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SO(3) Symmetry Breaking Mechanism for Orientation and Spatial Frequency Tuning
in the Visual Cortex
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A dynamical model of orientation and spatial frequency tuning in a cortical hypercolumn is presented.
The network topology is taken to be a sphere whose poles correspond to orientation pinwheels associated
with high and low spatial frequency domains, respectively. Recurrent interactions within the sphere
generate a tuned response via an SO(3) symmetry breaking mechanism.
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The discovery that most neurons in the visual cortex
(V1) of cats and primates respond preferentially to locally
oriented edges or bars [1] has led to many studies of the
precise circuitry underlying this property. The classical
model of Hubel and Wiesel proposes that the orientation
preference of a cortical neuron arises primarily from the
geometric alignment of the receptive fields of thalamic
neurons in the lateral geniculate nucleus (LGN) project-
ing to it. This has been confirmed by a number of recent
experiments [2,3]. However, there is also growing experi-
mental evidence suggesting the importance of intracortical
feedback. For example, the blockage of extracellular inhi-
bition in cortex leads to considerably broader orientation
tuning [4]. Moreover, intracellular measurements indicate
that direct inputs from the LGN to V1 provide only a frac-
tion of the total excitatory inputs relevant to orientation
selectivity [5].

The possible role of recurrent cortical connections in
generating orientation tuning has been analyzed using the
ring model of a cortical hypercolumn [6–8]. This model
consists of interacting neural populations labeled by their
orientation preference f [ �0, p�. Through a combina-
tion of recurrent excitation and inhibition, an orientation
tuning curve can be generated in the network via sponta-
neous symmetry breaking of an underlying O�2� symme-
try around the ring. The peak of the tuning curve is then
fixed by a weakly biased input from the LGN that explic-
itly breaks the hidden O�2� symmetry [6,8].

Although the ring model has been quite successful in
accounting for some aspects of the response properties
of cortical cells, it has a number of limitations. First, it
does not take into account the two-dimensional distribu-
tion of orientation preferences within a hypercolumn as
revealed by optical imaging data and microelectrode
recordings [9–12]. This distribution has characteristic
features illustrated in Fig. 1(a): (i) orientation preference
appears to change continuously as a function of cortical
location except at singularities or pinwheels, (ii) the pin-
wheels tend to align with the centers of ocular dominance
(left/right eye) stripes, and (iii) within each pinwheel re-
gion there is a broad distribution of orientation preferences

so that the (population) average orientation selectivity is
weak [13]. These observations suggest an underlying spa-
tial periodicity in the microstructure of V1 with a period of
approximately 1 mm (in cats and primates). If we define a
hypercolumn to be the fundamental domain of this periodic
tiling of the cortical plane [14], then each hypercolumn
contains two sets of orientation preferences f [ �0, p�,
one for each eye, and four pinwheels. The ring model
collapses this structure onto a circular set of orientation
domains around a single pinwheel; see Fig. 1(a).

A second major limitation of the ring model is that it
neglects the fact that V1 cells are also selective for spatial
frequency. Indeed, there is considerable physiological
and psychophysical evidence to suggest that cortical cells
act like bandpass filters for both orientation and spatial
frequency, so that a hypercolumn carries out a localized
two-dimensional spatial frequency filtering of a stimulus
rather than simply performing local edge detection (for
a review see [15]). The distribution of spatial frequency
preferences across cortex is less clear than that of orienta-
tion. Nevertheless, recent optical imaging studies [16,17]
suggest that both orientation and spatial frequency are dis-
tributed almost continuously across cortex, spatial frequen-
cies at the extremes of the continuum tend to be located
at the orientation pinwheel singularities, and around the
pinwheels iso-orientation and isofrequency contours are

L

R
plow

(θ,φ)

orientation

sp
at

ia
l f

re
qu

en
cy

phigh

p

φ

(b)(a)

FIG. 1. (a) Iso-orientation (light) and ocular dominance (dark)
contours in a small region of V1. Around each orientation pin-
wheel is a ring of orientation selective cells [13]. (b) Spherical
model of orientation and spatial frequency tuning.
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approximately orthogonal so that they generate a local
curvilinear coordinate system. Such results provide func-
tional evidence that hypercolumns implement localized
two-dimensional spatial frequency analysis.

In this Letter we construct a minimal dynamical model
of a hypercolumn that (a) includes both orientation and
spatial frequency preferences, (b) incorporates the orien-
tation pinwheels, and (c) exhibits sharply tuned responses
in the presence of recurrent interactions and weakly biased
LGN inputs via a symmetry breaking mechanism.

For simplicity, we restrict ourselves to a single ocular
dominance column, and assume that the hypercolumn is
parametrized by two cortical labels, which represent the
orientation preference f [ �0, p� and spatial frequency
preference p [ �0, `� of a local patch or column of cells.
Given that p is not a periodic variable within a hyper-
column, one cannot extend the ring model of orientation
tuning by including a second ring so that the network
topology becomes a torus S1 3 S1. An important clue
on how to proceed is provided by the fact that each hy-
percolumn (when restricted to a single ocular dominance
column) contains two orientation singularities. These are
assumed to correspond, respectively, to the two extremes
of spatial frequency within the hypercolumn. This sug-
gests the network topology of a sphere S2, with the two
singularities identified as the north and south poles, respec-
tively [see Fig. 1(b)]. Introducing spherical polar coordi-
nates �r, u, 2f� with r � 1, u [ �0, p�, and f [ �0, p�,
we set

u � Q�p� � p��1 1 �p0�p�b� (1)

with p0, b fixed. The compressive nonlinearity is required
in order to represent the semi-infinite range of spatial fre-
quencies within the bounded domain of a hypercolumn.
The gain parameter b determines the effective spatial fre-
quency bandwidth of the hypercolumn. The latter is typi-
cally around four octaves, that is, pmax � 2npmin with
n � 4, which corresponds to a gain of around b � 1.5.

Let a�u, f, t� denote the activity of a population of cells
on the sphere. Our spherical model of a hypercolumn is
then defined according to the evolution equation

≠a�u, f, t�
≠t

� 2 a�u, f, t� 1 h�u, f�

1
Z

S2
w�u, f j u0, f0�

3 g�a�u0, f0, t��D �u0, f0� , (2)

where D �u, f� � 2 sinu du df. Here w represents the
distribution of recurrent interactions within the hypercol-
umn, h�u, f� is a weakly biased input from the LGN, and
g�a� is the smooth nonlinear function g�a� � gmax��1 1
e2h�a2ath�� for constant gain h and threshold ath. Equa-
tion (2) is the natural extension of the ring model to the

sphere. It is important to emphasize that the sphere de-
scribes the network topology of the local weight distribu-
tion expressed in terms of the internal labels for orientation
and spatial frequency. It is not required to match the actual
spatial arrangement of cells within a hypercolumn.

In order to extend the symmetry breaking mechanism of
the ring model [6] to the spherical model (2), we first have
to construct a weight distribution that is invariant with re-
spect to the symmetry group of the sphere, namely, SO(3).
This requires the use of spherical harmonics. Any suf-
ficiently smooth function f�u, f� on the sphere can be
expanded in a uniformly convergent double series of spheri-
cal harmonics f�u,f� �

P`
n�0

Pn
m�2n fnmYm

n �u, f�. The
functions Ym

n �u, f� constitute the angular part of the solu-
tions of Laplace’s equation in three dimensions, and thus
form a complete orthonormal set. The orthogonality rela-
tion is

Z
S2

Ym1�
n1

�u, f�Ym2
n2

�u, f�D �u, f� � dn1,n2 dm1,m2 . (3)

The spherical harmonics are given explicitly by

Ym
n �u, f� � �21�m

s
2n 1 1

4p

�n 2 m�!
�n 1 m�!

Pm
n �cosu�e2imf

(4)
for n $ 0 and 2n # m # n, where Pm

n �cosu� is an
associated Legendre function. The action of SO(3) on
Ym

n �u, f� involves �2n 1 1� 3 �2n 1 1� unitary matrices
associated with irreducible representations of SU(2) [18].
From the unitarity of these representations, one can
construct an SO(3) invariant weight distribution of the
general form

w�u, f j u0, f0� � m
X̀
n�0

Wn

nX
m�2n

Ym�
n �u0, f0�Ym

n �u,f�

(5)
with Wn real and m a coupling parameter. As an illus-
tration, consider the SO(3) distribution joining neurons
with the same spatial frequency (same latitude on the
sphere) for the particular case W0 , 0, W1 . 0, Wn � 0
for n $ 2. One finds that away from the pinwheels (poles
of the sphere), cells with similar orientation excite each
other, whereas those with differing orientation inhibit each
other. This is the standard interaction assumption of the
ring model. On the other hand, around the pinwheels,
all orientations uniformly excite, which is consistent with
the experimental observation that local interactions depend
on cortical separation [19]. That is, although the cells
around a pinwheel can differ greatly in their orientation
preference, they are physically close together within the
hypercolumn.

We now show how sharp orientation and spatial fre-
quency tuning can occur through spontaneous symmetry
breaking of SO(3). First, substitute the distribution (5)
into Eq. (2) and assume, for the moment, that there is
constant external drive from the LGN [with h�u, f� � h̄]
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such that Eq. (2) has a�u, f� � ā as a fixed point solution.
Linearizing about the fixed point and setting a�u, f, t� �
ā 1 eltu�u, f� leads to an eigenvalue equation for the lin-
ear eigenmodes u�u, f�:

lu�u, f� � 2u�u, f� 1 m
Z

S2

X̀
n�0

nX
m�2n

Wn

3 Ym�
n �u0, f0�Ym

n �u, f�u�u0, f0�D �u 0, f0�
(6)

[with a factor g0�ā� absorbed into m]. The orthogonal-
ity relation (3) shows that the linear eigenmodes are
spherical harmonics with l � ln � 21 1 mWn for
u�u, f� � Ym

n �u, f�, 2n # m # n. Thus the nth eigen-
value is �2n 1 1�-fold degenerate.

Now suppose that W1 . Wn for all n fi 1. The fixed
point solution a � ā then destabilizes at a critical value
of the coupling mc � 1�W1 due to excitation of the first-
order spherical harmonics. Sufficiently close to the bifur-
cation point, the resulting activity profile can be written in
the form

a�u, f� � ā 1
X

m�0,6

cmfm�u, f� (7)

for real coefficients c0, c6 and f0�u, f� � cosu,
f1�u, f� � sinu cos�2f�, f2�u, f� � sinu sin�2f�. Am-
plitude equations for these coefficients can be obtained
by carrying out a perturbation expansion of Eq. (2)
with respect to the small parameter ´ � m 2 mc using
the method of multiple scales [20]. This leads to the
Stuart-Landau equations [8,21]

dck

dt
� ck

√
m 2 mc 1 L

X
m�0,6

c2
m

!
, k � 0, 6 ,

(8)
where

L �
3g3

5
1

2g2
2

3
mcW0

1 2 mcW0
1

8g2
2

15
mcW2

1 2 mcW2
. (9)

Here g2, g3 are coefficients in the Taylor expansion of the
firing rate function, �g�a� 2 g�ā���g0�ā� � ��a 2 ā� 1
g2�a 2 ā�2 1 g3�a 2 ā�3 1 . . .�. It is clear that the am-
plitude equations are equivariant with respect to the action
of the orthogonal group SO(3) on �c0, c1, c2�, which re-
flects the underlying spherical symmetry. Moreover, defin-
ing R �

P
m�0,6 c2

m we see that

dR

dt
� 2R�m 2 mc 1 LR� , (10)

which has a stable fixed point at R0 � �m 2 mc��jLj, pro-
vided that L , 0. This corresponds to an SO(3)-invariant
submanifold of marginally stable states.

Equation (7) represents a tuning surface for orientation
and spatial frequency with a solitary peak whose location
is determined by the values of the coefficients �c0, c1,c2�.
Such a solution spontaneously breaks the underlying SO(3)
symmetry. However, full spherical symmetry is recovered

by noting that rotation of the solution corresponds to an
orthogonal transformation of the coefficients c0, c6. Thus
the action of SO(3) is to shift the location of the peak of
the activity profile on the sphere, that is, to change the
particular orientation and spatial frequency selected by the
tuning surface.

Now suppose that there exists a weakly biased, time-
independent input from the LGN of the form

h�u, f� � h̄ 1
X

m�0,6

hmfm�u, f� , (11)

where h0 � G cosQ, h1 � G sinQ cos 2F, h2 � G 3
sinQ sin2F where G is the effective contrast of the input
stimulus. Equation (11) describes a unimodal function
on the sphere with a single peak at �Q, F	, which cor-
responds to an input orientation fS � F and an input
spatial frequency pS � Q21�Q� with Q defined accord-
ing to Eq. (1). Here we ignore higher-order spherical
harmonic contributions to the LGN input, since the pattern
forming instability amplifies only the first-order harmonic
components —it is these components that couple to the
cubic amplitude equation. If G � O �e3�2� then the
input (11) generates an additional contribution hk to
the right-hand side of the cubic amplitude equation that
explicitly breaks the hidden SO(3) symmetry and fixes the
peak of the tuning surface at �Q, F	. Since hk � O �´3�2�,
whereas ck � O �´1�2�, we see that the cortical model acts
as an amplifier for the first spherical harmonic components
of the weakly biased input from the LGN.

In order to confirm the above analytical results, we
solved Eq. (2) numerically, using the discretization scheme
considered by Varea et al. [22] in their study of pattern
formation for a reaction-diffusion system on a sphere. In
Fig. 2 we plot the relative firing rate g�a��gmax in response
to a weakly biased input from the LGN, Eq. (11), with
Q � p�2 (corresponding to an intermediate input fre-
quency pS � 2c�deg) and F � p�2. Figure 2(a) shows a
surface plot in the �p, f	 plane for G � 0.1. It can be seen
that the hypercolumn exhibits a tuning surface that is lo-
calized with respect to two-dimensional spatial frequency
and its peak is locked to the LGN input at p � 2c�deg,
f � p�2. In Fig. 2(b) we plot the response as a function
of spatial frequency at the optimal orientation for various
input amplitudes G. The height of the spatial frequency
tuning curves increases with the input amplitude G, but
the width at half-height is approximately the same (as can
be checked by rescaling the tuning curves to the same
height). Since G increases with the contrast of a stimu-
lus, this shows that the network naturally exhibits contrast
invariance. Corresponding orientation tuning curves are
shown in Fig. 2(c), and are also found to exhibit contrast
invariance.

Note that projecting the spherical tuning surface onto
the �p, f	 plane breaks the underlying SO�3� symmetry
of the sphere. Consequently, the shape of the planar tun-
ing surface is not invariant under shifts in the location of
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FIG. 2. Plot of normalized firing rate g�a��gmax in response to
a weakly biased input from the LGN with Q � p�2, F � p�2,
and G ø 1. The firing rate function has a gain h � 5, a
threshold ath � 0.6, and we take ā � 0. The weight coeffi-
cients are W0 � 22, W1 � 1, Wn � 0, n . 1, and gmaxm � 5.
(a) Tuning surface in the �p, f	 plane. (b) and (c) Spatial fre-
quency and orientation tuning curves.

the peak of the tuning surface. Such distortions generate
behavior that is consistent with recent experimental obser-
vations. First, at low and high spatial frequencies (i.e.,
towards the pinwheels) there is a broadening of the tuned
response to orientation, as found in [13]. Second, there is
a systematic shift in the peak of spatial frequency tuning
curves at nonoptimal orientations that is towards the closest
pinwheel. Interestingly, there is some suggestion of spatial
frequency shifts in recent optical imaging data [17].

In conclusion, representing the topology of a hyper-
column (with respect to orientation and spatial frequency
labels) as a sphere is a natural way to accommodate the
orientation pinwheels while providing a recurrent mecha-
nism for generating two-dimensional spatial frequency tun-
ing. One issue that we have not addressed here is how the
projection of the LGN input on to its first spherical har-
monic components encodes information regarding proper-
ties of a visual stimulus. Intriguingly, examination of the
response to a sinusoidal grating stimulus indicates that if
such a stimulus is first filtered by the action of the feedfor-

ward pathway from retina to cortex, before the recurrent
dynamics amplifies its first-order spherical harmonic com-
ponents, then the representation of spatial frequency is not
faithful. That is, there is a mismatch between the spatial
frequency at the peak of the tuning surface and the stimulus
frequency. We expect a similar conclusion to hold for any
recurrent mechanism that amplifies harmonic components
of two-dimensional stimuli. One possible mechanism for
correcting this mismatch is via the massive feedback path-
ways from V1 back to LGN [21].
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