.

The non-renormalized functions C(k),�(k),�(k) satisfy
equations (6.15) and (6.16). In particular, �(k) = Q̃(k).
Hence, the feedback distribution V is determined once we
have specified the k-dependence of the renormalized func-
tions C∗(k),�∗(k) and �∗(k). It also follows that the mis-
match in spatial frequencies highlighted in § 6 is
eliminated provided that �∗(k) = Q(k).

Further insight into the nature of the feedback connec-
tions can be obtained under the additional assumption
that C � C∗ over the frequency bandwidth of the hyper-
column. The lowest-order approximation is then

V(k�p) �
A

U(k�p)
, (7.9)

where A 	 1 is a constant. Using equation (6.6) and
keeping only the lowest-order terms,

V(k�p) �
A

U0(k�p) � U1(k�p)cos(2[� � �])
(7.10)

�
A

U0(k�p)�1 �
U1(k�p)
U0(k�p)

cos(2[� � �])�.
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Taking the inverse Fourier transform of this equation
shows that

v(r�p) = Re� pmax

pmin

� 2�

0

V(k�p)eir�k kdkd�

4�2 (7.11)

where we have assumed that the feedback is restricted to
lie within the frequency bandwidth [ pmin,pmax] of the
hypercolumn. To evaluate this integral, introduce polar
coordinates x = rcos� , y = rsin� so that k·r
= krcos(� � � ). The Bessel function expansion

cos(xcos� ) = J0(x) � 2��
n = 1

(�1)nJ2n(x)cos(2n�) (7.12)

then gives

v(r�p) = v0(r�p) � v1(r�p)cos(2[� � � ]) (7.13)

where

v0(r�p) = � pmax

pmin

A

U0(k�p)
J0(kr)

kdk
2�

,

v1(r�p) = A� pmax

pmin

U1(k�p)
U0(k�p)2 J2(kr)

kdk
2�

. (7.14)

We have thus specified an approximate form of the recur-
rent filter that effectively renormalizes the LGN input. We
see from equations (7.9) and (7.11) that this filter is
approximately the inverse Fourier transform of the
reciprocal of U(k|p), the Fourier transform of the feed-
forward receptive field u(r|p) located at r with spatial fre-
quency bias p = (�,p). Figure 27 shows the form of such
a filter in case the feed-forward filter is tuned to � = 0. It
will be seen that the patterned feedback found in the
model appears to be consistent with that observed by
Murphy et al. (1999) in that it depends on the orientation
preference of its V1 origin.

8. CROSS-ORIENTATION SUPPRESSION

A consistent experimental finding is that when a hyper-
column is stimulated with a pair of orthogonal gratings or
bars there is considerable suppression of the response to
either stimulus. In particular, DeAngelis et al. (1992)
show that this cross-orientation suppression originates
within the receptive field of most cat neurons examined,
and is a consistent finding in both simple and complex
cells. Here, we present a possible cortical mechanism for
cross-orientation suppression, based on the idea that the
local circuits of a hypercolumn amplify the first spherical
harmonic components of a stimulus. Consider a stimulus
consisting of the sum of two gratings with identical spatial
frequency ps and distinct orientations � and �
, respect-
ively:

i(r) =
Cs

2
cos( ps[xcos� � ysin�)

�
Cs

2
cos( ps[xcos�
 � ysin�
]). (8.1)

When this stimulus is filtered by the receptive field (5.5),
the resulting LGN input is (neglecting spatial phase)

hLGN =
Cs

2
exp��

A2p2
s

2p2 (��2cos2(� � �) � sin2(� � �))�
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Figure 27. Schematic diagram of feed-forward, recurrent and feedback pathways that could be involved in the generation of a
faithful representation of spatial frequency. The contour plot of a feed-forward (difference-of-Gaussians) receptive field profile
is shown in retinal coordinates, together with the corresponding pattern of feedback connections. The latter is calculated using
linear filter theory. The length scale is in units of the range of feed-forward excitation. Dark and light regions represent
excitatory and inhibitory synapses, respectively.

�
Cs

2
exp��

A2p2
s

2p2 (��2cos2(�
 � �) � sin2(�
 � �))�
� Cs�exp� �

�̂2A2p2
s

2p2 � =
Cs

2 ��
n = 0

Un(ps�p)

[cos2n(� � �) � cos2n(�
 � �)], (8.2)

where we have used equations (6.7) and (6.8). If we now
project out the first-order spherical harmonic components,
we obtain an effective LGN input of the form

h(�,�) = C(1 � �) � C��cos�cos� � sin�

sin�
cos(2[� � �]) � cos(2[� � �
])

2 �, (8.3)

where � = Q( ps) (assuming some form of renormalization
similar to that of § 7).

Suppose that � � 0,�. If �
 = �, then we recover the
case of a single grating with

h(�,� ) = C(1 � �) � C�[cos�cos�
� sin�sin�cos(2[� � �])], (8.4)

so that the peak cortical response is at � = � and � = �.
Conversely, in the case of an orthogonal grating,
�
 = � � �/2, there is exact cancellation of cosines such
that

h(�,�) = C(1 � �) � C� cos�cos� (8.5)

and the maximal cortical response will occur at either the
low-frequency pinwheel � = 0 (when cos� � 0) or the
high-frequency pinwheel � = � (when cos� 	 0). More
generally, we can rewrite equation (8.3) as

h(�,�) = C̄(1 � �̄) � �̄C̄[cos�̄cos�
� sin�̄sin�cos(2[� � �̄])], (8.6)
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where

�̄ =
� � �


2
, (8.7)

tan�̄ = cos(� � �
)tan� (8.8)

and

C̄ = C(1 � � � ��),�̄ =
��

1 � � � ��
(8.9)

with

� = 	cos2� � sin2�cos2(� � �
). (8.10)

The variation of �̄, C̄ and �̄ with orientation difference
�� = � � �
 is shown in figures 28 and 29. Two separate
effects of cross-orientation suppression can be identified.
First, there is a shift in the peak response � → �
 and
� → �
, which means that there will be local cortical sup-
pression since cells that respond optimally at (�,�) will
have their response suppressed. However, other cells will
have their response enhanced. Second, there is a reduction
in both the effective contrast and bias of the LGN input,
which implies that there is also global suppression due to
a reduction in the cortical gain G defined by equation
(3.10). Both effects increase with ��, reaching a
maximum when the gratings are orthogonal. On the other
hand, the degree of suppression decreases as � approaches
one of the pinwheels. (The point � = �/2 is a singular
case, since there is no shift in spatial frequency with ��
but the LGN bias vanishes when �� = �/2).

Cross-orientation suppression is also expected to occur
for a checkerboard pattern, which is constructed by taking
the product of two orthogonal sinusoidal gratings, one ver-
tical and the other horizontal, say
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Figure 29. Cross-orientation suppression: reduction in LGN bias and contrast due to a pair of sinusoidal gratings with relative
orientation �� and the same spatial frequency ps = Q�1(�). (a) Relative LGN contrast C̄/C is plotted as a function of �� for
various �. (b) Shifted LGN bias �̄ is plotted as a function of �� for various �. Here, � = 0.2.

i(r) = Cscos( psx)cos( ps y) =
Cs

2
cos( ps(x � y))

�
Cs

2
cos( ps(x � y)). (8.11)

Such a stimulus decomposes as a sum of two gratings at
±45° and effective spatial frequency 	2ps. Of course, it is
possible to perceive checkerboards, crosses and other
more complex stimuli. Hence, the occurrence of cross-
orientation suppression suggests that this is achieved at
a more global level by combining the responses of many
hypercolumns. It might also be possible that a hyper-
column amplifies higher-order harmonic components of a
stimulus, and uses this to resolve certain aspects of com-
posite stimuli. However, as discussed by Carandini & Rin-
gach (1997) within the context of the ring model, this
could lead to the undesirable side effect of spurious peaks
in the tuning curves.

9. DISCUSSION

The main conclusion of this paper is that orientation
and spatial frequency can be represented by the surface

Phil. Trans. R. Soc. Lond. B

coordinates of a sphere in each region of V1 that corre-
sponds to a Hubel–Wiesel hypercolumn. We re-emphasize
that this proposed spherical or O(3) symmetry is an
internal symmetry of the network topology, or equival-
ently, of the cortical labels for orientation and spatial-
frequency preferences, and is not a symmetry of the actual
spatial arrangement of neurons in a hypercolumn. Such a
spherical coordinate system naturally accommodates the
existence of orientation preference pinwheels and their
association with regions of both low and high spatial-
frequency preference. It follows that pattern formation on
the sphere generated essentially by a symmetry breaking
instability, in which the first few spherical harmonics are
excited by incoming stimuli, can provide a mechanism for
the existence of localized orientation and spatial frequency
preferences and tuning, very much as suggested by De
Valois & De Valois (1988). A major consequence of the
spherical topology and its association with orientation
preference pinwheels is that orientation and spatial-
frequency tuning curves are not separable.

The inclusion of spatial frequency preference and tun-
ing as a property of V1 neurons is not as straightforward
as in the case of orientation. If a local visual stimulus is
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filtered by the action of the geniculo-cortical pathway, as
originally suggested by Hubel & Wiesel (1962) for the
orientation preference label, then the representation of
spatial frequency is not faithful. Thus, figure 23 shows that
the spatial frequency encoded by the hypercolumn in gen-
eral differs from the actual spatial frequency of the stimu-
lus. We conclude that to obtain a faithful representation
of spatial frequency, we must insert another filtering oper-
ation. The most plausible and interesting possibility is that
cortico-geniculate feedback generates such a filter. Thus,
we propose a role for the back-projection from V1 to the
LGN: it exists, in part, to provide a means to continually
update and modify the LGN input to V1 so that the rep-
resentation of spatial frequency remains faithful when sig-
nalled by the projection onto the first-order spherical
harmonics. Interestingly, we find that the cortico-genicu-
late filter that results from our calculations is approxi-
mately the reciprocal of the feed-forward filter. Thus, it
innervates the LGN in a pattern determined by the orien-
tation and spatial frequency biases of the feed-forward
receptive field. We note that Murphy et al. (1999) found
such patterns, at least in the case of orientation prefer-
ences. Recent observations by Sharon & Grinvald (2002)
also appear to be consistent with the model. They found
that orientation tuning is amplified during a cortical
evoked response. They also established that the time
course of this amplification is not smooth but slows down
ca. 50 ms after onset and then accelerates again. This is
consistent with the postulated feedback process coming
online after ca. 50 ms.

Our suggestion regarding the function of the cortico-
geniculate feedback pathway differs considerably from
many others. These other proposals have been concerned
with such functions as gating retino-geniculate trans-
mission, improving the precision of spike timing in LGN
cells, enhancing the spatial-frequency tuning of LGN
cells, and synchronizing slow oscillations between V1 and
LGN (see Funke et al. 2001). Our model is closest in con-
cept to that of Rao & Ballard (1999) who suggested that
in general, feedback connections carry predictions of lower
level activities, whereas the corresponding feed-forward
connections carry the residual errors between the predic-
tions and the actual lower level activities. It remains to be
determined what the connection is, if any, between our
ideas and those concerning such predictive coding.

More specific results and predictions of our spherical
model are as follows.

(i) Orientation preference and tuning should become
weaker at low and high spatial frequencies, in part
since, by hypothesis, such frequencies are located at
the poles of the sphere. This is consistent with the
early recordings of Hubel & Wiesel (1962), who
found numerous cells with poor or no tuning for
orientation, many of which they later located in CO-
blob regions of V1 (Livingstone & Hubel 1984),
now known to be regions of low spatial-frequency
tuning (Hübener et al. 1997).

(ii) Spatial-frequency preference shifts occur at both
ends of the frequency spectrum. The direction of the
shifts is always towards the high- or low-frequency
poles. Thus, low spatial frequencies tend to be sig-
nalled as even lower, high spatial frequencies as even
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higher. Issa et al. (2000) report such shifts at the low
end of the spectrum. However, these authors also
report high frequency shifts in the opposite direction
to our predictions. We suggest that feedback could
be responsible for the predicted change in direction
of shifts in spatial-frequency preferences. That is,
downward shifts are consistent with the properties
of the geniculo-cortical pathways before the effects
of the cortico-geniculate feedback have time to act.
We predict that the earliest responses of cortical
neurons should all exhibit downward shifts in spa-
tial-frequency tuning, but for high spatial fre-
quencies, such shifts should eventually disappear or
even reverse, when measured later. Some obser-
vations appear to be consistent with this prediction
(Bredfeldt & Ringach 2002).

(iii) The contrast in variance of tuning curves for both
orientation and spatial frequency is a natural pro-
perty of our model, and indeed, of any model with
an amplification mechanism. In this respect it differs
somewhat from the quadratic threshold mechanism
recently suggested by Miller & Troy (2002), in that
even the linear rectifier defined in equation (2.2) will
generate contrast-invariant responses if there is an
amplification process.

(iv) Finally, we remark that cross-orientation sup-
pression is also a natural property of our model
which also follows from the amplification process.
However, the suppression mechanism is compli-
cated. First, there is a local suppression effect—cells
that respond optimally at (�,�) will have their
response suppressed by an orthogonal input. How-
ever, other cells will have their response enhanced.
Second, there is also global suppression due to a
reduction in the cortical gain G defined by equation
(3.10). Both effects increase with ��, reaching a
maximum when the gratings are orthogonal. How-
ever, the degree of suppression decreases as �
approaches one of the pinwheels.
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APPENDIX A

We analysed the stability of the localized state (centred
at the � = 0 pinwheel) by linearizing equation (3.4) about
the fixed-point solution (equation (3.9)). First, we set

I0(t) = I0 � �0(t),

I0
1(t) = I1 � �1(t),

I ±
0(t) = �±(t), (A 1)

with I0 and I1 determined by the self-consistency con-
ditions (3.30)–(3.32) and write

da
dt

= �a � �I0 � I1cos� � �0(t) � �
m = 1, ±

�m(t)fm(�,�)�
�

.

(A 2)
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At a given time t, the boundary condition for the vanishing
of the total synaptic drive is

J(�,�,t) � I1 cos� � �0(t) � �
m

�m(t)fm(�,� ) = 0. (A 3)

This equation can be linearized by setting � = �c

� ��(�,t) with

��(�,t) =
�0(t) � �

m = 1, ±

�m(t)fm(�c,� )

I1sin�c
. (A 4)

We have used the fact that I0 � I1 cos�c = 0. The next step
is to take moments of equation (A 2) with respect to the
zeroth and first order harmonics:

dR0

dt
= �R0 � ��

0
� �c � ��

0

J(�,�,t)D(�,�) (A 5)

and

dRn
1

dt
= �Rn

1��

0
� �c � ��

0

fn(�,�)J(�,�,t)D(�,�). (A 6)

To linearize these equations set R0(t) = R0 � r0(t),
R0

1(t) = R1 � r1(t) and R ±
1 (t) = r ± (t) with R0,R1 given by

equations (3.31) and (3.32). It follows from equations
(3.5), (3.6) and (3.30) that

�0(t) = W0r0(t), �m(t) = W1rm(t), (A 7)

for m = 1, ± . Here, r0(t) and r1(t) represent ‘longtitudinal’
fluctuations of the localized state whereas r±(t) represent
‘transverse’ fluctuations. It transpires that the longitudinal
and transverse fluctuations decouple at the linear level.
Expanding equations (A 5) and (A 6) to first order in �� we
find that the longitudinal modes satisfy the pair of equations

dr0
dt

= �r0 �
1
4

(2I0sin�c � I1sin2�c)��

�
�0[1 � cos�c]

2
�

�1[1 � cos2�c]
8

(A 8)

and

dr1
dt

= �r1 �
1
4

(I0sin2�c � 2I1cos2�csin�c)��

�
�0[1 � cos2�c]

8
�

�1[1 � cos3�c]
6

, (A 9)

where

�� =
1
���

0

��(�)d� =
�0 � �1cos�c

I1sin�c
. (A 10)

Equation (3.29) then implies that the coefficients multi-
plying �� actually vanish. Thus, we have the simple
matrix equation

d
dt
r0r1� = W(�c)
r0

r1
�, (A 11)

where

W(�c) = � � 1 �
W0[1 � cos�c]

2
W1[1 � cos2�c]

8

W0[1 � cos2�c]
8

� 1 �
W1[1 � cos3�c]

6
.

(A 12)
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Hence, we obtain an eigenvalue equation of the form

�2 � �TrW(�c) � detW(�c) = 0. (A 13)

One can show that the localized state undergoes amplitude
instability as W0 is increased for fixed W1 due to a single
real eigenvalue becoming positive. The condition for such
instability is detW(�c) = 0. In the particular case of a
homogeneous input (� = 0), one finds from equations
(3.26) and (3.27) that

detW(�c) = �
W1

8
[1 � cos2�c][cos�c � W0A0(�c)],

(A 14)

so that the condition for an amplitude instability is

W1 = Wc � �
cos�c

A0(�c)
. (A 15)

Finally, expanding equation (A 6) to first order in �� for
the transverse modes, we find that

dr ±

dt
= �r ± �

1
2
(I0sin2�c � I1sin2�ccos�c)��±

� �±W1A1(�c)r± (A 16)

where

�� ± �
1
���

0

cos�c

sin�c
���(�)d� =

W1r ±

2I1
. (A 17)

Equation (3.29) implies that the coefficient multiplying
vanishes ��±. Hence,

dr ±

dt
= [�1 � W1A1(�c)]r±. (A 18)

It immediately follows that in the case of a homogeneous
input, the localized state is marginally stable with respect
to excitation of the transverse modes since 1 = W1A1(�c).

APPENDIX B

To simplify our analysis of the spherical model, we col-
lapsed the inhibitory and excitatory cell populations into a
single equivalent population. Such a simplification greatly
reduces the number of free parameters of the system.
However, the basic insights gained from the one-popu-
lation model can now be used to develop the mean field
theory of a more realistic two-population model.

Let us denote the activity of the excitatory (e) and
inhibitory (i) populations by ar(�,�,t) with r = e,i. A two-
population version of equation (2.2) is then

∂ar(�,�,t)
∂t = �ar(�,�,t) � �r[Ir(�,�,t) � �r]�, (B 1)

where �r is the threshold and Ir(�,�,t) is the total synaptic
current of the rth population,

Ir(�,�,t) = hr(�,� ) (B 2)

� �
s = e,i

�
S2
wrs(�,���
,�
)as(�
,�
,t)D(�
,�
).

We have also introduced input gains �r. The weight distri-
butions wrs connecting the various cell populations are
taken to be O(3) invariant, and are constructed out of
zeroth and first-order spherical harmonics according to
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wee(�,���
,�
) = wie(�,���
,�
) = We,0

� We,1 �
m = 0, ±

fm(�,�)fm(�
,�
) (B 3)

and

wei(�,���
,�
) = wii(�,���
,�
) = �Wi,0

� Wi,1 �
m = 0, ±

fm(�,�)fm(�
,�
), (B 4)

with Wr,1,Wr,0  0. As in the one-population model, the
weakly biased LGN input hr(�,�) is assumed to be of
the form

hr(�,�) = �rh(�,�), (B 5)

with h given by equation (2.10) and �r determining the
relative strength of the input to the two populations. Intro-
ducing the order parameters

Rr,0(t) = �
S2
ar(�,�,t)D(�,�), (B 6)

Rm
r,1(t) = �

S2
ar(�,�,t)fm(�,�)D(�,�), (B 7)

equation (B 1) can be rewritten in the form

∂ar(�,�,t)
∂t = �ar(�,�,t) � �Ir,0(t) � �

m = 0, ±

Imr,1(t)fm(�,�)�
�

,

where

Ir,0 = �r[�rC(1 � �) � � � We,0Re,0 � Wi,0Ri,0] (B 8)

and

Imr,1 = �r[�rC�fm(�,�) � We,1Rm
e,1 � Wi,1Rm

i,1]. (B 9)

We focus on a fixed-point solution of equation (B 8) in
which both the excitatory and inhibitory populations are
in a stationary localized state of the form

ar(�,�) = Ir,1� �
m = 0, ±

fm(�,�)fm(�,�) � cos�c,r�
�

. (B 10)

Taking moments of equation (B 8) with respect to the
zeroth and first-order spherical harmonics and proceeding
along identical lines to the one-population model (see § 3),
one finds that such a solution exists provided that

Rm
r,1 = Rr,1 fm(�,�), Imr,1 = Ir,1fm(�,�), (B 11)

with

Rr,0 = Ir,1A0(�c,r), Rr,1 = Ir,1A1(�c,r) (B 12)

and

Ir,0 � Ir,1 cos�c,r = 0. (B 13)

The functions A0, A1 are defined by equations (3.26) and
(3.27). Combining equations (B 11) and (B 12) with
equations (B 8) and (B 9) leads to the mean-field equa-
tions

Rr,0 = �r[�rC� � We,1Re,1 � Wi,1Ri,1]A0(�c,r) (B 14)

and

Rr,1 = �r[�rC� � We,1Re,1 � Wi,1Ri,1]A1(�c,r). (B 15)
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(a) Marginal phase (� = 0)
In the case of a homogeneous input, equation (B 15)

reduces to the matrix equation

W(�c,e,�c,i)
Re,1

Ri,1
� = 0, (B 16)

where

W(�c,e,�c,i) = 
�1 � �eWe,1A1(�c,e) � �eWi,1A1(�c,e)

�iWe,1A1(�c,i) � 1 � �iWi,1A1(�c,i)
�.

(B 17)

A necessary condition for the existence of a non-trivial
localized state can then be expressed as detW(�c,e,�c,i)
= 0, that is,

�eWe,1A1(�c,e) � �iWi,1A1(�c,i) = 1. (B 18)
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