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Abstract. A dynamical theory of spike train transitions in networks of pulse-coupled integrate-
and-fire (IF) neural oscillators is presented. We begin by deriving conditions for 1:1 frequency-
locking in a network with noninstantaneous synaptic interactions. This leads to a set of phase
equations determining the relative firing times of the oscillators and the self-consistent collective
period. We then investigate the stability of phase-locked solutions by constructing a linearized
map of the firing times and analyzing its spectrum. We establish that previous results concerning
the stability properties of IF oscillator networks are incomplete since they only take into account
the effects of weak coupling instabilities. We show how strong coupling instabilities can induce
transitions to nonphase locked states characterized by periodic or quasi-periodic variations of the
interspike intervals on attracting invariant circles. The resulting spatio-temporal pattern of network
activity is compatible with the behavior of a corresponding firing rate (analog) model in the limit of
slow synaptic interactions.
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1. Introduction. The dynamics of networks of biological neural oscillators con-
tinues to be a subject of both theoretical and experimental interest. A major mo-
tivation for such interest has been the recent observation that synchronization and
waves of excitation can occur during sensory processing [20, 36]. Oscillations are also
found in the reticular thalamic nucleus (RTN), which is thought to act as a pacemaker
for synchronous spindle oscillations observed during sleep or anesthesia [33, 18]. An-
other important example arises in central pattern generators underlying locomotion
[25]. Modeling the biophysical mechanisms underlying neural oscillations requires a
system of smooth differential equations with several degrees of freedom for each os-
cillator as exemplified by the Hodgkin–Huxley model of excitable nerve tissue. This
describes the generation of an action potential due to the activation-deactivation of
a number of voltage-dependent ionic gates [22]. Analyzing a network of such neurons
is a difficult task due to the complexity of the single-neuron model. This motivates
the application of phase reduction methods (valid for weak coupling) to reduce the
network dynamics to a system in which the relative phase between oscillators is the
relevant dynamical variable [14, 21, 29]. However, it has not yet been established that
weak coupling between nerve cells is a justifiable assumption.

An alternative approach to studying coupled neural oscillators is to neglect details
concerning the shape of a pulse by considering an integrate-and-fire (IF) oscillator
model [30] or the related spike response model [16]. The state of an IF oscillator
changes discontinuously (resets) whenever it crosses some threshold so that a complete
description in terms of smooth differential equations is no longer possible. Mirollo and

∗Received by the editors May 29, 1998; accepted for publication (in revised form) March 25, 1999;
published electronically February 10, 2000. This research was supported by grant GR/K86220 from
the EPSRC (UK).

http://www.siam.org/journals/siap/60-3/33964.html
†Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Lough-

borough University, Loughborough, Leicestershire, LE11 3TU, UK (P.C.Bressloff@Lboro.ac.uk,
S.Coombes@Lboro.ac.uk).

820



NETWORKS OF PULSE-COUPLED OSCILLATORS 821

Strogatz [26] have proven rigorously that globally coupled IF oscillators almost always
synchronize in the presence of instantaneous excitatory interactions. Subsequently,
this result has been extended to take into account the effects of synaptic processing and
axonal transmission delays [10, 11, 15, 21, 32]. In particular, one finds that inhibitory
(resp., excitatory) synapses synchronize if the rise time of a synapse is longer (resp.,
shorter) than the duration of an action potential, whereas slow excitatory synapses
tend to generate antisynchrony. Analogous results have been obtained in the spike
response model for large networks using mean-field techniques [16, 17]. Traveling
waves of synchronized activity have also been investigated, both in finite chains of IF
oscillators (modeling locomotion in simple vertebrates) [7, 9], and in two-dimensional
networks where spirals and target patterns are observed [24].

One of the interesting features of IF networks is that phase-locked solutions,
such as synchronous and traveling wave states, can be described in terms of a set
of phase equations involving the relative shifts in the firing times of the oscillators
(with the collective frequency of the oscillators determined self-consistently). These
steady-state phase equations have the same formal structure as those obtained using
phase reduction methods but do not require any restrictions on the strength of the
coupling [8, 10]. This raises the important question as to whether or not the full IF
model exhibits new dynamical phenomena for moderate or strong coupling that are
not found in the corresponding phase reduced models. Resolving this issue is the main
subject of our paper.

We begin by deriving general conditions for phase-locking in networks of IF os-
cillators with synaptic interactions. We then determine the linear stability of these
phase-locked solutions by constructing a linearized map of the oscillator firing times
under perturbations of a given phase-locked state (see sections 2 and 4). Analysis of
the linearized map’s spectrum generates conditions for the onset of a discrete Hopf
bifurcation in the firing times as the strength of coupling is increased. This identifies
regions in parameter space where there are transitions to states with inhomogeneous
and (quasi-)periodic variations in the interspike intervals (ISIs) on attracting invari-
ant circles. We relate the occurrence of strong coupling instabilities in IF networks
to corresponding instabilities in a rate model, for which the output of a neuron is
represented by a short-term firing rate (see section 3). Strong instabilities of the rate
model involve the destabilization of a homogeneous low activity state. This can occur
either via a static bifurcation leading to the formation of an inhomogeneous stationary
activity pattern (oscillator death) or via a Hopf bifurcation resulting in time-periodic
variations in the firing rate (bursting). We establish through numerical examples in
sections 4 and 5 how, in the case of slow synapses, there is good agreement between
the two models on an appropriately defined time-scale. First, a globally coupled
network with inhibitory coupling is shown to desynchronize (in the sense that the
in-phase state becomes unstable) at some critical coupling leading to deactivation of
some of the oscillators in the network (oscillator death). Such behavior is contrasted
with a weak coupling instability in a corresponding excitatory network. Interestingly
it is found that the strong coupling instability only occurs if the rate of synaptic re-
sponse, as characterized by an inverse rise-time α, is sufficiently slow. In other words,
there exists a critical inverse rise-time α0(N), where N is the number of oscillators,
such that the network remains synchronized for arbitrary coupling when α > α0(N).
Moreover, α0(N) is a monotonically decreasing function of N . This implies that there
is a greater tendency for coherent oscillations in large networks, which is consistent
with the mode-locking theorem of Gerstner, van Hemmen, and Cowan [17]. Finally
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in section 5 we show how a ring network with unidirectional coupling desynchronizes
via a strong instability leading either to oscillator death (even N) or bursting (odd
N). In the latter case the ISIs of the oscillators are found to lie on closed periodic
orbits. Again such instabilities are only found to occur for slow synapses.

2. Phase-locking in networks of IF oscillators. Consider a network of N IF
neural oscillators. Let Ui(t) denote the state of the ith oscillator at time t, i = 1, . . . , N .
Suppose that the variables Ui(t) evolve according to the set of equations

dUi(t)

dt
= −Ui(t) + Ii + g

N∑
j=1

Wij

∫ ∞

0

J(τ)Ej(t− τ)dτ(2.1)

supplemented by the reset conditions

Ui(t
+) = 0 whenever Ui(t) = 1, i = 1, . . . , N.(2.2)

Here Ej(t) represents the sequence of pulses transmitted from the jth oscillator, J(τ)
is a distribution of delays normalized such that

∫∞
0

J(τ)dτ = 1, and Ii is a time-
independent external input. The effective strength of the synaptic coupling from the
jth oscillator to the ith oscillator is given by gWij with the parameter |g| controlling
the overall strength of the interactions. Time is measured in units of the decay
constant of the oscillators, which we take to be of the order 10ms. Neglecting the
shape of an individual pulse, the output spike train of each oscillator is represented
as a sequence of Dirac delta-functions,

Ei(t) =
∞∑

m=−∞
δ(t− Tm

i ),(2.3)

where Tm
i are the firing times of the ith oscillator, that is, Ui(T

m
i ) = 1. Each spike

is converted to a postsynaptic potential whose shape is specified by the distribution
J(τ). A biologically motivated choice for J(τ) is the so-called α-function [23]

J(τ) = α2τe−ατΘ(τ)(2.4)

where Θ is the unit step-function, Θ(τ) = 1 if τ > 0 and zero otherwise. This
ensures that the maximum synaptic response occurs at a nonzero delay τ = α−1.
It is a simple matter to incorporate into the definition of J(τ) other features such
as axonal transmission delays [11] and dendritic delays [4], although we shall not do
so here. (Note that considerable analytical simplification is obtained by treating the
synaptic interactions of (2.1) in terms of direct current injections rather than changes
in conductances. We expect the basic results of our paper to carry over to these more
biologically realistic forms of interaction.)

2.1. Existence of phase-locked states. Following [7, 8, 9, 10, 32], we restrict
our attention to phase-locked solutions of (2.1) and (2.2) in which every oscillator re-
sets or fires with the same period T . This period must be determined self-consistently.
The state of each oscillator is then characterized by a constant phase φi ∈ R \ Z

such that the firing times are of the form Tm
i = (m − φi)T for all m ∈ Z and

i = 1, . . . , N . For a given set of phases Φ = (φ1, . . . , φN ), we integrate (2.1) over
the interval t ∈ (−Tφi, T − Tφi) and incorporate the reset condition (2.2) by setting
Ui(−φiT ) = 0 and Ui(T − φiT ) = 1. This leads to the set of N equations

1 = (1− e−T )Ii + g
N∑
j=1

WijK(φj − φi, T ),(2.5)
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where

K(φ, T ) = e−T

∫ T

0

eτJ(τ/T + φ, T )dτ(2.6)

and

J(φ, T ) =
∑
m∈Z

J([φ+m]T ).(2.7)

Both J(φ, T ) and K(φ, T ) are periodic functions of φ with unit period. After choosing
some reference oscillator, (2.5) determines N − 1 relative phases and the collective
period T .

In the case of the α-function (2.4), both J(φ, T ) and the phase-interaction function
K(φ, T ) can be calculated explicitly. First,

J(φ, T ) =
α2e−αTφ

1− e−αT

[
Tφ+

T e−αT

(1− e−αT )

]
, 0 ≤ φ < 1.(2.8)

Second, decomposing (2.6) as

K(φ, T ) =

∫ T (1−φ)

0

eτ−TJ(τ/T + φ, T )dτ

+

∫ T

T (1−φ)

eτ−TJ(τ/T + φ− 1, T )dτ(2.9)

and using (2.8) lead to the result (for 0 ≤ φ < 1)

K(φ, T ) =
α2

1− α

1− e−T

1− e−αT

[
K1(T )e

−αTφ + Tφe−αTφ +K2(T )e
−Tφ

]
,(2.10)

K1(T ) =
T e−αT

1− e−αT
− 1

1− α
, K2(T ) =

1

1− α

1− e−αT

1− e−T
.(2.11)

For general delay kernels J(τ) it is more useful for numerical calculations to consider
the following Fourier series representation for K(φ, T ):

K(φ, T ) =
1− e−T

T

∑
m∈Z

J̃(ωm)e2πimφ

1 + iωm
, ωm =

2πm

T
,(2.12)

which is convergent provided that J̃(ω) → 0 as ω → ±∞. In the particular case of
the α-function,

J̃(ω) ≡
∫ ∞

−∞
e−iωτJ(τ)dτ =

α2

(α+ iω)2
.(2.13)

In previous work we analyzed phase-locked solutions of (2.5) for a number of
distinct types of networks. First, in the case of a ring of identical IF oscillators
with symmetric coupling we used group theoretic methods to classify all phase-locked
solutions and constructed bifurcation diagrams showing how new solution branches
emerge via spontaneous symmetry breaking [8, 10]. Second, in the case of a finite
chain of IF oscillators with a gradient of external inputs and anisotropic nearest-
neighbor coupling, we proved the existence of “traveling wave” solutions in which the
phase varies monotonically along the chain (except in some narrow boundary layer);
such systems are used to model locomotion in simple vertebrates [7, 9].
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2.2. Stability of phase-locked states. The stability of phase-locked solutions
of an IF network can be analyzed by considering perturbations of the firing times
[31, 5, 6]

Tn
i = (n− φi)T + un

i .(2.14)

First, integrate (2.1) from Tn
i to Tn+1

i to generate the nonlinear firing time map

eT
n+1
i = Ii

[
eT

n+1
i − eT

n
i

]
+ g

N∑
j=1

Wij

∑
m∈Z

∫ Tn+1
i

Tn
i

etJ(t− Tm
j )dt.(2.15)

Substitute (2.14) into (2.15) and expand as a power series in the perturbations un
i .

To O(1) we recover the phase-locking equations (2.5), whereas the O(u) terms lead
to an infinite-order linear difference equation given by

Ai(Φ, T )
[
un+1
i − un

i

]
= g

N∑
j=1

Wij

∑
m∈Z

Gm(φj − φi, T )
[
un−m
j − un

i

]
,(2.16)

where

Ai(Φ, T ) = Ii − 1 + g
N∑
j=1

WijJ(φj − φi, T ),(2.17)

Gm(φ, T ) =

∫ T

0

et−TJ ′(t+ (m+ φ)T )dt,(2.18)

and J ′ ≡ dJ/dt.
Equation (2.16) has a discrete spectrum that can be found by taking un

j = enλvj
with λ ∈ C and 0 ≤ Im(λ) < 2π. This leads to the eigenvalue equation

Ai(Φ, T )(e
λ − 1)vi = g

N∑
j=1

Wij

[
G̃(φj − φi, λ, T )vj − G̃(φj − φi, 0, T )vi

]
,(2.19)

where

G̃(φ, λ, T ) =
∑
m∈Z

Gm(φ, T )e−mλ.(2.20)

When J(τ) is given by an α-function, the right-hand side of (2.20) reduces to a
geometric series that can be summed explicitly (see section 2.4). One finds that

G̃(φ, λ, T ) is an analytic function of λ except for a pole at λ = −αT . For more general
choices of J(t), it is no longer possible to explicitly sum the series in (2.20), and it is
more convenient to work in the Fourier domain using the equivalent representation

G̃(φ, λ, T ) =
1

T

∑
m∈Z

(iωm + λ/T )
J̃(ωm − iλ/T )

1 + iωm + λ/T

[
eλ − e−T

]
e2πimφ+λφ.(2.21)

The Fourier series representation (2.21) is convergent provided that J̃(ω) decays faster
than 1/ω as ω → ±∞, which certainly holds true for the α-function; see (2.13). This
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will also ensure that G̃(φ, λ, T ) is analytic in the right-hand complex λ-plane. A more
rigorous derivation of the characteristic equation (2.14) in the particular case of a
globally coupled network will be presented in section 4.2.

One solution to (2.19) is λ = 0 with vi = v for all i. This reflects the invariance of
the dynamics with respect to uniform phase-shifts in the firing-times, Tn

i → Tn
i + v.

Thus the condition for linear stability of a phase-locked state is that all remaining
solutions of (2.19) satisfy Re λ < 0. For sufficiently small |g|, solutions to (2.19)
in the complex λ-plane will be either in a neighborhood of the real solution λ = 0
or in a neighborhood of one of the poles of G̃ (φ, λ, T ). Since the latter lie in the
left-hand complex plane, the stability of the phase-locked solution will be determined
by the eigenvalues in a neighborhood of the origin. Therefore, setting λ = 0 on the
right-hand side of (2.19) yields the equation

λ(Ii − 1)δi =
g

T

N∑
j=1

WijK
′(φj − φi, T )[δj − δi] +O(g2),(2.22)

where we have used the relation TG̃(φ, 0, T ) = K ′(φ, T ) ≡ ∂K(φ, T )/∂φ. Suppose for
simplicity that Ii = I for all i = 1, . . . , N . Then to O(g) the spectrum around the

origin consists of the N points λp = (I − 1)T0λ
(0)
p , p = 1, . . . , N , with λ

(0)
1 , . . . , λ

(0)
N

the eigenvalues of the N ×N matrix Ĵij(Φ) = Jij(Φ)− δi,j
∑N

k=1 Jik(Φ), where

Jij(Φ) = gWijK
′(φj − φi, T0)(2.23)

and T0 = ln[I/(I − 1)]. If we choose λ
(0)
N to be the zero eigenvalue, then in the

weak coupling limit the condition for stability reduces to Re(λ
(0)
p ) < 0 for all p =

1, . . . , N − 1. Note that such a stability condition could also be derived using a
phase-reduced version of the IF model which, after a rescaling, takes the form [32, 8]

dθi
dt

=
1

T0
+ g

N∑
j=1

WijK(θj − θi, T0).(2.24)

Phase-locked solutions of (2.24) are given by dθi/dt = Ω, where Ω is some O(g)
correction to the natural frequency 1/T0. Linearization about a phase-locked solution

Φ generates the Jacobian Ĵ (Φ).

2.3. Weak and strong instabilities. It is clear that a phase-locked solution
of the phase model (2.24) is independent of the size of the coupling |g|. Therefore,
destabilization of a phase-locked solution can only occur when variation of some other
parameter such as the inverse rise-time α results in one or more eigenvalues of the
Jacobian Ĵ (Φ) crossing into the right-half complex plane. Equation (2.22) shows that
a corresponding instability occurs in the weakly coupled IF model, and we shall refer
to this as a weak instability. On the other hand, we shall define a strong instability as
one in which a phase-locked solution Φ of the IF model is stable in the weak coupling
regime but becomes unstable as |g| is increased. A strong instability is signalled by one
or more solutions of the full characteristic equation (2.19) crossing over into the right-
half complex λ-plane. If a single real eigenvalue λ crosses the origin, then the solution
Φ will destabilize via a static bifurcation of the firing times. The bifurcating solutions
will simply correspond to new phase-locked states and the oscillators will remain
1:1 frequency-locked. On the other hand, if a pair of complex conjugate eigenvalues
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crosses the imaginary axis at λ = ±iω, then Φ will destabilize via a Hopf bifurcation
in the firing times leading to the breakdown of 1:1 frequency-locking. In the special
case ω = π this reduces to a period-doubling bifurcation. (A Hopf bifurcation in
the firing times can also occur in the weak coupling regime but this does not lead to
significant deviations from 1:1 frequency-locking; see section 4.3.)

2.4. Desynchronization via a discrete Hopf bifurcation. For simplicity,
let us focus on the stability of the synchronous state for which φi = φ for all i =
1, . . . , N and some arbitrary phase φ. We also impose the homogeneity conditions∑N

j=1 Wij = Γ, i = 1, . . . , N , and Ii = I ≡ I0 +∆I with

∆I[1− e−T0 ] + gK(0, T0)Γ = 0, i = 1, . . . , N,(2.25)

for some fixed I0 > 1 and T0 = ln[I0/(I0−1)]. The synchronous state then exists as a
solution to (2.5) with collective period T0. In order to determine the stability of the
synchronous state, set φi = φ in (2.19) and impose (2.25). Taking v = (v1, . . . , vN )
in (2.19) to be one of the eigenvectors of the weight matrix W with corresponding
eigenvalue ν leads to the result

A
(
eλ − 1

)
= g

[
G̃(0, λ, T0)ν − G̃(0, 0, T0)Γ

]
,(2.26)

where A = I − 1 + gΓJ(0, T0). (Note that (2.26) can be derived more formally using
the method of z-transforms along lines similar to section 4.2.) We explicitly evaluate

G̃(0, λ, T ) using (2.18) and (2.20). First,

Gm(0, T ) = F0(T )e
−mαT −mF1(T )e

−mαT ,(2.27)

F0(T ) =
α2e−T

(1− α)2

[
(1− αT + α2T )e(1−α)T − 1

]
,(2.28)

F1(T ) =
Tα3e−T

1− α

[
e(1−α)T − 1

]
.(2.29)

Substituting (2.27) into (2.20) and summing the resulting geometric series shows that

G̃(0, λ, T ) =
F0(T )

1− e−αT−λ
− F1(T )e

−αT−λ

(1− e−αT−λ)2
.(2.30)

It is clear from (2.30) that G̃(0, λ, T ) has a pole at λ = −αT .
From (2.22) we have the following result concerning the stability of the syn-

chronous state in the weak coupling regime. For sufficiently small coupling strength
|g|, the synchronous state is linearly stable if and only if

gK ′(0, T0) [Re νp − Γ] < 0, p = 1, . . . , N − 1,(2.31)

where νp, p = 1, . . . , N , are the eigenvalues of the matrix W. Since
∑N

j=1 Wij = Γ,
it follows that one of the eigenvalues, νN say, satisfies νN = Γ with its eigenvector
vN = (1, . . . , 1) corresponding to a uniform phase-shift. Evaluating K(φ, T ) using
(2.10), one can easily establish that K ′(0, T ) < 0 for all finite α and T . Thus the
synchronous state is stable for sufficiently small |g| provided that g[Re νp − Γ] > 0
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for all p = 1, . . . , N − 1. Assuming the stability of the synchronous state for weak
coupling, we can now consider what happens as the coupling strength |g| is increased.
It is simple to establish that the synchronous state cannot destabilize via a static
bifurcation. However, it is possible for the synchronous state to undergo a discrete
Hopf bifurcation in the firing times leading to a state with periodic or quasi-periodic
firing patterns. In order to derive conditions for a Hopf bifurcation, set λ = iω, ω = 0,
and ν = νR + iνI for νR, νI ∈ R, in (2.26). Equating real and imaginary parts then
leads to the pair of equations

[cos(ω)− 1]A = g[C̃(ω)νR + S̃(ω)νI ]− gΓC̃(0),

sin(ω)A = g[C̃(ω)νI − S̃(ω)νR],(2.32)

where C̃(ω) = Re G̃(0, iω, T0), S̃(ω) = −Im G̃(0, iω, T0). From (2.30) we derive the

following expressions for C̃(ω) and S̃(ω):

C̃(ω) = a(ω)C(ω)− b(ω)
(
cos(ω)[C(ω)2 − S(ω)2]− 2 sin(ω)C(ω)S(ω)

)
,(2.33)

S̃(ω) = a(ω)S(ω)− b(ω)
(
sin(ω)[C(ω)2 − S(ω)2] + 2 cos(ω)C(ω)S(ω)

)
,(2.34)

where

a(ω) =
F0(T0)

C(ω)2 + S(ω)2
, b(ω) =

F1(T0)e
−αT0

[C(ω)2 + S(ω)2]2
,(2.35)

and C(ω) = 1 − e−αT0 cos(ω), S(ω) = e−αT0 sin(ω). The point at which the syn-
chronous state becomes unstable is then given by the smallest value of the coupling
|g| = gc for which a real nonzero solution ω of (2.32) exists.

It is important to note that linear stability analysis is not sufficient to determine
(a) whether the Hopf bifurcation is supercritical or subcritical, or (b) the nature of any
stable states beyond the bifurcation point. In sections 4.4 and 5 we present numerical
examples of strong instabilities in IF networks where desynchronization occurs via a
Hopf bifurcation in the firing times. (Additional examples are given in [5, 6].) In all
of these cases the bifurcation is found to be subcritical, that is, desynchronization
involves a jump to a coexisting stable state typically characterized by inhomogeneous
and (quasi-)periodic variations of the ISIs

∆n
k = Tn+1

k − Tn
k(2.36)

on attracting invariant circles. These states can support a variety of complex dynam-
ics including oscillator death (section 4.4), bursting (section 5 and [5]), and pattern
formation [6]. A further result is that in the case of sufficiently slow synaptic in-
teractions the resulting spatio-temporal variation of the ISIs is compatible with the
behavior of a corresponding rate or analog model in which the outputs of the neurons
are taken to be short-term firing rates. The relationship between strong instabilities
of IF networks and analog networks is developed analytically in section 3.

3. Strong instabilities and rate models. In order to establish a connection
between strong instabilities in an IF network and a corresponding rate or analog
network, we first rewrite the nonlinear firing time map (2.15) in a more suggestive
form. Let

Gj(t) =

∫ 0

−∞
es

∑
m∈Z

J(s+ t− Tm
j )ds.(3.1)
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Then (2.15) becomes

eT
n+1
i


I − 1 + g

N∑
j=1

WijGj(T
n+1
i )


 = eT

n
i


I + g

N∑
j=1

WijGj(T
n
i )


 .(3.2)

We now assume that the delay distribution J(t) is a slowly decaying function of time,
which in the case of synaptic delays (2.4) means that α is sufficiently small (slow
synaptic interactions). We can then make the approximation Gj(T

n+1
j ) ≈ Gj(T

n
j ) for

all j, n. This allows us to solve (3.2) as

Tn+1
i − Tn

i = ln

[
Xi(T

n
i ) + I

Xi(Tn
i ) + I − 1

]
,(3.3)

where

Xi(t) = g

N∑
j=1

WijGj(t).(3.4)

The next step is to replace the discrete sum in (3.1) by an integral (under the as-
sumption of slow synapses):

∑
m∈Z

J(t− Tm
j ) ≈

∫ ∞

−∞
J(t− τ)

dτ

∆j(τ)
,(3.5)

where Tm+1
j − Tm

j ≈ ∆j(τ) for some smoothly varying function of time ∆j(τ). Sub-
stituting (3.1) and (3.5) into (3.4) then gives

Xi(t) = g

N∑
j=1

Wij

∫ ∞

−∞
Ĵ(t− τ)

dτ

∆j(τ)
,(3.6)

where Ĵ(t) =
∫ 0

−∞ esJ(s + t)ds. Finally, from (3.3) we have that 1/∆j(t) = f(I +
Xj(t)), where f is the steady-state firing rate function

f(X) =

{
ln

[
X

X − 1

]}−1

Θ(X − 1).(3.7)

Thus we obtain the closed set of integral equations

Xi(t) = g

N∑
j=1

Wij

∫ ∞

0

J(τ)f(Xj(t− τ))dτ(3.8)

for the analog version of the IF model. (In (3.8) we have replaced Ĵ by J . This
does not lead to significant differences, particularly in the case of slow synapses.)
Equation (3.8) is a version of the Wilson–Cowan equation [35], although here it is
obtained by a form of time-averaging under the assumption of slow synapses rather
than by population averaging.

A more heuristic way of obtaining (3.8) is to suppose that the synaptic interactions
are sufficiently slow that the total synaptic current into a neural oscillator is described
by a slowly varying function of time t. If the neuronal dynamics is fast relative to
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α−1, then the actual firing rate Ei(t) of a neuron will quickly relax to approximately
its steady state value. We can then replace (2.3) by the approximation Ei(t) =
f(Ii + Xi(t)) with f given by (3.7) and Xi(t) satisfying the integral equation (3.8).
(For an additional discussion of how rate models can be derived from IF models, see
[1, 12].)

A common starting point for the analysis of analog models such as (3.8) is to
consider conditions under which destabilization of a homogeneous low activity state
occurs leading to the formation of a state with inhomogeneous or time-dependent
firing rates [13]. To simplify our analysis, we shall impose the following condition on
the external bias Ii:

I = Ii + gf(I)

N∑
j=1

Wij(3.9)

for some fixed I > 1. Then for sufficiently weak coupling, |g| � 1, the analog
model has a single stable fixed point given by Xi = gf(I)

∑
j Wij such that the

firing rates are kept at the value f(I). A state with homogeneous firing rates is
analogous to a phase-locked state of an IF network, where all neurons have the same
time-independent ISI. Note, however, that any phase information has been lost in the
reduction procedure from the IF to the rate model. Suppose that we now linearize
(3.8) about the homogeneous state and substitute into the linearized equations a
solution of the form Xk(t) = eλtXk. This leads to the eigenvalue equation

λ±
p

α
= −1±

√
gf ′(I)νp, p = 1, . . . , N,(3.10)

where νp, p = 1, . . . , N , are the eigenvalues of the weight matrix W. The fixed point
will be asymptotically stable if and only if Re λp < 0 for all p. As |g| is increased
from zero, an instability may occur in at least two distinct ways. If a single real
eigenvalue λ crosses the origin in the complex λ-plane, then a static bifurcation can
occur leading to the emergence of additional fixed point solutions which correspond
to inhomogeneous firing rates. For example, if g > 0 and W has real eigenvalues
ν1 > ν2 > · · · > νN with ν1 > 0 > νN , then a static bifurcation will occur at the
critical coupling gc for which λ+

1 = 0, that is, 1 = gcf
′(I)ν1. Similarly, if g < 0

then 1 = gcf
′(I)νN . On the other hand, if a pair of complex conjugate eigenvalues

λ = λR ± iλI crosses the imaginary axis (λR = 0) from left to right in the complex
plane, then a Hopf bifurcation can occur leading to the formation of periodic solutions,
that is, time-dependent firing rates.

In cases where the rate model bifurcates to a state with inhomogeneous time-
independent firing rates, we expect from the above analysis that (quasi-)periodic
variations in the ISIs of the IF model will be small relative to the mean ISI (at least
for slow synapses). That is, |∆m

i −∆i| � ∆i for all i,m, where

∆i = lim
M→∞

1

2M + 1

M∑
m=−M

∆m
i .(3.11)

However, ∆i will vary with i (see, for example, section 4.4). On the other hand, in
cases where the rate model destabilizes to a state with time-dependent firing rates, we
expect the (quasi-)periodic variations in the ISIs to be relatively large (see section 5).
Incidentally, if there exists a stable homogeneous state of an analog network in the
weak coupling regime, then we expect 1:1 frequency-locking to approximately hold
under weak instabilities of the corresponding IF network (see section 4.3).
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4. Weak and strong instabilities in globally coupled networks. In this
section we consider weak and strong instabilities in a globally coupled network of
identical IF oscillators for which Ii = I, Wii = 0, and Wij = 1/(N − 1) for all j = i,
i = 1, . . . , N . We also use this example to address a number of important technical
issues concerning the stability of phase-locked solutions that have been ignored in
previous treatments, including a specification of the class of perturbations with respect
to which local stability is defined.

4.1. Phase-locking and symmetries. In the case of a globally coupled net-
work the phase-locking equations (2.5) become

1 = I[1− e−T ] +
g

N − 1

∑
k 	=j

K(φj − φi, T ).(4.1)

As we have discussed elsewhere [10], group theoretic methods can be used to classify
the various solutions to (4.1) along lines similar to the analysis of phase oscillators by
Ashwin and Swift [2]. Equation (4.1) is invariant under the action of the symmetry
group Γ = SN × S1, where SN is the group of permutations of N objects and S1

represents a phase-shift symmetry corresponding to time-translation invariance. That
is, if Φ = (φ1, . . . , φN ) is a solution of (4.1), then so is σΦ for all σ ∈ Γ. The
symmetries of any particular solution Φ form a subgroup called the isotropy subgroup
of Φ defined by ΣΦ = {σ ∈ Γ : σΦ = Φ}. More generally, we say that Σ is an isotropy
subgroup of Γ if Σ = ΣΦ for some Φ ∈ T

N . (Isotropy subgroups are defined up to

some conjugacy; a group Σ is conjugate to a group Σ̂ if there exists σ ∈ Γ such
that Σ̂ = σ−1Σσ.) The fixed-point subspace of an isotropy subgroup Σ, denoted
by Fix(Σ), is the set of points Φ ∈ T

N that are invariant under the action of Σ,
Fix(Σ) = {Φ ∈ T

N : σΦ = Φ ∀ σ ∈ Σ}.
One can now adopt a strategy that restricts the search for solutions of (4.1)

to those that are fixed points of a particular isotropy subgroup. If dim(Fix(Σ)) =
d, then (4.1) reduces to d independent equations. In the special case of so-called
maximally symmetric solutions for which d = 1, (4.1) reduces to a single equation
for the collective period T . In other words, the underlying symmetry of the system
guarantees the existence of maximally symmetric solutions, assuming that a self-
consistent T can be found. (This is an example of the equivariant branching lemma
[19].) Variation of one or more parameters such as I, g, α can induce bifurcations
from a maximally symmetric solution to a solution with a smaller isotropy subgroup
such as cluster states [18]. Some of the isotropy subgroups of Γ = SN × S1 and
their fixed-point spaces for (4.1) are shown in Table 4.1. Of particular interest are
the synchronous or in-phase solution, φj = φ for all j = 1, . . . , N , and the splay or
rotating wave states φj = φ± j/N . Both of these are maximally symmetric solutions
whose period T can be obtained by substituting φj = −γj/N into (4.1) with γ = ±1

Table 4.1

Some special isotropy subgroups Σ of Γ = SN × S1.

Isotropy Σ Fix(Σ) dim Fix(Σ) Multiplicity
SN (φ, . . . , . . . ,φ) 1 1
ZN (φ, φ + 1/N , φ + 2/N , . . . , φ− 1/N) 1 (n− 1)!
(Sk)m × Zm (φ,. . . , φ, φ + k/N ,. . . , φ− k/N) 1 n!/m(k!)

(n = mk)
(S)k1

. . .× (S)kl
(φ1,. . . , φ1, φ2,. . . , φl) l n!/(k1!...kl!)
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corresponding to the splay states and γ = 0 corresponding to the in-phase state:

1 = I[1− e−T ] +
g

N − 1

N−1∑
k=1

∑
m∈Z

∫ T

0

et−TJ(t+ (m+ γk/N)T )dt.(4.2)

4.2. Stability of splay and in-phase states: Finite N . As discussed in
section 2 the stability of phase-locked solutions can be analyzed by considering per-
turbations of the firing times. These perturbations evolve according to a nonlinear
firing time map, which is in the form of a difference equation of infinite order. Con-
ditions for the local asymptotic stability of a phase-locked solution can be expressed
in terms of the solutions of the characteristic equation (2.19) obtained by linearizing
this firing time map. However, certain care has to be taken when dealing with infinite
order systems since there are subtle issues concerning (i) the class of perturbations
for which the stability analysis is valid and (ii) the time-ordering of the firing times.
Therefore, we shall follow a more rigorous treatment of stability here based on the
use of generalized z-transforms. We shall focus on the stability of the in-phase and
splay states although the analysis can be extended to phase-locking in more general
networks.

The analysis of section 2 establishes that the local stability of a phase-locked state
depends on the asymptotic behavior of the linearized firing time map described by
(2.16). In the case of the in-phase (γ = 0) or splay states (γ = ±1) of a globally
coupled network this becomes

A
[
un+1
j − un

j

]
=

g

N − 1

∑
k 	=j

∑
m∈Z

Gm(γ(j − k)/N, T )
[
un−m
k − un

j

]
,(4.3)

where

A = I − 1 +
g

N − 1

N−1∑
k=1

J(γk/N, T )(4.4)

and Gm is defined by (2.18). In order to determine the asymptotic behavior of (4.3),
it is necessary to specify initial data for the linear system, that is, the class of pertur-
bations with respect to which local stability is defined. Therefore, we introduce the
sets

I+ = {(k, n)|k = 1, . . . , N, n ∈ Z|n+ γk/N > 0},
I− = {(k, n)|k = 1, . . . , N, n ∈ Z|n+ γk/N ≤ 0}(4.5)

and consider bounded initial data of the form un
j = φn

j for all (j, n) ∈ I−, where
max{|φn

j |, (j, n) ∈ I−} < ∞. We then carry out the decomposition

un
j = vnj Θ(n+ γj/N) + φn

j Θ(n+ γj/N)(4.6)

with Θ(x) = 1−Θ(x). In other words, we treat all firing times occurring before t = 0
as initial data and solve for the firing times occurring after t = 0. Substitution of
(4.6) into (4.3) gives (for n+ 1 + γj/N > 0)

Avn+1
j = Avnj Θ(n+ γj/N) +

g

N − 1

∑
k 	=j

∑
m∈Z

Gm(γ(j − k)/N, T )

× [vn−m
k Θ(n−m+ γk/N)− vnj Θ(n+ γj/N)] + [FΦ]nj .(4.7)
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Equation (4.7) is now treated as an inhomogeneous linear equation for vnj with the

dependence on initial data collected together as a single external input term [FΦ] with

[FΦ]nj = Aφn
j Θ(n+ γj/N) +

g

N − 1

∑
k 	=j

∑
m∈Z

Gm(γ(j − k)/N, T )

× [
φn−m
k Θ(n−m+ γk/N)− φn

j Θ(n+ γj/N)
]
.(4.8)

In order to solve the inhomogeneous equation (4.7), we introduce the generalized
z-transform F(u),

F(u)(z, p) =
∑
n∈Z

N∑
k=1

e−ipkz−(n+γk/N)Θ(n+ γk/N)un
k ,(4.9)

where p = 2πq/N , q = 0, 1, . . . , N−1. Assume that the solutions un
k are exponentially

bounded in the sense that un
k < κrn+γk/N for n+ γk/N > 0 and constants κ, r. Note

that for the splay state, the time-like variable in (4.9) scales as z−(n+k/N), which
takes into account the ordering of the firing times, (cf. the analysis of convective
instabilities). Applying the transform F to (4.7) then gives

A[z − 1]ṽ(z, p) =
g

N − 1
[B̃(z, p)− B̃(1, 0)]ṽ(z, p) + F̃Φ(z, p),(4.10)

where F̃Φ = F(FΦ) and

B̃(z, p) =

N−1∑
k=1

∑
m∈Z

e−ipkz−(m+γk/N)Gm(γk/N, T ).(4.11)

After a rearrangement of (4.10) we obtain

ṽ(z, p) = X̃(z, p)F̃Φ(z, p), X̃(z, p) =
z

H̃(z, p)
,(4.12)

with

H̃(z, p) = (z − 1)A− g[B̃(z, p)− B̃(1, 0)].(4.13)

It can now be established that the asymptotic behavior of un
j is governed by the

zeros of H̃(z, p). First, note that one solution to this equation is z = 1 at p = 0, which
reflects invariance of the system under uniform phase-shifts Tn

j → Tn
j + δ for all j, n.

This case will be excluded by requiring that the initial data Φ involve nonuniform
perturbations. If we define

r0 = sup{|z| | H̃(z, p) = 0, p = 0, 2π/N, . . . , 2π(N − 1)/N, z = 1},
then we can introduce the inverse transform

Xn
k = F−1(X̃)(z, p) ≡ 1

N

∑
p

∮
C

dz

2πiz
eipk

zn+γk/N

H̃(z, p)
,(4.14)

where C = {z ∈ C| |z| > min{r0, 1}} and n + γk/N > 0. We also define the
convolution u ∗ v of two exponentially bounded sequences un

k , v
n
k by

[u ∗ v]nk =
∑
m∈Z

N∑
j=1

um
k−jv

n−m
j Θ(m+ γ(k − j)/N)Θ(n−m+ γk/N)(4.15)
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such that F(u∗v) = F(u)F(v). The convolution theorem for F may be used to invert
(4.12) leading to the solution

un
k = [X ∗ FΦ]nk , n+ γk/N > 0.

For bounded nonuniform initial data φn
k ,

|un
k | < Krn+γk/N , r > r0, n+ γk/N > 0.

Hence, limn→∞ un
k = 0 provided that all but one of the zeros of H̃(z, p) lie inside the

unit circle.
The above analysis can be summarized in the following theorem.
Theorem 4.1. Define the splay and in-phase states to be (locally) stable if and

only if for all ε > 0 there exists δ > 0 such that if max{|um
k |, (k,m) ∈ I−} < δ,

then max{|um
k |, (k,m) ∈ I+} < ε, where um

k = Tm
k − (m + γk/N)T . The solution is

defined to be asymptotically stable if it is locally stable and there exists δ > 0 such that
if max{|um

k |, (k,m) ∈ D−} < δ, then limn→∞ max{|un
k |} = 0. (We exclude uniform

initial data with respect to which a solution is always neutrally stable.) We then have
the following stability result: The splay state is (locally) asymptotically stable if the
solutions of the characteristic equation

(z − 1)A =
g

N − 1
[B̃(z, p)− B̃(1, 0)](4.16)

satisfy |z| < 1 for all p ∈ R (except for one solution z = 1 at p = 0).
It is simple to establish that the characteristic equation (4.16) is equivalent to

(2.19) for the given network. That is, set Ai = A, Wij = 1/(N − 1), j = i, and
Wii = 0 for all i = 1, . . . , N in (2.19) and then consider solutions of the form z = eλ,

φj = γj/N , and vj = eipj−λφj . Note from (2.18), (2.20), and (4.11) that B̃(eλ, 0) =

G̃(0, λ, T ) for a given collective period T . It is also possible to extend our stability
analysis based on z-transforms to general networks and their phase-locked solutions
using an appropriate diagonalization of the underlying matrix structure of the system.

4.3. Weak instability leading to partial synchronization. Recently, it has
been found that in the case of excitatory coupling (g > 0), the splay state of a glob-
ally coupled IF network is stable for small α (slow synapses) but undergoes a Hopf
bifurcation at some critical αc [31]. Beyond the bifurcation point the neurons are
no longer phase-locked and their ISIs vary either periodically or quasi-periodically
on closed orbits. It was also observed that as one moves away from the bifurcation
point (α > αc) the degree of coherence or synchrony of the network increases. Else-
where we have established that this picture is considerably more subtle due to the
occurrence of a global heteroclinic bifurcation in the firing times, which is a natural
consequence of the underlying permutation symmetry of the network [8]. That is, for
sufficiently large values of α one finds that the quasi-periodic orbit has been destroyed
in a global heteroclinic bifurcation due to a collision with invariant submanifolds of
the state-space. Coincident with this global bifurcation is a saddle-node bifurcation
that creates pairs of stable/unstable cluster states. Beyond the bifurcation point the
system is in a periodic state close to synchrony (corresponding to one of the newly
created stable solutions). This saddle-node/heteroclinic bifurcation is analogous to
the so-called transcritical/homoclinic bifurcation previously investigated for smoothly
coupled phase oscillators with SN symmetry (see [27]).
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α=23

α=15
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Fig. 4.1. Variation of the measure of synchrony
〈
r2
〉
as a function of α for N = 3 and N = 20

with g = 0.4 and I = 2. Points A and B indicate where the dynamics have changed from a quasi-
periodic to a periodic state due to a global heteroclinic bifurcation. Sample spike trains for N = 3
are also shown with different neurons distinguished by the height of their spikes.

We shall illustrate the above instabilities by considering how the degree of syn-
chrony in the network varies with α. To quantify the degree of synchrony we use the
firing time measure described in [28]. First, we introduce a set of phases, φk(j,m),
associated with the firing times of the jth oscillator:

φk(j,m) =
Tk(j,m)− Tm

j

Tm+1
j − Tm

j

, Tm
j ≤ Tk(j,m) < Tm+1

j ,(4.17)

where the Tk(j,m) represent the set of firing times of neurons i = j that occur on
the interval [Tm

j , Tm+1
j ). The number of such events will be denoted by A(j,m)

with 1 ≤ k ≤ A(j,m). For a set of phases Φ(j,m) = (φ1(j,m), . . . , φn(j,m)) with
n = A(j,m) and fixed (j,m) we introduce the order parameter

r2(Φ) =
1

n2

n∑
k,l=1

cos 2π(φk − φl).(4.18)

An overall measure of synchrony,
〈
r2
〉
, is defined by averaging r2(Φ) over all oscillators

and firing events in some time window. In Figure 4.1, we show the variation of
〈
r2
〉

for N = 3 and N = 20. For relatively small α the network is in a stable asynchronous
state for which

〈
r2
〉
= 0. At α = αc(N) there occurs a Hopf bifurcation to a partially

synchronized state with
〈
r2
〉
a smoothly increasing function of α until the network

undergoes a global bifurcation to a nearly synchronous state with
〈
r2
〉 ≈ 1. Note that

in the mean-field limit (see also section 4.4), the corresponding measure of synchrony
in the thermodynamic limit does not appear to exhibit any effects due to a global
bifurcation [31].

Within the context of the theory of spike train transitions presented in this paper,
the destabilization of the splay state described above is an example of a weak instabil-
ity since it can occur in the weak coupling regime. Indeed, a similar sequence of state
transitions, namely a Hopf bifurcation from a splay state followed by a global bifurca-
tion to a cluster state, are also observed in the corresponding phase model (2.24); see
[8]. Although there are significant changes in the degree of synchrony, as highlighted
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α = 16.5

α = 17.5

α = 21.5

∆

∆

Fig. 4.2. Quasi-periodic motion of the ISIs on attracting invariant manifolds for N = 3 with
g = 0.4 and I = 2. This is an example of a weak instability in the firing times. Note that the
temporal variation of the ISIs is relatively small in comparison to the mean ISI. (This should be
contrasted with the strong instability shown in Figure 5.5.) For α < 16 the splay state is stable and
the map of the ISIs has a fixed point at around 0.4. For α > 22 the two-in-phase state is stable,
where two of the three oscillators fire in synchrony.

in Figure 4.1, the spatio-temporal variations in the ISIs characterized by the quasi-
periodic orbits are relatively small [31, 8], which implies that 1:1 frequency-locking
still approximately holds. This is illustrated in Figure 4.2, where we plot (∆n

k ,∆
n−1
k )

as a function of n with ∆n
k ≡ Tn+1

k − Tn
k the nth ISI of the kth oscillator. In fact

almost 1:1 frequency-locking is expected to persist into the strong coupling regime.
For using (3.10) it is easy to show that in the case of a globally coupled excitatory
analog network, a homogeneous state will bifurcate to another homogeneous state as
the coupling is increased (see section 4.4).

4.4. Strong instability leading to oscillator death. Having discussed weak
instabilities in a globally coupled excitatory network, we now consider strong instabil-
ities in a corresponding inhibitory network for which g < 0. This type of architecture
has been used, for example, to model the RTN [33, 18]. Note, however, that in the
biophysical model of RTN developed by Wang and Rinzel [33], neural oscillations are
sustained by postinhibitory rebound rather than by an external bias as in our sim-
ple IF model. We shall show that for slow synapses desynchronization via a Hopf
bifurcation in the firing times occurs, leading to oscillator death in the strong cou-
pling regime; that is, certain cells suppress the activity of others. (See also the recent
study of mutually inhibitory Hodgkin–Huxley neurons by White et al. [34].) The
occurrence of oscillator death is consistent with the behavior found in the rate model
described by (3.8). For the weight matrix W has a nondegenerate eigenvalue ν+ = 1
with corresponding eigenvector (1, 1, . . . , 1) and an (N − 1)-fold degenerate eigen-
value ν− = −1/(N − 1). It follows from (3.10) that a homogeneous state of the rate
model will destabilize at the critical coupling |g| = gc, where 1 =

√
gcf ′(I)/(N − 1).

Moreover, it can be established that this corresponds to a subcritical bifurcation in
which there are coexistent stable stationary states made up of active and inactive
clusters. (An excitatory network would destabilize due to activation of the uniform
mode (1, 1, . . . , 1) leading to the formation of additional homogeneous states.)
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gc

α

Fig. 4.3. Plot of critical coupling gc (solid curves) as a function of α for various network sizes
N and T0 = ln 2. The critical inverse rise-time α0(N) is seen to be a decreasing function of N with
α0(N) → 0 as N → ∞.

We shall analyze the stability of the synchronous state using the results of
section 2.4. First, set I = I0 + ∆ such that (2.25) is satisfied (with Γ = 1). The
collective period of the synchronous solution is then fixed at T0. Equation (2.31)
implies that the synchronous state is stable in the weak coupling regime since ν− < Γ
and K ′(0, T0) < 0 for J(t) given by (2.4). We now investigate the stability of the
synchronous state as |g| is increased by solving (2.32). In Figure 4.3 we plot the
solutions |g| = gc of (2.32) as a function of the inverse rise-time α for T0 = ln 2 and
various network sizes N . The solid solution branches correspond to the eigenvalue
ν− whereas the dashed branch corresponds to ν+ and is N -independent. For small
N the solid branch determines the critical coupling |g| = gc(α) for a Hopf instability.
An important result that emerges from Figure 4.3 is that there exists a critical value
α0(N) of the inverse rise-time beyond which a Hopf bifurcation cannot occur. That is,
if α > α0(N) then the synchronous state remains stable for arbitrarily large inhibitory
coupling. On the other hand, for α < α0(N) destabilization of the synchronous state
occurs as |g| crosses the solid branch from below. This signals the activation of an
inhomogeneous state. Indeed, direct numerical simulation of the IF model shows that
just after destabilization of the synchronous state (|g| > gc), the system jumps to
an inhomogeneous state consisting of clusters of active and passive neurons. More-
over, the active neurons have approximately constant ISIs. Hence, for sufficiently slow
synapses, the behavior of the IF model is compatible with that of the rate model. In
the case of two inhibitory IF neurons (N = 2), the occurrence of oscillator death over
a significant range of values of α shows that the stability criterion derived by van
Vreeswijk, Abbott, and Ermentrout [32] is necessary but not sufficient.

Interestingly, the critical value α0(N) decreases with N , indicating the greater
tendency for phase-locking to occur in large globally coupled networks. This implies
that for large networks, the neurons remain synchronized for arbitrarily large coupling
even for slow synapses. There is one subtlety to be noted here. The dashed solution
curve shown in Figure 4.3 corresponds to excitation of the uniform mode (1, 1, . . . , 1)
and is independent of N . As N increases it is crossed by the curve gc(α) so that for
a certain range of values of α it is possible for the synchronous state to destabilize
due to excitation of the uniform mode. The neurons in the new state will still be
synchronized but the spike trains will no longer have a simple periodic structure.
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Fig. 5.1. A ring of IF oscillators with unidirectional inhibitory coupling.

The persistence of synchrony in large networks is consistent with the mode-locking
theorem obtained by Gerstner, van Hemmen, and Cowan [17] in their analysis of the
spike response model. We shall briefly discuss their result within the context of the
IF model. For the given globally coupled network, the linearized map of the firing
times, (4.3), becomes for the synchronous state

A
[
un+1
i − un

i

]
= −g

∞∑
m=−∞

Gm(0, T )


 1

N − 1

∑
j 	=i

un−m
j − un

i


 .(4.19)

The major assumption underlying the analysis of Gerstner, van Hemmen, and Cowan
[17] is that for large N the mean perturbation 〈um〉 =

∑
j 	=i u

m
j /(N − 1) ≈ 0 for

all m ≥ 0, say. Equation (4.19) then simplifies to the one-dimensional, first-order
mapping

un+1
i =

I − 1− g(I − 1)K ′(0, T )
I − 1− gIK ′(0, T )

un
i ≡ kTu

n
i .(4.20)

The synchronous (coherent) state will be stable if and only if |kT | < 1. Equation
(4.20) implies that the synchronous state is stable in the large N limit provided that
K ′(0, T ) < 0 (cf. (2.31)). This is the essence of the mode-locking theorem of [17]
applied to IF networks.

Finally, note that oscillator death has also been found in another class of ho-
mogeneous network, namely a one-dimensional network with long-range connections
Wij = W (|i − j|) [6]. The eigenvalues of W are ν(p) = 2

∑M
k=1 W (k) cos (pk) for

p = 0, 2π/N, . . . , 2π(N − 1)/N with corresponding eigenmodes vk = eipk. If W (k) is
chosen to be a difference of Gaussians (representing short-range excitation and long-
range inhibition), then solving (2.32) shows that a Hopf bifurcation in the firing times
occurs due to excitation of an eigenmode eipck, where ν(pc) = maxp{ν(p)}, pc = 0.
This strong instability leads to the formation of spatially periodic patterns consisting
of alternating regions of activity and inactivity [6].

5. Bursting in a ring network. Consider a ring of identical IF neurons with
unidirectional inhibitory coupling as shown in Figure 5.1 with g > 0. Let us first
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g

Fig. 5.2. An illustration of a Hopf bifurcation in the synaptic input X1 for an analog model
of 5 oscillators with unidirectional coupling. The amplitude of limit cycle oscillations is depicted
with the use of open circles. Note that the bifurcation is a subcritical one, leading to the creation
of an unstable limit cycle and an unstable fixed point from the destruction of a stable fixed point.
Parameters are I = 2 and α = 0.5. s (resp., u) stands for stable (resp., unstable) dynamics.

Fig. 5.3. Firing rates for a unidirectional ring of 5 analog neurons with I = 2, α = 0.5, and
g = 2. The neuronal output of each of the neurons is identical up to a uniform phase-shift. Also
shown is the spike train of one of the oscillators in an IF version of the ring network.

briefly look at a rate version of the ring network (see also [3]). For even numbered
rings the eigenvalues of the weight matrix W are νp = e2πip/N , p = 1, . . . , N . Since
νN = 1 > Re νp for all p = N , it follows from (3.10) that the homogeneous state
will undergo a static bifurcation at a critical coupling gS = 1/f ′(I) due to excitation
of the eigenmode (1,−1, . . . ,−1). This leads to the formation of an inhomogeneous
state consisting of alternating active and inactive neurons around the ring. For odd
numbered rings, the eigenvalues of the weight matrix W are νp = e(2p−1)πi/N , p =
1, . . . , N . The homogeneous state now undergoes a subcritical Hopf bifurcation at a
critical value of the coupling gH = [f ′(I) cos(π/N)]−1 (see Figure 5.2), which results
in a time-dependent pattern of output activity as shown in Figure 5.3. (Note that for
the given network, if the firing rate function f(X) were given by an odd function such
as tanh(X) rather than (3.9), then the Hopf bifurcation would be supercritical [3].)

In the case of slow synapses, the above behavior is consistent with that found in
the IF model. Since the analysis of even numbered rings is very similar to the case
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Fig. 5.4. Unidirectional inhibitory coupling in a ring of 5 identical IF oscillators. Self-consistent
solution of (ωc, gc) with νR = cos(π/5), νI = ± sin(π/5), I = 2, Γ = −1.
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Fig. 5.5. A plot of the interspike intervals (∆n−1
k

,∆n
k ) for a ring of 5 IF oscillators with uni-

directional coupling, beyond the discrete Hopf bifurcation point of the linearized firing map, shows
a projection of dynamics on an invariant circle. The main figure shows orbit points of the full
nonlinear map of firing times within a burst (for all of the oscillators). In the inset we plot the
full set of ISIs for all the oscillators connected by lines, highlighting the separation of the bursting
patterns by relatively large periods of inactivity.

of oscillator death in a globally coupled inhibitory network (see section 4.4), we shall
focus on the case of odd N . The synchronous state is stable in the weak coupling
regime. However, there exists a critical inverse rise-time α0 such that for α < α0

the synchronous state destabilizes via a Hopf bifurcation at a critical coupling gc,
which is a solution to (4.8) with Γ = −1, νR = cos(π/N), and νI = ± sin(π/N)
(see Figure 5.4). Direct numerical simulation shows that beyond the Hopf bifurcation
point the oscillators exhibit periodic bursting patterns, which are identical up to a
uniform phase-shift (see spike train in Figure 5.3).

The occurrence of bursting can be understood in terms of mode-locking associated
with periodic variations of the interspike intervals ∆n

k ≡ Tn+1
k − Tn

k on attracting
invariant circles. This is illustrated in Figure 5.5, where we plot (∆n−1

k ,∆n
k ) as a

function of n for a ring of k = 1, . . . , 5 oscillators. Each oscillator has a periodic
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solution of length M such that ∆n+pM
k = ∆n

k for all integers p. Moreover, for each
k there exists l ∈ {1, . . . ,M} with ∆l

k � ∆n
k for all n = l so that the resulting spike

train exhibits bursting with the interburst interval equal to ∆1
k and the number of

spikes per burst equal to M . It is interesting to note that although the data are taken
for parameter values close to the bifurcation curves of Figure 5.4, the variation in the
interspike intervals is large compared to

√
g − gc. Moreover, the frequency ω of the

variations in the interspike intervals differs significantly from the critical frequency
ωc. This confirms that the Hopf bifurcation is subcritical rather than supercritical, as
in the rate model (see Figure 5.2). Finally, comparison of Figure 5.5 with Figure 4.2
shows that the strong coupling instability results in a significantly larger temporal
variation in the ISIs than the weak coupling instability.

Note that the occurrence of bursting in a network of IF neurons is not specific
to the particular ring architecture shown in Figure 5.1. Indeed, we expect bursting
to occur in any network for which the corresponding rate model destabilizes from a
homogeneous state via a Hopf bifurcation in the firing rates. One well-known example
is that of an excitatory/inhibitory pair of neurons, which is studied along similar lines
to the ring network in [5].

6. Conclusion. In this paper we have presented a general dynamical theory of
spiking integrate-and-fire neurons that bridges the gap between weakly coupled phase
oscillator models and strongly coupled firing rate models. The relative simplicity
of the IF model allows precise analytical statements to be made. It is hoped that
our work will provide insights into the complex types of behavior expected in more
biophysically detailed neural models.
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