
Traveling fronts and wave propagation

failure in an inhomogeneous neural network

Paul C. Bressloff

Department of Mathematics, University of Utah

Salt Lake City, Utah 84112

October 22, 2000

Abstract

We use averaging and homogenization theory to study the propagation of trav-
eling wavefronts in an inhomogeneous excitable neural medium. Motivated by the
functional architecture of primary visual cortex, we model the inhomogeneity as
a periodic modulation in the long-range neuronal connections. We derive an ex-
pression for the effective wavespeed and show that propagation failure can occur
if the speed is too slow or the degree of inhomogeneity is too large. We find that
there are major qualitative differences in the wavespeed for different choices of the
homogenized weight distribution.
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1 Introduction

A common starting point for analyzing the large-scale dynamics of cortex is to treat nerve

tissue as a continuous two-dimensional medium and to describe the dynamics in terms of

evolution equations of the form [1, 2, 3]

τ0
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
ŵ(x, x′)f(u(x′, t))dx′ + I(x, t) (1.1)

The scalar field u(x, t) represents the local activity of a population of excitatory neurons at

cortical position x ∈ R2 at time t, τ0 is a time contant (associated with membrane leakage

currents or synaptic currents), I(x, t) is an external input, and the positive distribution

ŵ(x, x′) is the strength of connections from neurons at x′ to neurons at x. [Popula-

tions of inhibitory neurons can be incorporated into equation (1.1) by taking u to be a

vector-valued field and replacing w by a matrix of distributions with both positive and

negative components]. The nonlinearity f is often assumed to be a smooth monotonically

increasing function of the form

f(u) =
1

1 + e−β(u−α)
(1.2)

where β is a gain parameter and α is a threshold. This becomes a step function in the

high-gain limit β → ∞, that is, f(u) = Θ(u − α) where Θ(x) = 1 if x > 0 and is zero

otherwise.

A major simplification concerning the structure of cortex is to assume that it is ho-

mogeneous and isotropic, with the strength of connections depending on the (Euclidean)

distance between presynaptic and postsynaptic neurons. More specifically, ŵ(x, x′) =

w(|x−x′|) with w(s) a decreasing function of separation s. Under this approximation the

weight distribution is invariant with respect to the Euclidean group of rigid body motions

in the plane. Euclidean symmetry plays a key role in determining the types of solutions

that can be generated spontaneously in such networks [4, 5].

Another important property of homogeneous networks is that they support the propa-

gation of traveling waves [6, 7]. This is of interest since a number of experimental studies

have observed waves of excitation propagating in cortical slices when stimulated appro-

priately [8, 9]. The propagation velocity of such waves is of order 0.06ms−1, which is

much slower than the typical speed of 0.5ms−1 found for action potential propagation

along axons. (However, it is possible that the conditions for wave propagation in the

intact cortex are different since much of the long-range cortical connectivity is lost during

slice preparation). From a mathematical perspective, traveling wave solutions are very

sensitive to the degree of homogeneity in the connectivity pattern, particularly in the case
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of slowly moving waves. This is a consequence of the fact that traveling wave solutions

are not structurally stable, that is, they correspond to heteroclinic orbits of an equivalent

dynamical system. Keener has recently explored this issue within the context of reaction-

diffusion equations modeling excitable chemical media [10, 11]. Using a careful application

of averaging or homogenization theory, he has shown that if the level of non-uniformity

is sufficiently large or the wave velocity is sufficiently small then propagation failure can

occur.

In this paper we extend the analysis of Keener [10, 11] to the case of wave propagation

in inhomogeneous neural networks. Our work is motivated by the fact that although

the assumption of cortical homogeneity is reasonable at the macroscopic level, there are

additional structures at the microscopic level that could modify this simple picture (see

section 2). For example, in the case of the primary visual cortex (V1) there are a number

of functional maps superimposed on the underlying retinotopic representation of the visual

field [12, 13]. These maps, which correspond to additional cortical labels such as ocular

dominance and orientation preference, introduce an approximate periodic tiling of the

cortical plane whose wavelength is comparable to a single hyperecolumn spacing of around

1mm (in cats and monkeys). It is likely that such functional periodicity is associated with

a corresponding periodicity in the anatomy. Within the framework of large-scale cortical

models (1.1), the periodic microstructure of the cortex can be incorporated by taking a

weight distribution 1

ŵ(x, x′) = w(|x− x′|)h(|x− x′|/ε)k(x′/ε) (1.3)

where h, k are 2π-periodic functions and ε determines the microscopic length-scale. If

k = 1 then the cortex still acts like a homogeneous medium with the effective connection

strength a periodically modulated function of spatial separation. On the other hand,

if there are inhomogeneities arising from the microscopic level then these will result in

a periodically heterogeneous medium for which k �= 1. Absorbing the factor h into w

and substituting into equation (1.1) gives the inhomogeneous evolution equation (for zero

external inputs)

τ0
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(|x− x′|)k(x′/ε)f(u(x′, t))dx′ (1.4)

1A more detailed analysis would require the introduction of additional cortical labels such as ori-
entation preference φ ∈ S1 and considering a generalized evolution equation for the activity variable
a(x, φ, t). Bressloff et al [5] have developed a model of V1 along these lines by considering a weight distri-
bution w(x, φ;x′, φ, ) that is homogeneous but anisotropic with respect to cortical cordinates. However,
Euclidean invaraince is preserved with respect to a group action on the extended space R2 × S1.
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The main goal of this paper is to determine the behavior of propagating wavefronts

in a one-dimensional version of equation (1.4) by extending the averaging method of

Keener [10, 11] to the case of integro-differential equations. This generates an analytical

expression for the wavespeed and waveform shape, from which it can be deduced that

propagation failure occurs when the medium is sufficiently inhomogeneous (see section

3). An explicit calculation of the wavespeed is then carried out in the case of piecewise

linear dynamics (see section 4). We show that the ε-dependence of solutions is sensitive to

the choice of weight distribution w. In particular, there are major qualitative differences

between exponential and Gaussian weight distributions due to the fact that in the latter

case there are transcendentally small (non-perturbative) ε-dependent contributions to the

wavespeed. Interestingly, such terms only occur for smooth nonlinearities in the models

considered by Keener [10, 11].

2 Is the cortex a homogeneous medium?

The most basic feature of the functional architecture of V1 is an orderly retinotopic map-

ping of the visual field onto the surface of cortex, with the left and right halves of visual

field mapped onto the right and left cortices respectively. Superimposed upon this retino-

topic map are a number of additional functional maps that each have an approximately

periodic structure [13].

(a) Ocular dominance. Cells tend to respond more strongly to stimuli presented in one

eye than in the other, and are said to exhibit ocular dominance. Cells sharing the same

ocular dominance are grouped together into non-overlapping regions that form an alter-

nating pattern of right and left eye preference across V1. Such regions have a character-

istic periodicity and morphology that is species-dependent. For example, in the macaque

monkey ocular dominace regions consist of branching stripes that have an approximately

uniform width of 0.4mm [14].

(b) Orientation columns. Most cells in V1 respond optimally to a bar or edge moving

at an appropriate orientation and velocity in its receptive field [15, 16]. Cells of similar

orientation preference are organized into vertical columns whereas there is a systematic

variation of orientation preference transversely across the cortex [17]. In particular, when

a micro-electrode is moved past a series of columns the preferred orientation rotates at

an approximately constant rate over a distance of around 1mm, although discontinuous

jumps of up to 90o are also observed. A much more detailed picture of the two-dimensional
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arrangement of orientation preferences has recently been revealed using optical imaging

[18, 19, 20]. Optical imaging detects neural activity with a sensitive camera, either by

applying a voltage-sensitive dye to the surface of the cortex or by recording small changes

in the absorbance properties of neural tissue that is correlated with activity. The ba-

sic topography revealed by this method has a number of characteristic features [12] as

illustrated schematically in figure 1.
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Figure 1: Schematic illustration of orientation contours, singularities and linear zones in

V1 as revealed by optical imaging. The actual cortex is not as ordered as the figure.

(i) Orientation preference changes continuously as a function of cortical location except

at singularities (or pinwheels). There is an approximately equal number of positive

and negative singularities that are distinguished according to whether orientation

preference rotates anticlockwise or clockwise around the singularity.

(ii) There exist linear regions, approximately 800× 800µm2 in area (in macaque mon-

keys), bounded by singularities, within which iso-orientation regions form parallel

slabs.

(iii) Orientation changes more slowly in the regions between two singularities of the same

polarity (saddle points) but changes abruptly between singularities of opposite sign

(along line fractures).

(iv) Iso-orientation slabs tend to cross the borders of ocular dominance stripes at right

angles. Singularities tend to align with the centers of ocular dominance stripes.
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(c) Cytochrome Oxidase (CO) blobs. Single electrode recordings across monkey visual

cortex have revealed that there are regions in the upper layers of V1 in which orientation

selectivity of cells is relatively poor or even absent [21]. These regions, which are about

0.2mm in diameter and about 0.4mm apart, were found to coincide with the patchy dark

spots or blobs revealed under staining of V1 with the enzyme cytochrome oxidase (CO).

The blob regions coincide with cells that are more metabolically active and hence richer

in their levels of CO. They are located in the centers of ocular dominance stripes, which

indicates some association with orientation singularities. It has also been suggested that

the CO blobs could be the sites of functionally and anatomically distinct channels of

visual processing. For example, there is some evidence that they respond preferentially

to low spatial frequencies [22] and are selective to coloured stimuli [21]. However, these

observations are still controversial [23].

The above experimental findings suggest that there is an underlying periodicity in the

microstructure of V1 with a period of approximately 1mm (in cats and primates). The

fundamental domain of this periodic tiling of the cortical plane is the hypercolumn [24],

which contains two sets of all iso-orientation patches in the range 0 ≤ φ < π, one for each

eye, and four singularities as shown in figure 1. The next step is to determine how this

periodic structure manifests itself anatomically? Two cortical circuits have been fairly well

characterized. There is a local circuit operating at sub–hypercolumn dimensions which

comprises strong orientation specific recurrent excitation and weaker intra–hypercolumnar

inhibition [25, 26]. The other circuit operates between hypercolumns, connecting cells

with similar orientation preferences separated by several millimetres of cortical tissue

[27, 28, 29, 30, 31, 32]. The intrinsic lateral or horizontal connections that mediate this

circuit arise almost exclusively from excitatory neurons [33, 34], although 20% terminate

on inhibitory cells and can thus have significant inhibitory effects [35].

It appears that the horizontal connections also tend to link cells that are similar with

respect to other cortical labels [31]. This observation provides a possible mechanism

for the periodic weight modulation assumed in the model described by equation (1.4).

For if there is an asymmetry in the strength of connections blobs → blobs relative to

interblobs→ interblobs then this would result in a periodic modulation of the long-range

connections. A similar comment holds if there is an asymmetry between pinwheels →
pinwheels and linearzones → linearzones. Moreover, since blobs are separated by

around 0.4mm whereas the horizontal connections can extend up to 6mm [28], it follows

that the periodicity of the heterogeneity could be an order of magnitude smaller than the

correlation length of the long-range connections. As previously mentioned, there is still a

debate concerning whether or not there really are functional and anatomical differences
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between, for example, blobs and interblobs. However, as our analysis in this paper will

show, even a small heterogeneity can have a dramatic effect on the dynamical properties

of an excitable neural medium. In particular, it can lead to wave propagation failure.

3 Averaging theory and homogenization

In this section we analyze wavefront progation and its failure in a one-dimensional inho-

mogeneous network evolving according to equation (1.4). It is convenient to set k(x/ε) =

1 + A′(x/ε) where A′ is a 2π-periodic function and x ∈ R so that the evolution equation

takes the form (for τ0 = 1)

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′) [1 + A′(x′/ε)] f(u(x′, t))dx′ (3.1)

We shall assume that ε is a small parameter such that the periodic modulation occurs on

a smaller length scale than the correlation length of w(x). A zeroth order approximation

of equation (3.1), which is obtained by peforming a spatial averaging with respect to the

periodic weight modulation, is the homogeneous equation

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)f(u(x′, t))dx′ (3.2)

It can be shown that equation (3.2) has a unique propagating wavefront solution u(x, t) =

U(x− ct), where c is the wave speed, provided that the following conditions hold [6]:

(i). The nonlinear function f is continuously differentiable and f ′ > 0 (monotonically

increasing function of u).

(ii). The function −u + f(u) has exactly three zeros with u0 < u1 < u2 and f ′(u0) < 1,

f ′(u2) < 1. Thus u(x) = u0,2 are stable fixed point solutions of (3.2).

(iii). w is an absolutely continuous, even, positive function with
∫∞
−∞w(x)dx <∞

Conditions (i) and (ii) apply for example to the function (1.2) over a range of values of β

and α. Although the step function f(x) = Θ(x−α) is not itself continuously differentiable,

the wavefront solution can be calculated explicitly in this limiting case [6, 7]. We shall

assume that w satisfies condition (iii).

We would like to determine whether or not the inhomogeneous network given by equa-

tion (3.1) also supports wave propagation. We shall proceed by following the averaging

approach of Keener [10], who studied the related problem of wave front propagation in
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excitable chemical media with discrete release sites. In particular, Keener considered a

simplified model of calcium release and uptake in cardiac cells given by

∂u

∂t
=

∂2u

∂x2
− u + [1 + A′(x/ε)] f(u) (3.3)

with u representing calcium concentration and A′(x) representing the local density of

calcium release sites. (See also the analysis of bistable equations with inhomogeneous

resistivities [11]). He showed that an inhomogeneous medium can have very different

properties from the averaged homogeneous medium, namely, the former can exhibit prop-

agation failure. Moreover, he explored this difference within the context of the averaging

theorem [36, 37]. The averaging theorem applies to systems of differential equations of

the form
du

dx
= F

(
u,

x

ε
, ε

)
and states that for sufficiently small ε there exists an exact change of variables u =

y + Y (y, x, ε) that transforms the system of equations into

dy

dx
= F0(y) + εF1

(
y,

x

ε
, ε

)
where F0 is the averaged function

F0(y) = lim
X→∞

1

2X

∫ X

−X

F (y, x, 0)dx

An important issue concerns the conditions under which trajectories of the first-order

averaged or homogenized system dy/dx = F0(y) remain sufficiently close to trajectories

of the exact system (with respect to an appropriate metric). It turns out that the crucial

requirement is that the solutions of the averaged system are structurally stable [36].

However, as highlighted by Keener [10, 11], traveling fronts correspond to heteroclinic

trajectories within a dynamical systems framework and are thus not structurally stable.

Therefore one has to go beyond lowest order averaging in order to resolve the differences

between the homogeneous and inhomogeneous systems.

It is a simple matter to see why similar considerations are expected to hold for the

neural network model of equation (3.1). For suppose that the weight distribution w is

taken to be the exponential function

w(x) =
e−|x|/σ

2σ
(3.4)

The integro-differential equation (3.1) is then equivalent to a reaction-diffusion system

(with τ0 = 1, σ = 1) of the form
∂u

∂t
= −u + v (3.5)
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0 =
∂2v

∂x2
− v + [1 + A′(x/ε)] f(u) (3.6)

which is similar in structure to the model equation (3.3) considered by Keener [10]. How-

ever, rather than restricting ourselves to a particular weight distribution and applying the

averaging method to the differential equations (3.5) and (3.6), we shall develop a version

that is directly applicable to the integro-differential equation (3.1) for general w.

The first step is to perform an integration by parts in equation (3.1) so that

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)f(u(x′, t))dx′ (3.7)

+ε

∫ ∞

−∞
A(x′/ε)

[
w′(x− x′)f(u(x′, t))− w(x− x′)

∂f(u(x′, t))

∂x′

]
dx′

Since the inhomogeneous system is not translationally invariant it cannot have exact

traveling wave solutions of the form U(x− ct). Nevertheless, motivated by the structure

of such solutions we perform the change of variables ξ = x−φ(t) and τ = t [10]. Equation

(3.7) becomes

∂u(ξ, τ)

∂τ
= −u(ξ, τ) +

∫ ∞

−∞
w(ξ − ξ′)f(u(ξ′, τ))dξ′ + φ′

∂u(ξ, τ)

∂ξ
(3.8)

+ε

∫ ∞

−∞
A([ξ′ + φ]/ε)

[
w′(ξ − ξ′)f(u(ξ′, τ))− w(ξ − ξ′)

∂f(u(ξ′, τ))

∂ξ′

]
dξ′

Next perform the perturbation expansions

u(ξ, τ) = U(ξ) + εu1(ξ, τ) + ε2u2(ξ, τ) + . . . (3.9)

φ′(τ) = c + εφ′1(τ) (3.10)

where U(ξ) is the unique traveling wave solution of the corresponding homogeneous equa-

tion (3.2), that is,

−cU ′(ξ) = −U(ξ) +

∫ ∞

−∞
w(ξ − ξ′)f(U(ξ′))dξ′ (3.11)

where c is the speed of the unperturbed wave. The first-order term u1 satisfies the

inhomogeneous linear equation

−∂u1(ξ, τ)

∂τ
+ Lu1(ξ, τ) = −φ′1(τ)U ′(ξ) + h1(ξ, φ/ε) (3.12)

where

Lu(ξ) = c
du(ξ)

dξ
− u(ξ) +

∫ ∞

−∞
w(ξ − ξ′)f ′(U(ξ′))u(ξ′)dξ′ (3.13)

9



and

h1(ξ, φ/ε) = −
∫ ∞

−∞
A([ξ′ + φ]/ε)

[
w′(ξ − ξ′)f(U(ξ′))− w(ξ − ξ′)

df(U(ξ′))

dξ′

]
dξ′ (3.14)

The linear operator L has a one-dimensional null-space spanned by U ′. The existence

of U ′ as a null-vector follows immediately from differentiating both sides of equation

(3.11), whereas its uniqueness can be shown using properties of positive linear operators

[6]. Therefore, a bounded solution of equation (3.12) with respect to ξ and τ will only

exist if the right-hand side of equation (3.12) is orthogonal to all elements of the null-space

of the adjoint operator L∗. The latter is defined with respect to the inner product∫ ∞

−∞
u(ξ)Lv(ξ)dξ =

∫ ∞

−∞
[L∗u(ξ)] v(ξ)dξ (3.15)

where u(ξ) and v(ξ) are arbitrary integrable functions. Hence,

L∗u(ξ) = −c
du(ξ)

dξ
− u(ξ) + f ′(U(ξ))

∫ ∞

−∞
w(ξ − ξ′)u(ξ′)dξ′ (3.16)

It can be proven that L∗ also has a one-dimensional null-space [6], that is, it is spanned

by some function V (ξ). Equation (3.12) thus has a bounded solution if and only if

Kφ′1(τ) =

∫ ∞

−∞
V (ξ)h1(ξ, φ/ε)dξ (3.17)

where

K =

∫ ∞

−∞
V (ξ)U ′(ξ)dξ (3.18)

Note that K is strictly positive since V and U ′ can be chosen to have the same sign [6].

Substituting for h using equations (3.14) and (3.10) and performing an integration by

parts leads to a differential equation for the phase φ:

dφ

dτ
= c + εΦ1

(
φ

ε

)
(3.19)

where

Φ1

(
φ

ε

)
=

1

K

∫ ∞

−∞

∫ ∞

−∞
w(ξ − ξ′)A

(
ξ′ + φ

ε

) [
V ′(ξ)f(U(ξ′)) + V (ξ)

df(U(ξ′))

dξ′

]
dξ′dξ

(3.20)

The phase equation (3.19) is analogous to the one derived by Keener for a reaction-

diffusion model of calcium waves [10]. It implies that there are two distinct types of

behavior. If the right-hand side of equation (3.19) is strictly positive then there exists a
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traveling front of the approximate form U(x−φ(t)) and the average speed of propagation

is

c =
2πε

T
(3.21)

where

T =

∫ 2πε

0

dφ

c + εΦ1

(
φ
ε

) (3.22)

On the other hand, if the right-hand side of equation (3.19) vanishes for some φ then

there is wave propagation failure.

4 Calculation of average wavespeed

In this section we calculate the average wavespeed and the conditions for wave propagation

failure in the special case of the step-function nonlinearity f(u) = Θ(u− α). Although f

is not itself continuously differentiable, it can be obtained as the high-gain limit β →∞
of the smooth function (1.2). The advantage of using a threshold nonlinearity is that

all calculations can be carried out explicitly. Moreover, when β is finite it is necessary

to develop the perturbation expansion of equation (3.8) to O(ε2) rather than O(ε) (see

section 4.3).

4.1 Piecewise linear dynamics

The first step in the analysis of the average wavespeed is to determine the solution U(ξ) of

equation (3.11) and the solution V (ξ) of the adjoint linear equation L∗V = 0. The wave

profile U(ξ) in the case of the threshold nonlinearity f(U) = Θ(U − α) can be obtained

as follows [6, 7]. Since the wave of the homogeneous equation is translation invariant we

impose the normalization condition U(0) = α. For concreteness let 0 < α < 1/2 and take

U(ξ) to be a monotonically decreasing function of ξ so that c > 0, U(ξ) < α for ξ > 0

and U(ξ) > α for ξ < 0. Equation (3.11) then reduces to

−cU ′(ξ) + U(ξ) =

∫ 0

−∞
w(ξ − ξ′)dξ′ =

∫ ∞

ξ

w(x)dx ≡ G(ξ) (4.1)

which has the solution

U(ξ) = eξ/c

[
α− 1

c

∫ ξ

0

e−y/cG(y)dy

]
(4.2)
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Requiring the solution to remain bounded as ξ → ∞ implies that c must satisfy the

condition

α =
1

c

∫ ∞

0

e−y/cG(y)dy =

∫ ∞

0

[
1− e−y/c

]
w(y)dy (4.3)

Substitution of (4.3) into (4.2) yields the result [6]

U(ξ) =
1

c

∫ ∞

0

e−y/cG(y + ξ)dy (4.4)

Furthermore, differentiating both sides of equation (4.4) and using the definition of G(ξ)

gives

U ′(ξ) = −1

c

∫ ∞

0

e−y/cw(y + ξ)dy ≡ −Ĝ(ξ)

c
(4.5)

Substituting f(U) = Θ(U − α) into equation (3.16) implies that V (ξ) satisfies the

equation

cV ′(ξ) + V (ξ) = − δ(ξ)

U ′(0)

∫ ∞

−∞
w(ξ′)V (ξ′)dξ′ (4.6)

This can be integrated to give

V (ξ) = −Θ(ξ)e−ξ/c (4.7)

with

cU ′(0) =

∫ ∞

−∞
w(ξ)V (ξ)dξ (4.8)

Equations (4.7) and (4.8) are consistent since they imply

U ′(0) = −1

c

∫ ∞

0

e−y/cw(y)dy (4.9)

which recovers equation (4.5) for ξ = 0. It follows from equation (4.7) that equation

(3.20) reduces to the form

KΦ1

(
φ

ε

)
=

∫ ∞

−∞

∫ ∞

−∞
w(ξ − ξ′)A

(
ξ′ + φ

ε

)
e−ξ/c

[(
Θ(ξ)

c
− δ(ξ)

)
Θ(−ξ′) + Θ(ξ)δ(ξ′)

]
dξ′dξ

= Ĝ(0)A

(
φ

ε

)
+

∫ ∞

0

A

(
φ− ξ

ε

) [
Ĝ(ξ)

c
− w(ξ)

]
dξ (4.10)

Furthermore, substituting equations (4.4) and (4.7) into (3.18) shows that

K =
1

c

∫ ∞

0

e−ξ/cĜ(ξ)dξ (4.11)
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Equation (4.10) implies that

Φ1

(
φ

ε

)
=

Ĝ(0)

K
A

(
φ

ε

)
+ εF

(
φ

ε
, ε

)
(4.12)

Keeping only the lowest order contribution to Φ1, equation (3.22) reduces to

T =

∫ 2πε

0

dφ

c + εΓ(c)A
(

φ
ε

) (4.13)

with Γ(c) = Ĝ(0)/K. It remains to specify the weight distribution w (which determines

the factor Γ(c)) and the periodic modulation represented by the function A. For the

purposes of analytical tractability we shall take A to be a pure sinusoid. (However, this

particular choice of A is not essential for the basic phenomena described below). Setting

A(x) = a sin(x) in equation (4.13) we find that

T =
2πε√

c2 − ε2a2Γ(c)2
(4.14)

and hence

c̄ =
√

c2 − ε2a2Γ(c)2 (4.15)

This establishes that a sinusoidally varying heterogeneous neural medium only supports

a propagating wave if the velocity c of the (unique) solution of the corresponding homo-

geneous medium satisfies the inequality

c ≥ εaΓ(c) (4.16)

Since Γ(0) = 1 it follows that in the case of slowly moving waves (small c), propagation

failure occurs if εa > c, that is, if either the unperturbed wave is too slow or the non-

uniformity of the medium is too large (as characterized by the wavelength ε or amplitude

a of the periodic modulation). For faster waves the critical period ε0 for wave propagation

failure is no longer linear in c due to the presence of the factor Γ(c). The latter depends

on the particular weight distribution w as we now illustrate.

(a) Exponential weight distribution. In the case of the exponential distribution (3.4) with

σ = 1 (which fixes the length-scale) we find that

Ĝ(ξ) =
1

2

∫ ∞

0

e−y/ce−(y+ξ)dy =
c

2(c + 1)
e−ξ (4.17)

for ξ ≥ 0 and

K =
c

2(c + 1)2
(4.18)
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so that

Γ(c) = 1 + c (4.19)

The resulting average wavespeed (4.15) is plotted as a function of ε and various unper-

turbed speeds c in figure 2(a). The corresponding critical period ε0 for propagation failure

is shown in figure 3(a). It can be seen that the linear relationship between c and ε0 breaks

down for large c with aε0 → 1 as c → ∞. On the other hand, ε0 is a linear function of

the threshold α over the range 0 < α < 1/2, see figure 3(b). In particular, from equation

(4.2) we find that

U(ξ) =


1

2(c + 1)
e−ξ for ξ > 0

1 + (α− 1)eξ/c +
1

2(c− 1)

[
eξ − eξ/c

]
for ξ < 0

(4.20)

with

α =
1

2(c + 1)
(4.21)

Thus wave propagation failure will occur when the threshold satisfies the inequality

1

2
> α >

1

2
− εa

2
> 0 (4.22)

0.2 0.4 0.6 0.8

2

4
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10

0.2 0.4 0.6
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ε

c c

ε

_ _

(a) (b)

c = 2 c = 2

c = 5

c = 10

c = 5

c = 10

c = 1 c = 1

Figure 2: Average wavespeed c̄ satisfying equation (4.15) is plotted as a function of ε for

a sinusoidal modulation of unit amplitude. (a) Exponential weight distribution and (b)

Gaussian weight distribution.

(b) Gaussian weight distribution. In the case of the Gaussian distribution

w(x) =
1√

2πσ2
e−x2/2σ2

(4.23)
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Figure 3: Critical period ε0 for wave propagation failure is plotted as a function of (a)

unperturbed wavespeed c and (b) threshold α for an exponential weight distribution (solid

line) and a Gaussian weight distribution (dashed line).

(with σ = 1) we find that

Ĝ(ξ) =
1√
2π

∫ ∞

0

e−y/ce−(y+ξ)2/2dy

=
1

2
exp

(
ξ

c
+

1

2c2

)
erfc

[
ξ + c−1

√
2

]
(4.24)

where erfc(x) is the complementary error function

erfc(x) =
2√
π

∫ ∞

x

e−y2

dy (4.25)

Furthermore, using the result∫ ∞

0

erfc(x + y)dx =
1√
π

e−y2 − yerfc(y) (4.26)

we have

K =
1

2c

√
2

π
− 1

2c2
exp

(
1

2c2

)
erfc(1/

√
2c) (4.27)

so that

Γ(c) =
c2erfc(1/

√
2c)

c
√

2
π

exp
(
− 1

2c2

)
− erfc(1/

√
2c)

(4.28)

In the slow velocity regime we can use the asymptotic expansion

erfc(x) =
e−x2

√
πx

[
1− 1

2x2
+

3

4x4
+ . . .

]
(4.29)

for x� 1 to obtain the approximation

Γ(c) ≈ 1 + 2c2 (4.30)
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On the other hand, Γ(c)→ c
√

π/2 as c→∞. The resulting average wavespeed (4.15) is

plotted as a function of ε and various unperturbed speeds c in figure 2(b). The correspond-

ing critical period ε0 for propagation failure is shown in figure 3(a) with aε0 →
√

2/π as

c→∞. It can be seen that the behavior is very similar to the exponential case. However,

the critical period ε0 is no longer linear in the threshold α, see figure 3(b). The solution

of equation (4.2) for the waveform U(ξ) is now

U(ξ) =
1

2

[
erfc(ξ/

√
2)− exp

(
ξ

c
+

1

2c2

)
erfc

(
ξ√
2

+
1√
2c

)]
(4.31)

such that

α =
1

2

[
1− exp

(
1

2c2

)
erfc

(
1√
2c

)]
(4.32)

4.2 Higher-order corrections

So far in our analysis of piecewise linear dynamics we have only considered the lowest-order

contribution to Φ1(φ/ε) in equation (4.10). We now look at higher-order corrections in ε

and show that there are major qualitative differences between the exponential and Gaus-

sian weight distributions. Substituting A(x) = eix into equation (4.10) and integrating

by parts gives

Φ1(φ/ε) =
1

K(c)

ceiφ/ε

c + iε

∫ ∞

0

w(x)
[
e−x/c − e−ix/ε

]
dx (4.33)

which we rewrite in the form

Φ1(φ/ε) =
1

K(c)

c

c + iε
[I(c)− I+(ε) + iI−(ε)] eiφ/ε (4.34)

with

I(c) =

∫ ∞

0

w(x)e−x/cdx (4.35)

I+(ε) =

∫ ∞

0

w(x) cos(x/ε)dx, I−(ε) =

∫ ∞

0

w(x) sin(x/ε)dx (4.36)

Therefore, if A(x) = a sin(x) then

Φ1(φ/ε) = aΓ̂(c, ε) sin(φ/ε + η) (4.37)

so that the average wavespeed is

c̄ =

√
c2 − ε2a2Γ̂(c, ε)2 (4.38)

with

Γ̂(c, ε) =
1

K(c)

c√
c2 + ε2

√
(I(c)− I+(ε))2 + I−(ε)2 (4.39)
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Since Γ̂(c, ε) → Γ(c) ≡ I(c)/K(c) in the limit ε → 0, the inclusion of higher-order

corrections have a negligible effect when ε or c is sufficiently small. In particular the

critical period ε0 is linear in c for slow waves irrespective of the choice of w. However,

for faster waves and larger values of ε, the approximation Γ̂(c, ε) ≈ Γ(c) breaks down

and major differences emerge between the exponential and Gaussian weight distributions.

This is illustrated in figure 4 where the average wavespeed c̄ of equation (4.38) is plotted

as a function of ε for various unperturbed wavespeeds c. Also shown for comparison are

the corresponding results obtained using equation (4.15), that is, without the inclusion

of higher-order corrections to Φ1. It can be seen that in the case of the exponential

distribution these higher-order terms increase the critical period ε0 for wave propagation

failure, that is, wave propagation failure is suppressed. On the other hand, ε0 is reduced

for a Guassian distribution so that wave propagation failure is enhanced. Moreover, in

the latter case these effects persist down to much smaller values of ε.

0.2 0.4 0.6 0.8 1 1.2 1.4
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3
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(b)(a)

c
_

ε
0.1 0.2 0.3 0.4 0.5
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0.4

0.6

0.8

1

c
_

ε

c= 0.2

Figure 4: Average wavespeed c̄ satisfying equation (4.38) is plotted as a function of ε for

a sinusoidal modulation of unit amplitude. (a) Exponential weight distribution and (b)

Gaussian weight distribution. The corresponding results in the absence of higher-order

corrections to Φ1 are shown as dashed curves.

The difference between the two cases can be understood in terms of the behavior of the

functions I±(ε) defined by equation (4.36). First, substituting the exponential distribution

(3.4) into (4.36) gives

I+(ε) =
1

2

ε2

ε2 + 1
, I−(ε) =

1

2

ε

ε2 + 1
(4.40)

so that

Γ̂(c, ε) =
Γ(c)√
1 + ε2

(4.41)

The factor (1+ε2)−1/2 leads to the partial suppression of wave propagation failure shown in

figure 4(a). It is also clear that for this example Γ̂(c, ε) can be expanded as a power series

in ε and thus incorporated into higher-order contributions to the perturbation expansion
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of equation (3.8). A very different situation holds, however, for the Gaussian distribution

(4.23) where

I+(ε) =
1√
2π

∫ ∞

0

e−x2/2 cos(x/ε)dx =
1

2
exp

(
− 1

2ε2

)
(4.42)

and

I−(ε) =
1√
2π

∫ ∞

0

e−x2/2 sin(x/ε)dx

=
1

2
exp

(
− 1

2ε2

)
Im erfc

(
− iε√

2

)
=

ε√
2π

[
1 + ε2 + 3ε4 + . . .

]
(4.43)

Now I+(ε) is exponentially small in the sense of asymptotics and thus cannot be absorbed

into higher-order terms arising in the perturbation expansion of equation (3.8). Although

I+(ε) is negligible for very small ε it contributes dramatically at larger values so that the

average wavespeed drops off more rapidly than expected as shown in figure 4(b).

It is interesting to compare our results to those of Keener for reaction-diffusion models

of excitable chemical media [10, 11]. In these systems exponentially small terms do not

occur for piecewise linear dynamics but do occur in the case of smooth nonlinearities. This

implies that there are major qualitative differences between the two types of nonlinearity.

On the other hand, this distinction is blurred in the case of excitable neural media since

exponentially small terms can also arise for piecewise nonlinearities for certain types of

weight distribution. Recall that in the case of an exponential distribution, the integro-

differential equation (3.1) is equivalent to the reaction-diffusion system (3.5) and (3.6).

Therefore, it is not surprising that in this case there are no exponentially small terms for

piecewise dynamics. On the other hand, a Gaussian distribution introduces an additional

smoothing that does generate such terms.

4.3 Smooth nonlinearities

The analysis of wave propagation failure in the presence of smooth nonlinearities (finite

β) is considerably more complicated than the piecewise case (β → ∞) since, in order to

obtain a reasonable approximation for the average wavespeed, it is necessary to develop

the perturbation analysis of equation (3.8) to O(ε2) rather than O(ε). (Higher-order

averaging was also necessary in the models analyzed by Keener [10, 11]). We sketch the

basic steps in the analysis.

Let us return to the general first-order equation (3.20) for Φ1(φ/ε). Taking A(x) = eix

and using Fourier transforms,

KΦ1

(
φ

ε

)
= − i

ε
eiφ/ε

∫ ∞

−∞
w̃(q)Ṽ ∗(q)f̃(U)(q + ε−1)

dq

2π
(4.44)
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where ∗ denotes complex conjugate and

w̃(q) =

∫ ∞

−∞
eiqxw(x)dx (4.45)

In the case f(U(ξ)) = Θ(−ξ),

Ṽ (q) =
1

iq − c−1
, f̃(U)(q) =

1

iq + 0+
(4.46)

so that

KΦ1

(
φ

ε

)
=

eiφ/ε

ε

∫ ∞

−∞
w(x)

[∫ ∞

−∞

eiqx

(q + ε−1 − i0+)(q − i/c)

dq

2iπ

]
dx (4.47)

Closing the contour in the upper-half (lower-half) complex q-plane for x > 0 (x < 0) we

find that there are contributions from the poles at q = −ε−1 + i0+ and q = i/c such that

KΦ1

(
φ

ε

)
=

eiφ/ε

ε

1

ε−1 + ic−1

∫ ∞

0

w(x)
[
e−x/c − e−ix/ε

]
dx (4.48)

which recovers equation (4.33). It is clear from this analysis that Φ1(φ/ε) is of the form

(4.12) for all w and there is no problem approximating the wavespeed according to equa-

tion (3.21). However, in the case of smooth nonlinearities the Fourier transforms Ṽ (q) and

f̃(U)(q) are no longer given by simple poles and in general Φ1 will consist of exponentially

small terms. It follows that Φ1 may be less significant than the O(ε2) terms ignored in

the perturbation expansion of (3.8).

In light of the above discussion, take

φ′(τ) = c + εφ′1(τ) + ε2φ′2(τ) + . . . (4.49)

and carry out a perturbation expansion of equation (3.8) to O(ε2):

−∂um(ξ, τ)

∂τ
+ Lum(ξ, τ) = −φ′m(τ)U ′(ξ) + hm(ξ, φ/ε) (4.50)

where for m = 1, 2

h1(ξ, φ/ε) = −
∫ ∞

−∞
A([ξ′ + φ]/ε)

[
w′(ξ − ξ′)f(U(ξ′))− w(ξ − ξ′)

df(U(ξ′))

dξ′

]
dξ′ (4.51)

h2(ξ, φ/ε) = −φ′1u
′
1(ξ)−

1

2

∫ ∞

−∞
w(ξ − ξ′)f ′′(U(ξ′)) [u1(ξ

′)]
2
dξ′ (4.52)

−
∫ ∞

−∞
A([ξ′ + φ]/ε)w′(ξ − ξ′)f ′(U(ξ′))u1(ξ

′)dξ′

+

∫ ∞

−∞
A([ξ′ + φ]/ε)w(ξ − ξ′) [f ′(U(ξ′))u′1(ξ

′) + f ′′(U(ξ′))U ′(ξ′)u1(ξ
′)dξ′] dξ′
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Equation (4.50) then has a bounded solution if and only if

Kφ′m(τ) =

∫ ∞

−∞
V (ξ)hm(ξ, φ/ε)dξ (4.53)

The solvability condition for m = 1 yields exponentially small terms as argued above.

In order to evaluate the solvability condition for m = 2, it is first necessary to determine

u1(ξ, φ/ε) from equation (4.50). The crucial observation is that if A(x) is a sinusoid then

u1(ξ, φ/ε) will include terms proportional to sin(φ/ε) and cos(φ/ε). Consequently, substi-

tuting for u1 in equation (4.52) will generate terms of the form sin2(φ/ε) and cos2(φ/ε)

due to the quadratic term in u1 on the right-hand side of (4.52). Using the identities

2 sin2(x) = 1 − cos(2x) and 2 cos2(x) = 1 + cos(2x), it follows that there will be an ε-

independent contribution to φ′2. Thus for smooth nonlinearities, equation (3.19) takes the

form

dφ

dτ
= c + ε2A2(c) + B2

(
c,

φ

ε

)
(4.54)

where A2 is independent of ε and B2 is exponentially small in ε. An analogous result

holds for reaction-diffusion equations [10, 11].

5 Discussion

In this paper we have shown that even a weak heterogeneity can have a dramatic effect

on wave propagation in an excitable neural medium. If the wavefront solution of the

corresponding homogenized system is sufficiently slow then propagation failure can occur.

Our work was motivated in part by the observation that there is an approximate peri-

odic microstructure in primary visual cortex that could support a heterogeneous periodic

modulation in the long-range connections between neurons. Whether or not such a het-

erogeneity actually exists within cortex remains to be seen. It might be more appropriate

to model the cortex as a disordered medium in which there are random spatial fluctua-

tions in an underlying homogeneous medium. It would be of interest to investigate the

effects of structural disorder on wave propagation. Another important extension of our

current work is to that of two-dimensional waves, which are obviously more realistic from

the viewpoint of cortical modeling.
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