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Abstract. We consider a continuum model of dendritic spines with active membrane dynamics
uniformly distributed along a passive dendritic cable. By considering a systematic reduction of the
Hodgkin–Huxley dynamics that is valid on all but very short time-scales we derive two-dimensional
and one-dimensional systems for excitable tissue, both of which may be used to model the active pro-
cesses in spine-heads. In the first case the coupling of the spine-head dynamics to a passive dendritic
cable via a direct electrical connection yields a model that may be regarded as a simplification of
the Baer and Rinzel cable theory of excitable spiny nerve tissue [J. Neurophysiology, 65 (1991), pp.
874–890]. This model is computationally simple with few free parameters. Importantly, as in the full
model, numerical simulation illustrates the possibility of a traveling wave. We present a systematic
numerical investigation of the speed and stability of the wave as a function of physiologically impor-
tant parameters. A further reduction of this model suggests that active spine-head dynamics may be
modeled by an all-or-none type process which we take to be of the integrate-and-fire (IF) type. The
model is analytically tractable allowing the explicit construction of the shape of traveling waves as
well as the calculation of wave speed as a function of system parameters. In general a slow and fast
wave are found to coexist. The behavior of the fast wave is found to closely reproduce the behavior
of the wave seen in simulations of the more detailed model. Importantly a linear stability theory is
presented showing that it is the faster of the two solutions that are stable. Beyond a critical value
the speed of the stable wave is found to decrease as a function of spine density. Moreover, the speed
of this wave is found to decrease as a function of the strength of the electrical resistor coupling the
spine-head and the cable, such that beyond some critical value there is propagation failure. Finally,
we discuss the importance of a model of passive electrical cable coupled to a system of IF units for
physiological studies of branching dendritic tissue with active spines.
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1. Introduction. Many of the classes of neurons that are distinguished in neu-
rophysiology have large branching structures typically referred to as dendritic trees.
The majority of synapses, both excitatory and inhibitory, terminate on dendrites, so it
has long been assumed that dendrites somehow integrate inputs to produce neuronal
output. Importantly over 90% of all excitatory synapses that occur in the cortex are
located on so-called dendritic spines [20]. Spines are tiny specialized protoplasmic pro-
tuberances that cover the surface of many types of neurons. They may be regarded as
knob-like appendages consisting of a bulbous spine-head and a spine-stem. They typi-
cally occupy 20–70% of the total dendritic membrane [36]. Since the input impedance
of a spine-head is typically large a small excitatory conductance, arising from the acti-
vation of a synapse, say, can produce a large local depolarization. Moreover, the thin
spine-stem neck provides an axial resistance that partially decouples the spine-head
dynamics from the dendritic tree. Hence, when equipped with excitable membrane
the spine-head provides a favorable site for the initiation of an action potential.

Much of the theoretical work in modeling the computational properties of den-
dritic structures has focused on the passive properties of dendritic tissue where the
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techniques of cable theory and compartmental modeling (see, for example, [19]) may
be brought to bear. With these approaches it has been possible to elucidate the role of
the dendritic tree in processing input at synapses spatially distributed throughout its
structure (see [8] for a review). However, it has long been theorized that the dendritic
tree can behave as more than just some complex spatiotemporal filter for synaptic
inputs. In fact, there exist several studies of passive dendritic models with active
membrane sites, either directly on the dendritic membrane [4] or placed in the spine-
head [27, 37, 32, 29, 35]. Experimental data suggests that distal dendrites (at least
in CA1 pyramidal cells) are endowed with a variety of excitable channels, including
Ca2+ channels in the spine-head, that can support an all-or-nothing response to an
excitatory synaptic input. For a historical perspective on the controversy surrounding
the generation of action potentials and traveling waves in dendrites we refer the reader
to the review by Segev and Rall [36]. It is only relatively recently that experimen-
tal observations have confirmed the generation of action potentials in the dendrites.
Indeed, new experimental techniques have highlighted the nonlinear nature of signal
processing in both dendrites and dendritic spines. Hence, theoretical explorations of
such biophysical nonlinearities may have important consequences for our understand-
ing of neural processing. Since the biophysical properties of spines can be modified by
experience in response to patterns of chemical and electrical activity, morphological
and electrochemical changes in populations of dendritic spines are thought to provide
a basic mechanism for learning in the nervous system. Moreover, spine geometry can
provide diffusive resistance so that a spine with voltage dependent Ca2+ channels can
accumulate Ca2+ with repeated firing. This may form the basis of synaptic plasticity
via a second messenger system. In the language of artificial neural networks spine-
spine interactions have been suggested as a basis for realizing so-called higher-order
or Sigma-Pi networks [30]. In fact the properties of spines have been linked with (i)
classes of Hebbian synaptic learning rules capable of learning temporal associations
[1]; (ii) the implementation of logical computations [37]; (iii) coincidence detection
[23]; (iv) orientation tuning in complex cells of visual cortex [26]; and (v) the amplifi-
cation of distal synaptic input inputs [27]. (See [20] for an overview of these results.)
The last point is addressed in this paper.

It has been suggested by Shepherd et al. [38] that if the heads of dendritic spines
have excitable membrane properties, the spread of current from one spine along the
dendrites could bring adjacent spines to their thresholds for impulse generation. The
result would be a sequence of spine-head action potentials, representing a saltatory
propagating wave in the distal dendritic branches. This hypothesis is borne out in
the analysis of Baer and Rinzel for a passive uniform (possibly branching) dendritic
tree coupled to a population of excitable dendritic spines [3]. In this continuum
model the active spine-head dynamics are modeled with Hodgkin–Huxley kinetics,
while the (distal) dendritic tissue is modeled with the cable equation. The spine-
head is coupled to the cable via a spine-stem resistance that is modeled as a simple
ohmic resistor that delivers a current proportional to the number of spines at the
contact point. The geometry of the spine-head is ignored and spines are considered
isopotential. There is no direct coupling between neighboring spines; voltage spread
along the cable is the only way for spines to interact. In a numerical study of their
model Baer and Rinzel found that a brief synaptic activation of one or more spines
could indeed lead to action potential generation and a subsequent chain reaction type
propagation for a wide range of spine densities. For a given number of spines, chain
reactions depend crucially on their spatial distribution; low uniform density of spines,



434 S. COOMBES AND P. C. BRESSLOFF

or dense clusters which are too far apart may preclude signal propagation. Moreover,
too large a choice for the spine-stem resistance may lead to propagation failure [3]. A
more analytically tractable version of the Baer and Rinzel model has been presented
by Zhou [40]. In this model the four-dimensional Hodgkin–Huxley kinetics in the
spine-head is replaced by a one-dimensional Nagumo-type dynamics. This essentially
treats the spine-head as a nonlinear membrane such that the spine-head voltage has
two stable fixed points and one unstable fixed point. Traveling fronts are equivalent
to heteroclinic connections between the two stable fixed points. For small spine-stem
resistance it may be shown that a unique traveling front exists and that the speed of
the front is larger for a smaller spine density. The lack of a recovery variable in the
model of Zhou means that traveling pulses of the type observed by Baer and Rinzel are
not possible. However, numerical simulations with the inclusion of a recovery variable
(FitzHugh–Nagumo dynamics) show that the speed of a traveling pulse is close to
that of a traveling front in the model without recovery. A study of the steady state
solutions in models of this type (with Nagumo dynamics and no recovery variable)
may be found in [10].

In this paper we consider a mathematical reduction of the original Baer and
Rinzel model that allows one to analyze both the existence and stability of traveling
pulses. In the original Baer and Rinzel model the active membrane in the spine-head is
described with the Hodgkin–Huxley equations. The reductive process we utilize leads
naturally to a model where the active processes in the spine-head are described by a
two-dimensional dynamical system reminiscent of the FitzHugh–Nagumo model. An
advantage of utilizing a well-defined reductive process, in contrast to simply invoking
a simpler FitzHugh–Nagumo dynamic, is that all parameters in the model have a
direct physiological interpretation. This so-called reduced Baer and Rinzel model is
also attractive from a computational perspective since it allows large scale simulations
to be performed with relative ease. We then use the fact that events in the spine-
head are typically of the all-or-nothing variety to motivate a further reduction of the
model. We regard the spine-head dynamic as one that generates pulse-shapes at times
defined by some thresholding process. These pulses are instantaneously communicated
to the cable via the spine-stem resistance, while the dynamics in the spine-head are
driven by the flow of current from the cable to the spine-head via the spine-stem.
In effect we introduce an integrate-and-fire (IF) type mechanism for the spine-head
dynamics via a systematic reduction of the Hodgkin–Huxley equations. IF dynamics
have been studied by many authors since they are analytically tractable and submit
to a form of linear stability analysis (see [9] for a review). In section 2 we introduce
the mathematical model of Baer and Rinzel and discuss the reduction of the excitable
spine-head membrane dynamics. Numerical simulations are presented to demonstrate
the possibility of traveling pulses. The speed of this wave is numerically calculated as a
function of system parameters and results are shown to be consistent with those found
in the full model. In section 3 we introduce the analytically tractable IF model and
show how one may explicitly construct the profile of traveling wave solutions. We then
go on to show how one may self-consistently determine the speed of such traveling
waves as a function of system parameters and the shape of the pulse generated in
the spine-head. Direct numerical simulations of the IF model are shown to agree
with our analysis. In section 4 we develop a linear stability analysis of the map of
firing times of the IF process that can be used to determine the stability of traveling
waves. Of the two possible wave speeds that are found to exist, for a given set of
system parameters, we are able to show that it is always the faster of the two that
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is stable. In summary the reduced IF version of the Baer and Rinzel model supports
stable traveling pulses with speeds that decrease as a function of (constant) spine
density and spine-stem resistance. As in the full model propagation failure results
for insufficient spine density or too great a spine-stem resistance. Moreover, using
realistic values for parameters in the IF model (obtained from the reductive process)
we obtain wave speeds in agreement with those found in the more detailed model of
Baer and Rinzel. Finally in section 5 we compare the response of a passive cable
studded with passive spines for synaptic inputs directly to the spines and directly to
the dendritic shaft. In the conclusion we argue that not only does the IF model of
spiny dendritic cable provide a mathematically tractable perspective from which to
understand the results of Baer and Rinzel, but that it also may serve as a basis for
testing the computational role of active membrane in spine-heads.

2. A biophysical model. In order to analyze the interactions between spines
Baer and Rinzel formulated a new type of cable theory in which the distribution
of spines is treated as a continuum. The formulation retains the notion that there
is no direct electrical coupling between neighboring spines. Voltage spread along a
uniform passive cable is the only way for the spines to interact; spines are electrically
independent from one another. The dynamics of action potential generation at the
neural cell body or soma is perhaps most accurately described with Hodgkin–Huxley
dynamics. It is common practice to use this dynamics as a model of active membranes
in the dendritic tree. However, it is worth noting that there are in fact differences at
the biophysical level between active membranes in the soma and the dendrites [14].
Also, antidromic (soma to dendrites) action potentials can propagate well into the
dendritic tree, as well as along the outgoing axon [11]. Indeed the geometry of a
typical dendritic tree means that it is possible for Na+ mediated action potentials to
travel from the soma and proximal dendrites toward the thinner distal ones but not
vice versa. Since the threshold for initiation of an action potential in distal arbors
and spines depends crucially on the spatial distribution of the excitatory input the
dendritic tree appears capable of solving realistic pattern discrimination tasks [25].
In the Baer and Rinzel model the active membrane in the spine-head is modeled
by Hodgkin–Huxley kinetics. The continuum model of Baer and Rinzel, with spine
density per unit area of dendritic membrane at location x given by ρ(x), is expressed
by the following equations:

C
∂V

∂t
= −gL(V − VL) + 1

raπd

∂2V

∂x2
+ ρ(x)

V̂ − V
r

,(2.1)

Ĉ
∂V̂

∂t
= −I(V̂ ,m, n, h)− V̂ − V

r
.(2.2)

Equation (2.1) describes the dynamics of an infinite uniform passive cable of diameter
d with voltage V (x, t) such that the last term on the right-hand side is proportional
to the flow of current between the cable shaft and the spine-head above the shaft via
the ohmic spine-stem resistance of strength r. The terms VL and gL, respectively,
are a constant leakage reversal potential and a leakage conductance per unit area of
membrane. The parameter ra represents the intracellular resistance per unit length
of the cable. The electronic length constant λ is given by λ2 = 1/(πdragL) and the
membrane time constant (of the dendritic cable) by τ = C/gL. For the remainder
of this paper we consider the case that the spine-density function is a constant with
ρ(x) = ρ for all x. (Note that in the original paper of Baer and Rinzel the spine
density is defined in terms of per unit length. To convert to the notation of their
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original paper simply write ρ = n(R∞/Rm), where n is the spine density per unit
electronic length, R∞ is the input resistance if the branch were semi-infinite, and Rm

is the resistance across a unit area of passive membrane. Equivalently one may write
ρ = n(λragL).) The excitable dynamics of the voltage in the spine-head V̂ (x, t) is
driven by the flow of current from the shaft to the spine and is described with (2.2).

From now on we choose specific membrane capacitances C and Ĉ such that C = Ĉ
and take C = 1 without loss of generality. It is also convenient to choose a length
scale such that raπd = 1. In the Hodgkin–Huxley model of excitable nerve tissue the
membrane current arises mainly through the conduction of sodium and potassium ions
through voltage-dependent channels in the membrane. The contribution from other
ionic currents is assumed to obey Ohm’s law. In fact the Hodgkin–Huxley dynamics,
described with the use of the function I(V̂ ,m, n, h), is considered to be a function of

V̂ and three time- and voltage-dependent conductance variables m, n, and h:

I(V̂ ,m, n, h) = gKn
4(V̂ − VK) + gNahm

3(V̂ − VNa) + gL(V̂ − VL),(2.3)

where gK , gNa, and gL are constants and VL, VK , and VNa represent the constant
membrane reversal potentials associated with the leakage, potassium, and sodium
channels, respectively. For simplicity we have considered the currents due to the
leakage terms in the model of the cable and those in the model of the spine-head to
be identical. The conductance variables m, n, and h take values between 0 and 1
and approach the asymptotic values m∞(V̂ ), n∞(V̂ ), and h∞(V̂ ) with time constants
τm(V̂ ), τn(V̂ ), and τh(V̂ ), respectively. Summarizing, we have that

τX(V̂ )
dX

dt
= X∞(V̂ )−X, X ∈ {m,n, h}.(2.4)

The six functions τX(V̂ ) and X∞(V̂ ), X ∈ {m,n, h} are obtained from fits with
experimental data. The details of the final Hodgkin–Huxley description of nerve tissue
are completed in Appendix A. Baer and Rinzel have shown that the combination of
diffusion along the cable with input from electrotonically separated active spines can
lead to the propagation of a traveling wave. In essence a brief external input, say, in
the form of a synaptic current, leads to a spread of potential along the cable. The
dynamics in the spine head is driven by this potential and for sufficiently large drive an
action potential may be generated. There is then a large reinjection of current back
into the dendrite that causes a further spread of potential along the cable so that
the process is self-perpetuating. The natural refractoriness of the Hodgkin–Huxley
dynamics means that spines in the wake of the wave are not re-excited. Thus one
expects firing activity in the spines to ride the crests of a succession of diffusing pulses
in the dendritic cable. Simulations show that the speed of this traveling wave decreases
as a function of the spine density [3, 40]. Moreover there is propagation failure for too
large a spine-stem resistance or too small a spine density. For 0 < r � 1 the potential
difference between the spine-head and the dendrite becomes negligible. In this regime
the system behaves like an excitable cable (much like an axon) and supports traveling
waves with constant profiles [3, 40]. For sufficiently large r the system decouples into
a passive cable and a set of electrically isolated (excitable) spine-heads and there are
no traveling wave solutions.

2.1. A reduction of the Baer and Rinzel model. Although the inclusion
of the three gating variables in the Hodgkin–Huxley dynamics yield a realistic model
of excitable tissue it does lead to an element of mathematical intractability. Ide-
ally for the purposes of analysis one would like a reduction of the four-dimensional
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Hodgkin–Huxley equations that maintains the essentials of a spiking neuron model.
A systematic method for achieving such a reduction has been proposed by Abbott
and Kepler [2] and is developed in [17]. Here we use this technique of equivalent po-
tentials to obtain a reduced version of the original five-dimensional Baer and Rinzel
model to one that is only three-dimensional. Numerics are used to show that this,
computationally simpler, model can capture the essential features of the full model,
namely traveling pulses with quantitatively similar propagation speeds. In the next
section we extend this reduction process to motivate the introduction of a new IF
version of the Baer and Rinzel model that is analytically tractable.

The reduction process starts with the conductance-based Hodgkin–Huxley model
which depends upon four dynamical variables. A space clamped portion of excitable
membrane is described by

dV̂

dt
= −I(V̂ ,m, n, h) + J,(2.5)

where J represents any injected currents. It is well known that the time-scale associ-
ated with changes in m and τm is much smaller than those associated with h and n.
Thusm will reach its asymptotic value quickly, motivating the replacement ofm by its
asymptotic value m∞(V̂ ). This instantaneous approximation reduces the number of
dynamic variables from 4 to 3 at the expense of accuracy over very short time-scales.
A similar reduction for n and h is not appropriate since this would destroy the ability
of the model to generate action potentials. Interestingly, on a periodic limit cycle,
one observes that n and h are related by an approximately linear relationship. This
suggests that h may be eliminated by the replacement h = an+ b for suitable choices
of the constants a and b. (For the parameters used in the appendix with J = 10 a
numerical least squares fit gives a = −0.83 and b = 0.82.) This approach provides a
straightforward method for reducing the dimensionality of the Hodgkin–Huxley sys-
tem without much effort and has been used by several authors (see, for example, [34]).
The approach of Abbott and Kepler [2] generalizes this reduction with the introduc-
tion of two auxiliary potentials, Un and Uh. The basic idea is to mimic the slower
approach of n and h to their asymptotic values by the replacement

X = X∞(UX), X ∈ {n, h}.(2.6)

This equation can always be solved exactly for UX since the functions X∞ are
monotonic and hence invertible. In practice it is found that the auxiliary potentials
Uh and Un are remarkably similar. A further reduction is now possible with the
replacement of UX by an average over the two potentials. In fact it is simpler still to
assume that they are identical and let Uh = Un = U . Hence, the reduced model is now
two-dimensional with a membrane current f(V̂ , U) = I(V,m∞(V̂ ), n∞(U), h∞(U)).
By demanding that the time-dependence of f in the reduced model mimic the time-
dependence of I in the full model at constant V̂ it is possible to show that

dV̂

dt
= −f(V̂ , U) + J,(2.7)

dU

dt
=

A(V̂ , U)
B(V̂ , U) ≡ g(V̂ , U),(2.8)
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Fig. 1. Top: Nullclines of the reduced neuron model with (i) J = 0, (ii) J = 10, and (iii) J = 20.

There is a fixed point at (V̂ , U) = (−65,−65) with J = 0. Bottom: The reduced neuron model in an

oscillatory regime (J = 10) capable of generating a train of spikes (see inset for dynamics of V̂ and
the refractory variable U).

where

A(V̂ , U) = ∂I

∂h

[
h∞(V̂ )− h∞(U)

τh(V̂ )

]
+
∂I

∂n

[
n∞(V̂ )− n∞(U)

τn(V̂ )

]
,(2.9)

B(V̂ , U) = ∂f

∂h∞
dh∞(U)
dU

+
∂f

∂n∞
dn∞(U)
dU

,(2.10)

and ∂I/∂h and ∂I/∂n are evaluated at h = h∞(U) and n = n∞(U). V̂ describes the
capacitive nature of the cell and U describes the time-dependence of the membrane
conductance. In fact U may be regarded as a variable responsible for the refractory
period of a neuron. The reduction to a two-dimensional system allows a direct vi-
sualization of the dynamics by plotting the flow in the (V̂ , U) plane. A plot of the
nullclines (see the top of Figure 1) allows the visualization of both the fixed point and
the flow (see the bottom of Figure 1). Standard values for system parameters have

been used and may be found in Appendix A. In the reduced model g(V̂ , V̂ ) = 0 and

the nullcline for dU/dt is simply the straight line U = V̂ . The fixed point for zero

external input is found at (V̂ , U) = (−65,−65). Moreover, in this instance the fixed
point is stable and the neuron is said to be excitable. When a positive external cur-
rent is applied the low-voltage portion of the dV̂ /dt nullcline may move up until the

intersection of the two nullclines falls within the portion of the dV̂ /dt = 0 nullcline
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Fig. 2. A traveling wave in a compartmental model (N = 100, L = 10) of the reduced Baer
and Rinzel model. gL = 0.3, gK = 36, gNa = 120, VL = −54.402, VK = −77 and VNa = 50, r = 2,
ρ = 25. The dashed line shows the voltage in the spine-head, while the solid line refers to the voltage
in the cable.

ρ

Fig. 3. The speed of a traveling pulse as a function of spine density ρ obtained by numerically
integrating the reduced Baer and Rinzel model. Note that the speed of the wave decreases as a
function of the spine density and propagation is not possible if the spine density is too low. All
parameters are as in Figure 2.

with positive slope (see the top of Figure 1). In this case the fixed point is unstable
and the system may support a limit cycle as shown in the bottom of Figure 1. The
system is said to be oscillatory as it may produce a train of action potentials (see the

inset for V̂ in the bottom of Figure 1). Action potentials may also be induced in the
absence of an external current for synaptic stimuli of sufficient strength and duration.
This reduced model of neural membrane is reminiscent of the FitzHugh–Nagumo dy-
namics, but with some important differences. For example, the amplitude of action
potentials in both the full Hodgkin–Huxley model and the reduced model decrease at
high firing rates. In contrast in the FitzHugh–Nagumo model the amplitude is rela-
tively independent of the firing frequency. More importantly though, the reduction
process allows one to maintain contact with biological reality so that parameters in
the reduced system have physiological interpretation.

We now illustrate the possibility of traveling waves in the reduced Baer and
Rinzel model with the aid of a simple compartmental model and numerical simulation.
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Moreover, for a finite (yet long) piece of cable and realistic choices of parameter values
we numerically obtain the speed of a traveling pulse as a function of the spine density.
For a cable of length L we discretize space such that the cable is represented by N
compartments (with killed end boundary conditions V (0) = V (L) = 0) each of length
∆s = L/N . We then iterate the discretized version of the dynamical system defined
by (2.1), (2.7), and (2.8) with a simple Euler method of step size ∆t = (∆s)2/4.
Traveling waves are easily initiated in the numerical model by driving the system with
a constant input into the spine-head compartment at x = L for a time sufficiently long
enough to initiate a firing event. An example of a traveling wave is given in Figure 2,
while Figure 3 shows that the speed of such solitary pulses decreases as a function
of the spine density. As in the full model propagation failure occurs for too small
a spine density or too large a spine-stem resistance. Apart from increasing L and
considering more compartments, an improvement in the accuracy of our numerical
results can be obtained by decreasing the choice of step size from ∆t = (∆s)2/4 to
∆t = (∆s)2/k with k > 4. Alternatively, one could implement a more sophisticated
numerical scheme to take into account the fact that the active processes in the spine-
head operate on a different time-scale to the processes in the dendritic shaft. For
a discussion of such techniques (and in particular the Crank–Nicolson scheme) we
refer the reader to the review article by Mascagni and Sherman [24]. However, if one
is interested only in the behavior of traveling wave solutions it is possible to obtain
numerical results to arbitrary accuracy in a different fashion. To construct traveling
wave solutions, in the reduced Baer and Rinzel model it is natural to assume solutions
of the form V (x, t) = V (ξ), where ξ = ct−x, and similarly for V̂ and U and to look for
homoclinic connections to the resting state. The numerical solution of this problem
may be formulated as a two-point boundary value problem parameterized by the
speed of the wave [5]. Once an initial homoclinic solution is constructed one may
then numerically continue the speed of the wave in one or more system parameters
with the aid of a piece of dedicated software such as AUTO97.1 Instead we consider
a further reduction to an IF model where the voltage in the spine-head is considered
as a train of pulses generated by a threshold crossing process. As we shall show in
the next section this provides an analytically tractable model of dendritic cable with
active spines.

3. An IF model. IF models provide a caricature of the capacitive nature of cell
membrane at the expense of a detailed model of the refractory process. To obtain
an IF model from the reduced Hodgkin–Huxley model we approximate U by its fixed
point value of −65 so that (2.7) becomes

dV̂

dt
= −f(V̂ ,−65) + J.(3.1)

The largest value of V̂ for which f(V̂ ,−65) = 0 determines the onset of the spiking
regime and can be used to define a threshold VT for firing, since for larger values
of V̂ , dV̂ /dt > 0. It is possible to fit this curve with a polynomial f(V̂ ,−65) =
a(V̂ − VA)(V̂ − VB)(V̂ − VT ), where a = 0.008, VA = −65, VB = 77.81, and the
threshold for firing is found to be at VT = −62.56. A linear model can be obtained
by eliminating the dynamics of the variable U in a slightly different fashion. That
is, set U = V everywhere so that g(U,U) = 0 and hence dU/dt = 0. This is a quite
severe approximation since U is never very close to V except at the fixed point. A

1Available from http://indy.cs.concordia.ca/auto.
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numerical plot of the function f(V̂ , V̂ ) shows that it is approximately linear and can

be fit as f(V̂ , V̂ ) = a(V̂ − VT ) with a = 1.25 and VT = −65.65. If one assumes
that it is the spiking part of the waveform generated in the spine-head that affects
the shaft dynamics most strongly, then it is natural to consider a model of the spine-
head that preserves this structure at the expense of an accurate description of the
wave-form before and after spiking events. Indeed, numerical simulations of the os-
cillatory Hodgkin–Huxley or reduced Hodgkin–Huxley dynamics support this notion
since between spiking events the voltage wave-form is relatively flat (see the inset in
the bottom of Figure 1). Hence, we replace the voltage wave-form generated in the
excitable spine-head by a sequence of pulses that are generated whenever the dynam-
ics in the spine-head, driven by current from the shaft, crosses some threshold. The
pulse-shape is chosen to mimic that of a real action potential, i.e., has a biologically
realistic magnitude and duration. In more detail we consider a model where

V̂ (x, t) =
∑
m∈Z

η(t− Tm(x)),(3.2)

such that η(t) specifies the shape of an action potential and the firing times Tm(x)
are generated by an IF-type firing mechanism in the spine-head:

Tn(x) = inf{t | U(x, t) ≥ h ; t ≥ Tn−1(x) + τR}.(3.3)

For convenience we use the symbol U to denote the state variable describing the IF
process in the spine-head. This is not to be confused with the symbol representing
the auxiliary potential used in section 2. One should note that in the IF model
we have completely eliminated the slow auxiliary variable (responsible for the shape
of an action potential and the relative refractory period) in favor of a simplified
description of an action potential as a rectangular pulse. The term τR represents an
absolute refractory period. It is convenient to introduce such a delay since the IF
process cannot mimic the refractory properties of the Hodgkin–Huxley system. For
Tn(x) < t < Tn+1(x) the generator of the IF process, U(x, t), is assumed to evolve
according to

∂U

∂t
= −gL(U − VL) +

[
V − U
r

]
,(3.4)

subject to reset

lim
δ→0+

U(Tn(x)− δ) = h, lim
δ→0+

U(Tn(x) + δ) = g.(3.5)

h is recognized as the threshold for a firing event to occur, while g represents the reset
level of the IF process, with g < h. One may adopt a realistic functional form for the
waveform η(t) using the function approximation techniques outlined in [18], although
for the purposes of this section it is merely enough to assume a simple pulse of duration
τs and height η0. Note that we have adopted an IF model with a linear decay term
rather than the more realistic cubic form described above. This is not too severe an
approximation when one bears in mind the success of such models in reproducing
experimentally observed spike trains. We choose a realistic value of the threshold as
h = −62.5 and take the leakage conductance as gL = 1.25. As in the previous section
a numerical simulation demonstrates the possibility of traveling waves (see Figure 4).
In numerical simulations of the reduced model the duration of an action potential
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Fig. 4. Traveling solitary wave in the IF model of a dendritic cable with active spines obtained by
numerically integrating the equations of motion. Parameters are gL = 1.25, VL = −65, h = −62.5,
g = −80, r = 2, τs = 2, η0 = 100 and τR = 10, L = 10, N = 100. Note that the speed of the wave
is around 1 (in units of electronic length per ms).

is typically around 2 ms with a peak of about 100 mV above rest. Hence, we take
τs = 2 and η0 = 100. For more realistic choices of the pulse shape generated in the
spine-head one would expect a better agreement with the wave-forms seen in the more
detailed models. Importantly however, this much simplified model supports the same
type of solitary wave with a correspondingly similar speed to that observed in the full
model. Throughout we assume that the refractory period τR is sufficiently large so
that the wake of the traveling wave cannot re-excite any spine-heads that have already
fired. Alternatively one may choose the reset level g to be sufficiently negative such
that, after reset, the wake cannot drive the system above threshold [13]. The ability
of the IF spine-head model to fire repetitively depends upon the choice of the absolute
refractory period and the amount of current that leaves the spine-head and enters the
dendritic shaft. For realistic choices of the refractory period (of around 2–10 ms),
and for a constant input into the spines (IF model) repetitive firing is only observed
for large values of the spine-stem resistance where one may regard the spine-head as
electrically isolated.

3.1. Traveling wave solutions. In this section we show how one may explicitly
construct the profile of a solitary wave solution in terms of the pulse shape-generated
in the spine-head. We define a solitary wave as one that causes the spine-head at x
to reach threshold only once at the time t = T (x) ≡ x/c. We recognize c as the speed
of the wave so that V̂ (x, t) = η(t − x/c), which suggests adopting a moving frame
coordinate system ξ = ct − x. The extension to traveling trains instead of pulses is
relatively straightforward (see [6, 7]) and will not be pursued here. As a concrete
example we first focus on the case where η(t) describes a pulse of height η0 relative
to VL and duration τs. (In the next section we consider arbitrary pulse shapes.) In
the traveling coordinate frame, and referring all voltages to VL (including the reset
and threshold values), we have from (2.1) that

Vξξ − cVξ − εV = −ρ
r
V̂ ,(3.6)
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ξ

Fig. 5. A plot of the exact traveling wave solution in the IF model of a cable with active spines
for c = 1, τs = 2, ρ = 25, r = 2, gL = 1.25.

where Vξ ≡ dV/dξ, ε = gL + ρ/r, and

V̂ (ξ) =


0, −∞ < ξ < 0,

η0, 0 < ξ < cτs,

0, ξ > cτs.

(3.7)

If one is looking for traveling pulses which satisfy limξ→±∞ V (ξ) = 0, then the solution
to (3.6) takes the form

V (ξ) =


α1 exp(m+ξ), −∞ < ξ < 0,

α2 exp(m+ξ) + α3 exp(m−ξ) + ρη0/(εr), 0 < ξ < cτs,

α4 exp(m−ξ), ξ > cτs,

(3.8)

with

m± =
c±√

c2 + 4ε

2
.(3.9)

By ensuring the continuity of the solution and its first derivative at ξ = 0 and ξ = cτs
one may solve for the unknowns α1 . . . α4 as

α1 = α3
m−
m+

[1− exp(−m+cτs)],(3.10)

α2 = −α3
m−
m+

exp(−m+cτs),(3.11)

α3 =
ρη0
εr

m+

(m− −m+)
,(3.12)

α4 = α3[1− exp(−m−cτs)].(3.13)

A graphical plot of the exact solution for a traveling pulse is shown in Figure 5. As yet
the speed of the pulse is undetermined. However, by demanding that the IF process
in the spine-head reaches threshold at ξ = 0, and that limξ→±∞ U(ξ) = 0, one can
determine a self-consistent value for the speed of the traveling wave along the lines
outlined by Ermentrout [13] and Bressloff [6, 7]. In the traveling coordinate frame we
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ρ

Fig. 6. Speed of a traveling pulse as a function of spine density ρ. gL = 1.25, h = 2.5, r = 2,
τs = 2, η0 = 100. The crosses show the results of a direct numerical simulation of the IF model
with N = 200 and L = 10 and other parameters as above.

have for the IF process that

cUξ = −ε̂U + V
r

(3.14)

with U(0) = h and ε̂ = gL + 1/r. This first-order system may be solved as

U(ξ) = exp(−ξε̂/c)
[
h− 1

cr

∫ 0

ξ

V (ξ′) exp(ξ′ε̂/c)dξ′
]
.(3.15)

In order for this to be bounded as ξ → −∞, the term inside the large parentheses
must vanish as ξ → −∞. This yields the dispersion relationship for the speed of the
pulse as a function of system parameters:

h =
1

r

α1

(ε̂+ cm+)
.(3.16)

A numerical plot of the speed c of a traveling pulse as a function of the spine density
is shown in Figure 6. Note that there are two solution branches for a given density ρ.
Direct simulations suggest that it is the upper (faster) branch that is stable. In the
next section we establish this result as true at the level of a linear stability analysis.
Note that for a wide range of ρ the speed of the stable wave is approximately 1
electronic length per ms, in agreement with the original observations of Baer and
Rinzel. Importantly, however, we have an exact expression for the speed of the wave
that can easily be solved to obtain the dependence in terms of other system parameters
such as the spine stem resistance. Indeed, in this model one can find exactly the
minimum spine density capable of supporting a traveling pulse as well as extracting
information about how the speed decays as a function of spine density. In Figure
7 we plot the speed of a traveling pulse as a function of the spine-stem-resistance
r. It is clear, that for realistic choices of the biophysical parameters in the model,
that propagation failure can occur for too large a choice of the spine-stem resistance.
Moreover, for small r, the speed of a stable pulse is very sensitive to r, demonstrating
that a modifiable value of the spine-stem resistance could have important ramifications
for neural processing. Finally, in Figure 8 we show the dependence of the wave speed
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Fig. 7. Speed of a traveling pulse as a function of spine-stem resistance r. Note that propagation
failure results for too large a spine-stem resistance. gL = 1.25, h = 2.5, ρ = 25, τs = 2, η0 = 100.
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Fig. 8. Speed of a traveling pulse as a function of pulse width τs. Note that for too small a
choice of τs solitary waves cannot propagate. gL = 1.25, h = 2.5, ρ = 25, r = 2, η0 = 100.

on the width, τs, of a rectangular pulse generated in the spine-head. Interestingly, for
a fixed height of pulse there is a minimum duration time below which propagation
cannot occur. This highlights the fact that it is crucial to model the shape of an action
potential in the reduced IF model with biologically realistic choices for the amplitude
and duration of the spine-head pulse. For large values of τs the speed of the wave
approaches a constant value (i.e., the speed of the wave becomes insensitive to the
precise choice of τs).

4. Linear stability of the IF model. For the purposes of linear stability
analysis it is more convenient to work in terms of the original variables (x, t) rather
than in the moving frame. Since the shape of the traveling pulse is fixed by the
function η(t), it is natural to consider local perturbations of the firing times given
by T (x) = x/c+ u(x). A similar approach has recently been applied to the stability
of traveling waves in IF systems with synaptic and passive dendritic interactions
[6, 7]. The cable potential V (x, t) satisfying (2.1) with the spine potential V̂ (x, t) =
η(t − T (x)) can be evaluated in terms of the Green’s function for the infinite cable
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equation as

V (x, t) =
ρ

r

∫ t

−∞
ds

∫ ∞

−∞
dyG(x− y, t− s)η(s− T (y)),(4.1)

where

G(x, t) =
1√
4πt
e−εte−x2/4t(4.2)

and G(x, t) vanishing for t < 0. If we now demand that the IF process (3.4) driven
by the potential V (x, t) reaches threshold at time T (x) (according to 3.5), then
we obtain the following self-consistency condition for a traveling pulse (assuming
limx→−∞ U(x, t) = 0):

h =
1

r

∫ 0

−∞
dteε̂tV (x, t+ T (x)).(4.3)

We now expand (4.1) and (4.3) in powers of the perturbation u(x). The zeroth-
order term generates the self-consistency condition for the speed c of the unperturbed
traveling pulse:

h =
1

r

∫ 0

−∞
dteε̂tV (x, t+ x/c),(4.4)

where

V (x, t) =
ρ

r

∫ t

−∞
ds

∫ ∞

−∞
dyG(x− y, t− s)η(s− y/c).(4.5)

We can evaluate (4.5) using Fourier transforms. That is, expand η(s) as

η(s) =

∫ ∞

−∞

dk

2π
eiksη̃(k)(4.6)

and then perform the integrations over y and s with∫ ∞

−∞
dxe−ikxG(x, t) = e−ε(k)t, ε(k) = ε+ k2,(4.7)

to obtain

V (x, t) =
ρ

r

∫ ∞

−∞

dk

2π
eik(t−x/c) η̃(k)

ε(k/c) + ik
.(4.8)

Substitution of (4.8) into (4.4) finally gives

h =
ρ

r2

∫ ∞

−∞

dk

2π
.

η̃(k)

[ε(k/c) + ik][ε̂+ ik]
.(4.9)

When one considers a rectangular pulse-shape for the action potential wave-form of
height η0 and duration τs such that

η̃(k) =
1− e−ikτs

ik
,(4.10)
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then it is a simple matter to check that the dispersion relationship (4.9) reduces to
(3.16) derived by alternative means in section 3.

The first-order term in the expansion of (4.3) yields a linear equation for the per-
turbations u(x) from which the linear stability of the traveling pulse can be deduced.
This linear equation takes the form

0 =
1

r

∫ 0

−∞
dteε̂tδuV (x, t),(4.11)

where

δuV (x, t) =
ρ

r

∫ t

−∞
ds

∫ ∞

−∞
dyG(x− y, t− s)η′(s− y/c)[u(x)− u(y)].(4.12)

Equations (4.11) and (4.12) have solutions of the form u(x) = eλx with λ satisfying
the characteristic equation

I(λ) = I(0),(4.13)

where

I(λ) =

∫ ∞

−∞

dk

2π

ikη̃(k)

[ε(k/c+ iλ) + ik].[ε̂+ ik]
.(4.14)

Asymptotic stability holds if all nonzero solutions of the characteristic equation have
negative real part. (The existence of a solution λ = 0 reflects the translation invariance
of the underlying dynamical system.) Equation (4.14) can be evaluated by closing the
contour in the lower-half complex k-plane. Since η(s) = 0 for s < 0 it follows that
any poles of η̃(k) lie in the upper-half complex plane so that we only have to consider
poles arising from the zeros of the function ε(k/c + iλ) + ik. The latter are given
explicitly by k = ik±(λ), where

k±(λ)
c

= −
(
λ+

c

2

)
±
√
c2/4 + cλ+ ε.(4.15)

Let us decompose λ into real and imaginary parts according to λ = α+ iβ. Then

k±(λ) = −u±(α, β)− iv±(α, β)(4.16)

with

u±(α, β)
c

= α+
c

2
∓A(α, β), v±(α, β)

c
= β ∓B(α, β),(4.17)

and (for β > 0)

A(α, β) =

√
1

2

[
R(α) +

√
R(α)2 + c2β2

]
,

B(α, β) =

√
1

2

[
−R(α) +

√
R(α)2 + c2β2

]
,(4.18)

where

R(α) =
c2

4
+ cα+ ε.(4.19)
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In order to check stability of a solitary pulse we need to establish that there are no
solutions for which α > 0. We distinguish two cases according to the sign of u+(α, β).
Case A: u+(α, β) < 0 which reduces to the condition

c2β2 > 4(α+ c/2)2(α2 − ε).(4.20)

There is then a single pole at k = ik−(λ) and (4.14) reduces to I(λ) = I−(λ) where
we define

I±(λ) = c2
k±(λ)η̃(ik±(λ))

[k+(λ)− k−(λ)][ε̂− k±(λ)] .(4.21)

Case B: u+(α, β) > 0, and there are poles at k = ik± so that I(λ) = I−(λ)− I+(λ).
For concreteness let us return to the step-like pulse considered earlier. Substi-

tuting equations (4.16) and (4.10) into (4.21) and equating real and imaginary parts
yields

ReI±(λ) = c
X±[A(ε̂+ u±)−Bv±] + Y±[B(ε̂+ u±) +Av±]

2[A2 +B2][(ε̂+ u±)2 + v2±]
,(4.22)

ImI±(λ) = c
Y±[A(ε̂+ u±)−Bv±]−X±[B(ε̂+ u±) +Av±]

2[A2 +B2][(ε̂+ u±)2 + v2±]
,(4.23)

where

X± ≡ Re {k±(λ)η̃(ik±(λ))} = η0[e−u±τs cos(v±τs)− 1],(4.24)

Y± ≡ Im {k±(λ)η̃(ik±(λ))} = −η0e−u±τs sin(v±τs).(4.25)

One may then determine the stability of solution branches in the (c, ρ), (c, r), or
(c, τs) plane by simultaneously solving ReI(λ)−ReI(0) = 0 and ImI(λ)− ImI(0) = 0
for α and β, with c determined by (4.9) (or equivalently (3.16) for the specific case
of a rectangular pulse shape for the action potential). A numerical solution of this
problem (see Figure 9) shows that, for example, one may obtain solutions with β = 0
and α < 0 along the upper branch of Figure 6. Moreover, α changes sign as it passes
through the point where dρ/dc = 0 in the (c, ρ) plane while moving from the upper
solution branch to the lower. Hence, of the two possible traveling wave solutions
the faster one is stable. This result is consistent with direct numerical evolution of
the equations of motion (see Figure 6). Other solutions with α < 0 and β > 0 are
also found for both the fast and slow branches but do not affect the above stability
argument.

5. Passive properties of spines. Until now we have paid little attention to
the passive properties of spines. However, this is an important area of study in its own
right and has been pursued by many authors [21, 22, 39, 32, 33, 15]. Here we briefly
show how one might succinctly study the properties of passive spines in the Baer and
Rinzel model in the absence of any active membrane. We do this to clarify the role of
the passive electrical properties of dendritic spines in spike initiation. For instance,
it is possible to show that, for large spine-head resistances, the response of the tree
to current injected at the spine-head may be expressed in terms of the response to
current injected directly into the shaft. Dropping the terms describing the currents
due to active membrane, i.e., ignoring terms with voltage dependent gating variables,
the Baer and Rinzel system (2.1) and (2.2) becomes linear, with I(V̂ ,m, n, h) = −ε̂V̂ ,
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α

ρ

Fig. 9. A plot of the eigenvalues arising in the linearization of the IF model shows that solutions
with α < 0 and β = 0 can be found for the branch of solutions with greatest speed. The graph above
shows the behavior of α = Re(λ) with β = 0 for the upper solution branch of Figure 6. Note that
α = 0 at the point in the (c, ρ) plane at which the speed of the two possible traveling waves becomes
equal. For the slower branch one finds that there exists solutions in the (α, β) plane with α > 0
indicating that the slower branch is unstable.

and may be solved by Fourier transforming spatial variables and Laplace transforming
time-dependent ones. We introduce the following notation for these transforms:

V (k, t) =

∫ ∞

−∞
dxe−ikxV (x, t),(5.1)

V (x,E) =

∫ ∞

0

dte−EtV (x, t).(5.2)

There are two possible ways to inject a current into the system: (i) directly onto the
shaft so that one must add an injected current term to the right-hand side of (2.1),
and (ii) into the spine-head so that one must instead add this term to the right-hand
side of (2.2). For example, adding a term J(x, t) to the right-hand side of (2.2) means
that the solution may be written

V (k,E) =
ρ

r

[
1− ρ

r2
G(k,E)Ĝ(E)

]−1

G(k,E)Ĝ(E)J(k,E),(5.3)

where

G(k,E) =
(
k2 + E + ε

)−1
,(5.4)

Ĝ(E) = (E + ε̂)
−1
.(5.5)

Denoting the response of the cable in case (i) as V (x, t) and to case (ii) as V ∗(x, t) it
may be shown that

V ∗(k,E) =
ρ

r
Ĝ(E)V (k,E).(5.6)

If ε̂ � 1, then it is possible that Ĝ(E) is a relatively flat function of E compared

to V (k,E). In this case the major contribution of Ĝ(E) to V ∗(x, t) will come from
Ĝ(0). From biological data it appears that rgL � 1 [22] so that we may take ε � 1

assuming rgL � 1 and r � 1. In this case Ĝ(0) = r so that V ∗(x, t) = ρV (x, t).
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The response of the cable to current injected directly onto the shaft or into the spines
connected to the shaft are proportional (by a factor of ρ). Hence, for the continuum
model, it may be easier to initiate a traveling wave by directly stimulating the group
of spines above a point on the shaft rather than by directly stimulating a patch of
membrane on the shaft itself with an excitatory input. A further discussion of the
best ways in which to initiate a chain reaction in a dendritic system with excitable
spines can be found in the paper by Baer and Rinzel [3].

6. Discussion. In this paper we used reduction methods to derive an IF model
of wave propagation along a dendritic cable with active spines. This allowed us to
construct analytical expressions for both the wave speed and wave profile along the
cable as a function of various neurophysiological parameters. Moreover, we were
able to determine the stability of solutions using the linearized map of firing times
generated by the IF process in the spine-head. In particular, we found that the
speed of a stable wave decreased as a function of both spine-density and spine-stem
resistance. Propagation failure was shown to occur for too low a spine-density or
too high a spine-stem resistance. In spite of its simplicity, the IF model was able
to reproduce behavior consistent with that observed in simulations of more detailed
biophysical models.

A potentially important application of our analysis is to the study of how ac-
tive dendrites contribute to the input-output response properties of a neuron. As an
illustrative example, suppose that several distal sites labeled p = 1, . . . , P are stim-
ulated at times si and each event triggers a traveling wave as constructed in section
3. Assuming that the generated pulses do not interact with each other, the resulting
potential seen at the soma would then be of the form Vtot(t) =

∑P
p=1 V (t − si − τi)

with discrete delays τi = xi/c, where xi is the electronic distance of the ith stimu-
lated site from the soma and c is the wave speed. Taking the soma itself to evolve
according to IF dynamics leads to an effective two-layer IF model of a neuron with
active dendrites. Such a model provides a starting point for the investigation of the
computational role of active spines in neuronal processing. For example, one might
calculate the sensitivity of the firing rate at the soma in response to the exact spa-
tial arrangement of activated spine-heads in the dendritic tree. Such calculations are
particularly relevant to the understanding of how complex cells in visual cortex can
exhibit orientation tuning [26]. More detailed extensions of the model would need to
take into account the branching structure of the tree including nonuniform geome-
tries, interactions between solitary pulses, and the effects of back-propagating action
potentials. Indeed one might hope to model the observed clustering of spines with a
simple piecewise linear function for the spine density, while branching structures are
most easily analyzed with the Green’s function techniques discussed in [8]. Numerical
studies of dendritic cables with uniform density of active spines but with nonuniform
dendritic radius have already demonstrated the possibility of propagation failure into
the thicker part of the dendrite as well as the possibility of reversal or echo waves [41].

Finally, it is worth pointing out the formal similarities of our reduced IF model
with that of a recently introduced system for the study of traveling waves observed
when Ca2+ is released from internal stores in living cells. In the fire-diffuse-fire (FDF)
model of calcium release [28, 16, 31] an array of point-source Ca2+ release sites is
embedded in a continuum in which Ca2+ ions diffuse. To model the effect of Ca2+-
induced Ca2+ release (CICR) it is assumed that Ca2+ is released from the array
of point sources whenever the concentration of Ca2+ at a release site exceeds some
threshold. To mimic the self-regulatory nature of a real Ca2+ puff the release of Ca2+
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is modeled as a pulse of a certain strength and duration. Under certain conditions
the release of Ca2+ from one site allows diffusion of ions to a neighboring site where a
release event may be initiated provided the density of Ca2+ exceeds the threshold for
the CICR mechanism. This process is thought to underlie the generation of saltatory
Ca2+ waves observed in living cells. A correspondence between the FDF model and
the model introduced in this paper can be obtained by identifying the continuous
media of the FDF model with a passive dendritic cable and the Ca2+ release sites
with active spines. However, in the FDF model there is no resetting of the state
variable describing the dynamics of the release sites. As a result we view the IF
model of dendritic cable with active spines as a spike-diffuse-spike model (SDS). Both
FDF and SDS type systems are capable of composing global signals (traveling waves)
from elementary events (puffs or spikes). A study of the effect of ion pumps (that
transport Ca2+ back into the stores) on the speed of traveling waves may be found in
[12] where the correspondence between the two models is explored further. Note also
that, unlike the FDF model, the SDS model as currently formulated is a continuum
model. A lattice version of this model, with active spines at specific sites on a dendritic
tree, will be explored elsewhere.

Appendix A. For the Hodgkin–Huxley model of excitable nerve tissue it is
common practice to write

τX(V̂ ) =
1

αX(V̂ ) + βX(V̂ )
,(A.1)

X∞(V̂ ) = αX(V̂ )τX(V̂ )(A.2)

for X ∈ {m,n, h}, where

αm(V̂ ) =
0.1(V̂ + 40)

1− exp[−0.1(V̂ + 40)] ,(A.3)

αh(V̂ ) = 0.07 exp[−0.05(V̂ + 65)],(A.4)

αn(V̂ ) =
0.01(V̂ + 55)

1− exp[−0.1(V̂ + 55)] ,(A.5)

βm(V̂ ) = 4.0 exp[−0.0556(V̂ + 65)],(A.6)

βh(V̂ ) =
1

1 + exp[−0.1(V̂ + 35)] ,(A.7)

βn(V̂ ) = 0.125 exp[−0.0125(V̂ + 65)].(A.8)

All potentials are measured in mV, all times in ms, and all currents in µA per cm2.
In obtaining a reduction of the full Hodgkin–Huxley equations we use the following
parameter values: Ĉ = 1µF cm−2, gL = 0.3mmho cm−2, gK = 36mmho cm−2,
gNa = 120mmho cm

−2, VL = −54.402mV, VK = −77mV, and VNa = 50mV.
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