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Abstract. We study the existence and stability of traveling waves and
pulses in a one-dimensional network of integrate-and-"re neurons with
synaptic coupling. This provides a simple model of excitable neural
tissue. We "rst derive a self-consistency condition for the existence of
traveling waves, which generates a dispersion relation between velocity
and wavelength. We use this to investigate how wave-propagation
depends on various parameters that characterize neuronal interactions
such as synaptic and axonal delays, and the passive membrane proper-
ties of dendritic cables. We also establish that excitable networks
support the propagation of solitary pulses in the long-wavelength limit.
We then derive a general condition for the (local) asymptotic stability
of traveling waves in terms of the characteristic equation of the lin-
earized "ring time map, which takes the form of an integro-di!erence
equation of in"nite order. We use this to analyze the stability of
solitary pulses in the long-wavelength limit. Solitary wave solutions
are shown to come in pairs with the faster (slower) solution
stable (unstable) in the case of zero axonal delays; for non-zero delays
and fast synapses the stable wave can itself destabilize via a Hopf
bifurcation.

Key words: Integrate-and-"re }Wave propagation } Excitable neural
media } Pulse-coupling } Neocortex

1. Introduction

A number of recent experimental studies have revealed the propaga-
tion of traveling bursts of activity in slices of excitable neural tissue



taken from the cortex (Chervin et al. 1988; Golomb and Amitai 1997),
hippocampus (Traub et al. 1993) and thalamus (Kim et al. 1995;
Golomb et al. 1996; Destexhe et al. 1996). The underlying mechanism
for propagation of these waves is thought to be synaptic in origin
rather than di!usive as in the propagation of action potentials. Com-
putational models of synaptically generated waves have also been
developed, in which neural tissue is treated as a one-dimensional
continuum (Traub et al. 1993; Golomb et al. 1996; Destexhe et al. 1996:
Golomb and Amitai 1997). These various studies indicate that wave
propagation in cortical (and hippocampal) slices only occurs if the
synaptic strength of neuronal interactions exceeds some threshold; well
beyond threshold the velocity is approximately linear in the coupling
(see e.g. Golomb and Amitai 1997). Moreover, multiple forms of
discharge patterns are observed to propagate at the same parameter
values. Selection of a particular pattern occurs through the initial
conditions such as the strength of the initial stimulus. Interestingly,
there is not much variation in the speed as a function of the number
of spikes that propagate. The mechanism of wave propagation in
thalamic slices appears to be di!erent from cortical and hippocampal
tissue; thalamic waves propagate in a lurching manner resulting in
an approximately logarithmic dependence of velocity on synaptic
coupling strength and there is no minimal wave velocity (Golomb
et al. 1996).

An important question concerns how the velocity of a wave de-
pends on the synaptic and intrinsic cellular properties of the neurons.
This is di$cult to extract from detailed computational models. How-
ever, Ermentrout (1998) has established that a simple integrate-and-"re
(IF) model of a neuron captures much of the process underlying an
excitation wave in cortical slices. This is due to the fact that the velocity
of a wave in the case of strong synaptic coupling is essentially indepen-
dent of the ionic details of cell membranes, depending mainly on
the integration rise time from the resting potential to threshold.
Ermentrout (1998) has used the analytically tractable IF model to
derive a number of scaling laws for the velocity of a single activity pulse
as a function of various parameters of the system. In particular, he has
shown that velocity scales linearly with the range of synaptic interac-
tions and the synaptic decay rate, but exhibits a non-trivial power-law
with respect to the synaptic coupling strength. He has also established
numerically that similar scaling laws hold for the more detailed com-
putational models.

In this paper we further develop the analysis of IF models of
cortical wave propagation. In particular, we show how the existence
and stability of solitary pulses may be studied by taking the
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long-wavelength limit of periodic traveling wave solutions. This is
important for a number of reasons. First, it enables us to prove that the
solitary wave solutions analyzed by Ermentrout (1998) are stable.
Second, it establishes that the velocity of a wave is approximately
independent of wavelength (at least for long wavelength solutions).
This is at least suggestive of the approximate velocity-independence of
the various discharge patterns observed in more detailed computa-
tional models (Golomb and Amitai 1997). As highlighted by Ermen-
trout (1998), a major unsolved problem is the detailed nature of the
e!ects of re-excitation on wave propagation. Our analysis provides
some insight into the transition between single and repetitive "ring
states. A third aspect of our analysis is to con"rm the existence of
scaling laws for the velocity as a function of synaptic strength for more
general forms of synaptic interaction that includes the e!ects of passive
dendrites.

We begin in Sect. 2 by introducing a continuum model of cortical
tissue based on a one-dimensional network of IF neurons with synap-
tic coupling. An IF neuron "res a spike whenever its membrane
potential reaches some threshold, and immediately after "ring the
membrane potential is reset to some resting level (Keener et al. 1981).
Each neuron is assumed to receive a constant external bias I

�
such

that, in the absence of any synaptic coupling, the neuron oscillates
(periodically "res and resets) when I

�
'h (oscillatory regime) and is

quiescent (in the absence of additional stimulation) when I
�
(h (excit-

able regime). Here h denotes the threshold for "ring. We de"ne a (peri-
odic) traveling wave as a phase-locked state in which the sequence of
"ring times of the neuron at x3� satis"es ¹

�
(x)"(n#kx)¹ for

integer n, where k is the wavenumber and c"1/k¹ is the velocity of the
wave. In other words, all the neurons "re at regular intervals of length
¹ but the "ring times are shifted according to the phase � (x)"kx.
A self-consistency condition for the existence of a traveling wave is
derived by considering the nonlinear mapping of the neuronal "ring
times along the lines of Bresslo! and Coombes (1998a}c, 1999). This
yields a dispersion relation for the velocity c"c(k). We calculate the
resulting dispersion curves as a function of various parameters charac-
terizing neuronal interactions. These include the rise-time of synaptic
response, discrete axonal propagation delays, and the passive mem-
brane properties of dendritic cables. We highlight the fact that in order
to obtain self-consistent traveling wave solutions it is necessary to have
some dead-time immediately after "ring. We then show how the
solitary wave solutions obtained by Ermentrout (1998) can be re-
covered in the long-wavelength limit kP0 when I

�
(h. That is,

starting from a traveling wave solution, we show that an excitable
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network can support the propagation of solitary pulses whose speed is
given by c

�
"lim

���
c(k). This is analogous to the long-wavelength

limit analyzed by Ermentrout and Rinzel (1981) in their study of waves
in a one-dimensional reaction-di!usion equation. The continuation of
solitary wave solutions to "nite periodic waves leads to a family of
approximately velocity-independent solutions. We also establish that
for fast solitary waves the velocity scales as some power of the synaptic
strength g with c

�
��g for synaptic delays and c

�
�g� for dendritic

delays. This suggests that the approximately linear relationship ob-
served experimentally (Golomb and Amitai 1997) might arise from
some combination of these two aspects.

The stability of traveling waves is then analyzed in Sect. 3 by
considering perturbations of the "ring times. First, a linearized "ring
time map is constructed in the form of a linear integro-di!erence
equation of in"nite order. It is shown how the condition for asymptotic
stability can be expressed in terms of the solutions of an associated
characteristic equation. Taking the long-wavelength limit we then
study the stability of solitary pulses in the excitable regime (Sect. 4). In
particular, we show that solitary wave solutions typically come in pairs
with the faster (slower) solution stable (unstable) in the case of zero
axonal delays; for non-zero delays and fast synapses the stable wave
can itself destabilize via a Hopf bifurcation. We end in Sect. 5 with
a brief discussion of waves in two-dimensional networks and relate our
stability analysis to recent work by Kistler et al. (1998). In particular,
we point out that their analysis is based on a weaker notion of stability
than considered in this paper.

2. Traveling waves and pulses

Consider a one-dimensional network of integrate-and-"re (IF) neurons
with excitatory synaptic coupling evolving according to the equation

�< (x, t)
�t

"I
�
!<(x, t)

�
�

#I (x, t). (2.1)

Here <(x, t) denotes the membrane potential of the neuron at x3� at
time t, �

�
is the membrane time constant, I

�
is a constant external

input, and I(x, t) is the total synaptic input into the cell. Equation (2.1)
is supplemented by the reset condition <(x, t�)"� whenever
<(x, t)"h, where h is the threshold for "ring. We shall set h"1 and
�
�
"1 for convenience. This "xes the units of time to be of the order

10 msec. In the absence of any synaptic inputs, we can distinguish two
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distinct operating regimes: (a) oscillatory (I
�
'1) } each neuron inde-

pendently "res at regular intervals of period ¹
�
"ln([I

�
!�]/[I

�
!1]),

and (b) excitable (I
�
(1) } the neurons require an additional input

before they can "re. In this paper we shall restrict ourselves mainly to
the excitable regime, since we have studied oscillatory IF networks in
some detail elsewhere (Bresslo! and Coombes 1999). The synaptic
current is taken to be of the form

I (x, t)"g�
�

��
�

�

�

= (x!x�) J (�)E(x�, t!�) d�dx� (2.2)

where the strength of the interactions between cells is determined by
the coupling parameter g, g'0, and the pattern of connectivity is
speci"ed by the positive weight function= (x), which is assumed to be
symmetric,= (!x)"=(x), and a monotonically decreasing function
of �x� with ��

�
=(x) dx(R. For concreteness, we take= (x) to be the

exponential function

= (x)" 1
2�

e������ (2.3)

with � characterizing the range of interactions. (The basic results of
this paper do not depend on the precise form of= (x).) Neglecting the
shape of an individual pulse, the output spike train of each oscillator is
represented as a sequence of Dirac delta-functions,

E (x, t)" �
�

����

	(t!¹
�
(x)) (2.4)

where ¹
�
(x) is the mth "ring-time of the oscillator at x, that is,

<(x, ¹
�
(x))"1 for all integers m. Each incoming spike is converted to

a post-synaptic potential whose shape is represented by the delay
kernel J(�): various factors can contribute to J(�) including axonal
propagation delays, synaptic processing and dendritic processing (see
below).

Following Bresslo! and Coombes (1997), we de"ne a traveling
wave to be a self-consistent solution to equations (2.1)}(2.3) in
which the activity E(x, t) is of the particular form E(x, t)"
�

���
	 (t!(kx#m)¹ ) for some "nite period ¹. The speed of the wave

is c"(k¹)�� for a given wavenumber k. For such a solution, the
neurons are "ring at regular intervals of collective period ¹ such that
¹

�
(x)"m¹#�(x)¹ with � (x)"kx the "ring phase of the neuron at x.

Thus traveling wave solutions belong to the class of phase-locked
solutions studied previously by Bresslo! and Coombes (1999), and we
can develop the analysis along similar lines. First, under the given
ansatz for the activity E(x, t), we integrate equation (2.1) between two
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successive "ring times. Incorporating the reset condition then leads to
the integral equation

1!e���"(1!e�� ) I
�
#g �

�

��

=(x)K
�
(kx) dx (2.5)

with

K
�
(�)"e���

�

�

e�
�
�

����

J (�#(m!�)¹ ) d�. (2.6)

Since K
�
(�) is a real periodic function of � it can be expanded as

a Fourier series:

K
�
(�)"[1!e��]

¹ �
�

[a (2
m/¹ ) cos(2
m�)!b(2
m/¹ ) sin(2
m�)]

(2.7)
where

a (�)"Re
JI (�)

1#i�
, b(�)"!Im

JI (�)
1#i�

(2.8)

and JI (�) is the Fourier transform of J (�),

JI (�)"�
�

��

e�	��J(�) d� (2.9)

such that

J (�)"�
�

��

e	��JI (�)
d�
2


. (2.10)

Note that JI (�) is analytic in the lower-half complex �-plane since
J(�)"0 for �60. Substituting equation (2.7) into equation (2.5) and
exploiting the fact that= (x) is symmetric, we obtain the result

1!e���"(1!e��)I
�
#g

1!e��

¹ �
�

a(2
m/¹ )=I (2
mk) (2.11)

where =I (p) is the Fourier transform of =(x). For the exponential
weight function (2.3) we have

=I (p)" 1
1#��p�

(2.12)

Equation (2.11) generates a dispersion relation which we can write
either as c"c(k) or �"� (k) where �"¹��.

An interesting question concerns what happens as kP0. Ermen-
trout and Rinzel (1981) have established that in the case of a
one-dimensional reaction-di!usion equation, cPR as kP0 in the

174 P. C. Bresslo!



oscillatory regime whereas cPc
�
(R as kP0 in the excitatory

regime. In other words, only the latter supports the propagation of
a solitary traveling wave or pulse, with c

�
the speed of the pulse.

A similar result holds for the IF model with excitatory coupling (g'0).
This is most easily seen by taking the limit ¹PR in equation (2.5)
with K

�
(�) given by equation (2.6). First note that equation (2.5) only

has solutions for large ¹ if I
�
(1 (excitable regime). Without loss of

generality, we set I
�
"0. Second, K

�
(kx)+��

��
e
J (t!kx¹ ) dt for

large ¹ so that K
�
(kx)P0 as ¹PR unless k"(c

�
¹ )�� for some

¹-independent constant speed c
�
. (It should be noted that there also

exists a "nite-¹ solution in the limit kP0, which corresponds to the
synchronous solution). Taking the large-¹ limit of equation (2.5) then
yields the result

1"g �
�

��

=(x) �
�

��

e
J(t!x/c
�
) dtdx

"g �
�

�

=(x) e����� �
����

�

e
J(t) dtdx (2.13)

where we have used the fact that J(t)"0 for t60. Equation (2.13)
is identical to the self-consistency condition for a solitary pulse
E(x, t)"	 (t!x/c

�
) obtained previously by Ermentrout (1998). From

this equation, scaling laws can be derived for the dependence of the
velocity c

�
on various parameters such as the coupling strength g and

the range of interactions � of = (x) (Ermentrout 1998). A simple
method for evaluating the integrals in equation (2.13) is to use the
Fourier transform of J(�). Substituting equations (2.10) and (2.3) into
(2.13) and performing the integrations over x and t we obtain the result

1"gc
�

2 �
�

��

JI (�)
1#i� �

1
c
�
!i�

! 1
1#c

�
�
d�
2


(2.14)

where we have rescaled c
�
according to c

�
Pc

�
/�. Closing the contour

in the lower-half complex plane then picks up the pole at �"!ic
�
:

1" gc
�

2(1#c
�
)
JI (!ic

�
). (2.15)

2.1. Synaptic delay kernel

We shall now illustrate our analysis of wave propagation in IF net-
works for particular choices of J(�). One important contribution to the
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"nite-impulse response of a neuron occurs at the synapses. An incom-
ing spike due to the "ring of a pre-synaptic neuron causes the release of
neurotransmitters that di!use across the synaptic gap and bind to
receptors in the cell membrane of the post-synaptic neuron. This
induces a time-dependent change in the membrane conductance that
may be modelled as a second-order Markov scheme leading to the
so-called alpha function response (Destexhe et al. 1994). Combining
this with the e!ects of discrete delays due to the "nite propagation time
of spikes along the axons, we introduce a synaptic delay kernel of the
form

J (�)"�(�!�
�
) e��	����
� (�!�

�
) (2.16)

where  is the inverse rise-time for synaptic response, �
�
is an axonal

propagation delay, and �(�)"1 if �'0 and is zero otherwise. Substi-
tution of equation (2.16) into (2.15) leads to the following implicit
equation for the propagation velocity of a solitary pulse:

1" g�c
�

2(1#c
�
)

e�����
(#c

�
)�

. (2.17)

The case �
�
"0 was previously studied by Ermentrout (1998), who

highlighted the fact that for large c
�
, the velocity scales according to

a power law c
�
���g/2. This form of power law is consistent with the

behaviour observed in more detailed computational models (Golomb
and Amitai 1997). The velocity c

�
is plotted as a function of the

coupling g in Fig. 1. It can be seen that for "xed  and �
�
there exists

a critical coupling g

(, �

�
) such that there are no traveling pulse

solutions for g(g

and two solutions for g'g


. We shall establish in

Sect. 4 that for the given parameter values, the lower (upper) solution
branch is unstable (stable).

Let us now turn to the case of traveling wave solutions with
"nite ¹. For the synaptic delay kernel (2.16), equation (2.8) becomes

a (�)
�

"(�!��!2��) cos(��
�
)!(�(�!��)#2�) sin(��

�
)

(�#��)�(1#��)
,

(2.18)

b (�)
�

"(�(�!��)#2�) cos(��
�
)#(�!��!2��) sin(��

�
)

(�#��)�(1#��)
.

(2.19)

Solving equation (2.11) using (2.12) and (2.18), we calculate dispersion
curves �"�(k) for "nite wavelength traveling waves. Typical results in
the excitable regime for g'g


and "xed  and �

�
are shown in Fig. 2.
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Fig. 1. Variation of the speed c
�

of a traveling pulse as a function of the synaptic
coupling g for di!erent values of the inverse rise-time  and axonal delay �

�
.

(a) "2, �
�
"0, (b) "2, �

�
"1, (c) "0.25, �

�
"0, (d) "0.25, �

�
"1. Solid

(dashed) lines correspond to stable (unstable) branches (see Sect. 4). The external input
is taken to be I

�
"0 and �"1.

Fig. 2. Dispersion curves showing how the frequency �"¹�� of a traveling wave
varies with the wavenumber k for "2, �

�
"0, I

�
"0, �"0 and g"20'g


. Curves

I and II are continuations of the long-wavelength solutions �"c
�
k with c

�
satisfying

equation (2.17), see Fig. 1. Curve III is the continuation from the synchronous solution
at k"0 (see inset).
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It can be seen that there are three dispersion curves labelled I}III.
Curves I and II are continuations of the long-wavelength "nite velocity
solutions displayed in Fig. 1, whereas the third is a continuation of the
synchronous solution. Both curves I and II are approximately linear in
k, at least for su$ciently long wavelengths. Hence there exist families
of approximately velocity-independent solutions, which is consistent
with the observations of multiple discharge patterns (Golomb and
Amitai 1997). Curves I and III only exist for small values of k and
annihilate each other in a saddle-node bifurcation at a critical value of
k. These results should be contrasted with the case g(g


for which

there are no long-wavelength solitary pulses and hence only one
dispersion curve. The continuation of the synchronous solution now
persists into the large-k regime. The stability of traveling waves is
discussed in Sect. 3.

2.2. Dendritic delay kernel

It is well known that the passive membrane properties of a neuron's
dendritic tree result in a di!usive spread of current through the system
that induces changes in the membrane potential along the tree. This
di!usive process can be modeled in terms of a second-order linear
partial di!erential equation known as the cable equation (Rall 1989).
For the sake of concreteness, we shall take each neuron to consist of
a soma or cell body where spike generation occurs, which is connected
resistively to the end of a semi-in"nite uniform dendritic cable. As
a further simpli"cation, suppose that all synapses are located at a
"xed position �

�
, 06�

�
(R on the dendritic cable independently of

the positions of the interacting neurons. Solving the cable equation
then leads to an e!ective synaptic current of the form (2.2) with
J(�)"G (�

�
, �) and (Bresslo! 1999)

G (�, t)" e�
���
�
Dt

e������
� (t) (2.20)

where �
�
is the membrane time constant of the cable and D is the

di!usivity. The Green's function G(�, t) determines the membrane
potential response at the end of the cable due to an instantaneous
injection of unit current at point � at time t. As in the case of synaptic
delays, it is useful to consider the Fourier transform of the delay kernel,
JI (�)"GI (�

�
, �) where

GI (�, �)" 1
D�(�)

e��	�
� (2.21)
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Fig. 3. Variation of the speed c
�

of a traveling pulse as a function of the synaptic
coupling g for di!erent values of the dendritic coordinate �

�
. (a) �

�
"0, (b) �

�
"0.1,

(c) �
�
"0.2. We have set D"�

�
"�"1. Solid (dashed) curves are stable (unstable),

see Sect. 4.

is the transfer function of the dendritic cable with

� (�)�"1#i��
�

D�
�

. (2.22)

Note that �(�) in equation (2.21) is related to the membrane impedance
of the dendritic cable.

We can use equation (2.21) to investigate how the presence of
passive dendritic interactions in#uences wave propagation in a one-
dimensional network of IF neurons. We "rst consider the propagation
of single pulses in the long-wavelength limit. The allowed velocities
c
�

of these pulses are given by solutions of equation (2.15) with
JI (�)"GI (�

�
, �). That is, setting �

�
"1, D"1 we have

1" gc
�

2(1#c
�
)
e��������

�1#c
�

. (2.23)

We plot solutions c
�
(g) for various values of �

�
in Fig. 3. The qualita-

tive behaviour is similar to that found for synaptic delays, see Fig. 1.
However, for synapses proximal to the soma (�

�
"0), we have a power

scaling law given by c
�
�g�, rather than c

�
��g as found for synaptic

delays. Recent experimental studies of solitary wave propagation in
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cortical slices show that for fast waves the velocity appears to increase
approximately linearly with synaptic strength (Golomb and Amitai
1997), which lies somewhere between these two cases. Whether or not
the linear relationship arises from some combination of dendritic and
synaptic delays, or is a consequence of more detailed membrane
properties remains to be seen.

In the case of a traveling wave of non-zero wavenumber k, the
frequency �"¹�� is determined by the phase-locking equation (2.5)
with the interaction kernelK

�
(�) having the Fourier expansion de"ned

by equations (2.7) and (2.8). Evaluating the functions a(�) and b (�) for
JI (�)"GI (�

�
, �) gives

a(�)"[aN (�)!�bM (�)] cos(bM (�)�)![�aN (�)#bM (�)] sin(bM (�)�)
(1#��) (aN (�)�#bM (�)�)

e��� 	�
��

(2.24)

b(�)"[aN (�)!�bM (�)] sin(bM (�)�)#[�aN (�)#bM (�)] cos(bM (�)�)
(1#��) (aN (�)�#bM (�)�)

e��� 	�
��

(2.25)
where

aN (�)" 1

�D�
�
�

1
2
[1#�1#(�

�
�)�] (2.26)

bM (�)"sign(�)

�D�
�
�

1
2
[!1#�1#(�

�
�)�] (2.27)

and �D�
�

is the membrane space constant of the dendritic cable.
Finally, we look for solutions of equation (2.11) using (2.12) and (2.24)
in order to calculate dispersion curves �"�(k) for "nite wavelength
traveling waves. Typical results in the excitable regime with I

�
"0 and

g'g

are shown in Fig. 4.

2.3. Existence of traveling waves and re-excitation

In the construction of the traveling wave dispersion curves of Figs. 2
and 4 we set the reset level to be zero (�"0) and searched for solutions
of equation (2.11) for the collective period ¹ as a function of wavenum-
ber k. However, considerable care has to be taken in the interpretation
of these results. Let us consider a particular neuron in the network that
is driven by a synaptic input of the form (2.2) under the assumption
that all other neurons are phase-locked according to a traveling wave
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Fig. 4. Dispersion curves showing how the frequency �"¹�� of a traveling wave
varies with the wavenumber k for a dendritic delay kernel with �

�
"0, I

�
"0, �"0

and g"6'g

. Curves I and II are continuations of the long-wavelength solutions

�"c
�
k with c

�
satisfying equation (2.23), see Fig. 3. Curve III is the continuation from

the synchronous solution at k"0 (see inset).

of wavenumber k and period ¹. Suppose that the given neuron last
"red at time t"0. Taking ¹ to be a solution of equation (2.11) simply
means that the chosen neuron crosses threshold at time ¹. This need
not lead to a self-consistent traveling wave solution since it is possible
that the neuron has previously "red one or more times in the interval
(0, ¹ ). This is indeed found to be the case as illustrated in Fig. 5a, where
we plot <(t) for t'0 assuming that the neuron evolves according to
equation (2.1) with synaptic delays (and subsequent resetting of the
neuron suppressed). More explicitly,

<(t)"!e�
�#(1!e�
) I
�

#g
¹ �

�

(a(2
n/¹ ) [cos(2
nt/¹ )!e�
]

#b(2
n/¹ ) sin(2
nt/¹ ))=I (2
nk) (2.28)

with a(�), b (�) de"ned by equations (2.18) and (2.19). It can be seen
from Fig. 5a that although the potential does cross the threshold h"1
at time ¹, there is a rapid re-excitation at a time 0(t;¹ and this
yields an inconsistency. In order to generate a self-consistent solution it
is necessary to introduce some form of dead-time immediately after
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Fig. 5. The role of dead-time in the construction of a self-consistent traveling wave
solution for "2, �

�
"0, I

�
"0, g"20 and wavenumber k"0.01. The correspond-

ing collective period is ¹+27.8 (see inset of Fig. 2). A given neuron is assumed to "re
at time t"0 and its potential <(t) is plotted for t'0. (a) Evolution of < without
dead-time (�"0) and no subsequent reset. (b) Evolution of<with non-zero dead-time
(�;0) and no subsequent reset. (c) Evolution of < with non-zero dead-time and
subsequent reset.

"ring either through a time-varying threshold or, as shown in Fig. 5b,
through a negative reset level �;0. When this is combined with
subsequent resetting a self-consistent traveling wave of period ¹ is
obtained.
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In the long wave-length limit, the issue of fast re-excitation is no
longer relevant as far as the existence of a solitary wave is concerned.
However, it does have practical relevance when attempting to numeri-
cally simulate the propagation of solitary pulses. As discussed by
Ermentrout (1998), there appears to be a complex series of transitions
from single spike events to states with repetitive "ring. We hope to
explore this particular issue further elsewhere.

3. Stability analysis and the linearized 5ring time map

In this section we shall analyze the stability of traveling waves in
a one-dimensional network of IF neurons by considering perturba-
tions of the "ring times. We shall "nd that these perturbations evolve
according to a nonlinear "ring time map, which is in the form of an
integro-di!erence equation of in"nite order. Conditions for the local
asymptotic stability of a given traveling wave can then be expressed in
terms of the solutions of a characteristic equation obtained by lineariz-
ing this "ring time map. This can be established by introducing
a generalized z-transform (discrete Laplace transform) that takes into
account the in"nite-dimensional nature of the IF network dynamics
and the fact that we are interested in convective instabilities in the case
of traveling waves. We shall ignore the e!ects of dead-time in the
following calculation, which is a reasonable approximation for long-
wavelength traveling waves since the period ¹ is large.

Following along similar lines to our previous work (Bresslo! and
Coombes 1999), we "rst integrate equation (2.1) from ¹

���
(x) to ¹

�
(x)

using the reset condition to obtain the nonlinear "ring time map

e��	�
"I
�
[e��	�
!e����	�
]

#g �
��	�


����	�


e
 �
�

��

= (x!x�) �
� ��

J (t!¹
�
(x�)) dx�dt. (3.1)

We then set ¹
�
(x)"(n#kx)¹#u

�
(x) and expand the resulting map

as a power series in the perturbations u
�
(x). To O(1) we recover

equation (2.6) for the traveling wave state, whereas the O(u) term leads
to a linear integro-di!erence equation of the form

(I
�
!1#gA) u

�
(x)"(I

�
!1#g[A!BM ]) u

���
(x)

#g �
� �� �

�

��

B
���

(x!x�) u
���

(x�) dx� (3.2)
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Fig. 6. The Cauchy problem for the linearized "ring time map (3.2). Successive
wavefronts are shown with speed c"1/k¹. The initial data � speci"es the initial
perturbations of the "ring times de"ned along the wavefronts in the past, n#kx60.
The traveling wave is asymptotically stable if these (non-uniform) perturbations decay
to zero as tPR, that is, u

�
(x)P0 as n#kxPR.

with

A"�
�

��

=(x) �
� ��

J ([m#kx]¹ ) dx, (3.3)

B
�
(x)"= (x) e���

�

�

e
J�(t#[m#kx]¹ ) dt, (3.4)

and

BM " �
� �� �

�

��

B
�
(x) dx. (3.5)

Note that A, B
�
(x) and BM all depend on the self-consistent collective

period ¹ and the wavenumber k. From equation (3.4), we see that
B
�
(x)"0 for m#kx6!1, which ensures that causality is not

violated. This also suggests how to set up initial data for the system
(see Fig. 6). Let D

�
"�(x, n) �x3�, n3�, n#kx60�. Suppose that
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u
�
(x)"�

�
(x) for (x, n)3D

�
where �

�
(x) is some bounded function

on D
�
, sup���

�
(x) � � (x, n)3D

�
�(R. We then decompose the

solution as

u
�
(x;�)"v

�
(x)�(n#kx)#�

�
(x)�M (n#kx) (3.6)

with �M (x)"1!�(x). Substitution of equation (3.6) into (3.2) shows
that

(I
�
!1#gA) v

�
(x)

"(I
�
!1#g[A!BM ]) v

���
(x)�(n#kx!1)

#g �
� �� �

�

��

B
���

(x!x�) v
���

(x�)� (n!m#kx�) dx�#F(
�
(x)

(3.7)
for n#kx'0, where

F(
�
(x)"(I

�
#gA!gBM )�

���
(x)�M (n#kx!1)

#g �
� �� �

�

��

B
���

(x!x�)�
���

(x�)�M (n!m#kx�) dx�. (3.8)

In order to solve the inhomogeneous linear equation (3.7), we
introduce the double transform F(u) according to

F(u) (z, p)" �
� �� �

�

��

e�	�� z�	����
�(n#kx) u
�
(x)dx. (3.9)

We shall assume that the solutions u
�
(x) are exponentially bounded in

the sense that u
�
(x)(�r���� for n#kx'0 and constants �, r. The

transform (3.9) is a combination of a z-transform (discrete Laplace
transform) and a Fourier transform. Note that the time-like variable
z scales as z�	����
, since we are interested in studying convective
instabilities in the moving frame of the traveling wave. Let us apply the
double transform (3.9) to equation (3.7):

z(I
�
!1#gA) vJ (z, p)"(I

�
!1#g[A!BM ]) vJ (z, p)

#BI (z, p) vJ (z, p)#zFI � (z, p) (3.10)
where FI �"F(F�) and

BI (z, p)" �
� �� �

�

��

e�	�� z�	����
B
�
(x) dx (3.11)

After a rearrangement we "nd that

vJ (z, p)"XI (z, p)FI �(z, p), (3.12)
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with XI (z, p)"z/HI (z, p) and

HI (z, p)"(1!z) [I
�
!1#gA]#g[BI (z, p)!BI (1, 0)]. (3.13)

We shall now establish that the long-time behavior of u
�
(x) is governed

by the zeros of HI (z, p), that is, by solutions to the characteristic
equation HI (z, p)"0. First note that one solution to this equation is
z"1 at p"0. This re#ects invariance of the system under uniform
phase-shifts ¹

�
(x)P¹

�
(x)#	. We shall exclude this case by requiring

that the initial data � involves non-uniform perturbations. If we de"ne

r
�
"sup��z� �HI (z, p)"0, p3�, z91�, (3.14)

then we can introduce the inverse double transform

X
�
(x)"F�� (XI ) (z, p),�

�

dz
2
i �

�

��

dp
2


e	��
z����

HI (z, p)
(3.15)

whereC"�z3� � �z�'min�r
�
, 1�� and n#kx'0. We also de"ne the

convolution u*v of two exponentially bounded sets of functions
u
�
(x), v

�
(x), integer n, to be

[u * v]�
(x)" �

� �� �
�

��

u
�
(x!x�) v

���
(x�)

�� (m#k (x!x�))�(n!m#kx�) dx� (3.16)

such that F(u * v)"F(u) F(v). We can then use this convolution
theorem for F to invert equation (3.12) and thus obtain the solution

u
�
(x; �)"[X*F

�]
�
(x) (3.17)

for n#kx'0. It follows from equations (3.14), (3.15), (3.17) and the
boundedness of the initial data �

�
(x) that (for non-uniform initial data)

�u
�
(x;�) �(Kr����, n#kx'0, r'r

�
. (3.18)

Hence, lim
���

u
�
(x;�)"0 provided that all but one of the zeros of

HI (z, p) lie inside the unit circle.
Returning to the nonlinear "ring time map (3.1), we can collect

together the above results in the form of a stability theorem:

Theorem 1. Consider a traveling wave solution of wavenumber k and
collective period ¹ satisfying the phase-locking equation (2.5). Suppose
that we decompose the set of ,ring times T of an IF network accord-
ing to T�"�¹

�
(x), (x, m)3D

�
� where D

�
"�(x, m), x3�, m3� �
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m#kx'0� and D
�

"�(x, m), x3�, m3� �m#kx60�. ¸et T�

represent the solution to the Cauchy problem speci,ed by the initial data
T� (see Fig. 6). Set �

�
(x)"¹

�
(x)!(m#kx)¹.=e shall say that the

traveling wave solution is (locally) stable i+ for all �'0 there exists
	'0 such that if sup���

�
(x) �, (x, m)3D

�
�(	 then sup���

�
(x)�,

(x, m)3D
�

�(�. ¹he solution is said to be asymptotically stable if it is
locally stable and there exists 	'0 such that if sup���

�
(x) � ,

(x, m)3D
�
�(	 then lim

���
sup���

�
(x) �, x3��"0. (=e exclude uni-

form initial data with respect to which a solution is always neutrally
stable.) =e then have the following stability result: a traveling wave
solution is (locally) asymptotically stable if the solutions of the character-
istic equation

(z!1) [I
�
!1#gA]"g[BI (z, p)!BI (1, 0)], (3.19)

satisfy �z�(1 for all p3� (except for one solution z"1 at p"0). ¹he
coe.cient A is de,ned by equation (3.3) whilst BI (z, p) is given by
equations (3.11) and (3.4).

Note that the characteristic equations (3.19) has an in"nite number
of solutions for z. There are two distinct reasons for this. First, we are
representing neural tissue as a one-dimensional continuum so that the
linearized "ring time map (3.2) has a continuous spectrum. (There is no
discrete spectrum for this particular system.) This is re#ected by the
fact that the solutions z depend on the real variable p. Second, for
a given p, there may still be an in"nite (but countable) set of solutions
due to the fact that the linear map (3.2) is of in"nite-order with respect
to the discrete time index n. Therefore, in general, it is a non-trivial
problem determining the stability of a traveling wave solution. How-
ever, considerable simpli"cation occurs in the long-wavelength limit in
the excitable regime, which we shall discuss in Sect. 4. We end this
section by brie#y discussing another useful limiting case, namely, weak
coupling in the oscillatory regime.

The stability of networks of IF neurons operating in the oscillatory
regime has been studied extensively elsewhere so we shall only brie#y
describe some of the main results here (Bresslo! and Coombes
1998a}c, 1999). For I

�
'1 and su$ciently small g, solutions to equa-

tion (3.19) in the complex z-plane will either be in a neighborhood of
the real solution z"1 or in a neighborhood of one of the poles of
BI (z, p). It can be shown that the latter all lie inside the unit circle so that
the stability of the traveling wave state will be determined by expand-
ing (3.19) in powers of g such that z"1#O(g):

(z!1) (I
�
!1)"g [BI (1, p)!BI (1, 0)] �

����
#O(g�) (3.20)
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with ¹
�
"ln[(I

�
/(I

�
!1))]. Comparison of equations (3.4) and (3.11)

with the de"nition of the interaction function K
�
(�) in equation (2.6)

shows that to "rst order in g, equation (3.20) reduces to

(z!1) (I
�
!1)"g �

�

��

=(x) [e�	��!1]K�
��

(kx) dx. (3.21)

Hence, the traveling wave will be asymptotically stable if all solutions
of (3.21) satisfy Re z(p)(0 for all p90. For the sake of illustration,
consider the particular case of the synchronous solution k"0. The
condition for asymptotic stability then reduces to

[=I (p)!=I (0)]K�
��

(0)(0 (3.22)

for all p90. Suppose that the inequality (3.22) does hold. This implies
that for su$ciently small coupling g all non-zero solutions � of equa-
tion (3.19) have a negative real part. As the coupling is increased one or
more complex conjugate pairs of eigenvalues � may cross the imagi-
nary axis signalling the onset of a Hopf bifurcation in the "ring
times. It turns out that this provides an important mechanism for the
desynchronization of integrate-and-"re neurons with strong synaptic
coupling, and leads to the formation of non-phase-locked states char-
acterized by periodic or quasiperiodic variations of the inter-spike
intervals (ISIs) on closed orbits. Such states can support a number of
di!erent forms of complex dynamics including periodically bursting
spike trains and the formation of spatially periodic activity patterns
(Bresslo! and Coombes 1998b,c). Extensions to the case of oscillatory
networks with dendritic interactions have also been studied (Bresslo!
1999).

One "nal observation is that the stability condition (3.22) can also
be derived by carrying out a phase reduction of the IF model in the
weak coupling regime (Bresslo! and Coombes 1999). This involves
a nonlinear transformation from the original dynamical variables
<(x, t) of equation (2.1) to a set of phase variables �(x, t) that are
slowly varying functions of time (��/�t"O(g)). After averaging the
evolution equation for � over a single natural period ¹

�
and perform-

ing a rescaling of time, one obtains the phase equation

�� (x, t)
�t

"g �
�

��

= (x!x�)K
��

[� (x�, t)!�(x, t)] dx�#O(g�).

(3.23)

Linearizing equation (3.23) about the traveling wave solution
�(x, t)"�t#kx yields a linear phase equation whose characteristic
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equation is precisely (3.21). Note that the existence and stability
of traveling waves in a generalized version of the phase-equation
(3.23), which takes into account space-dependent delays, has
been studied elsewhere (Crook et al. 1997; Bresslo! and Coombes
1997).

4. Stability of pulses in the excitable regime

Consider a single pulse propagating in the excitable regime I
�
(1,

with the neuron at position x "ring at time ¹(x)"x/c
�
. We shall "rst

determine the local stability of such a solution directly from equation
(2.1), and then indicate how this relates to the stability analysis of
Sect. 3 in the long-wavelength limit. Suppose that the "ring times are
perturbed such that ¹ (x)"x/c

�
#u (x) with u (x)"�(x) for x60 and

�(x) a prescribed, bounded function on (!R, 0]. Asymptotic stability
then corresponds to the condition u(x)P0 as xPR for arbitrary
non-uniform initial data �(x). Integrating equation (2.1) over the
interval (!R, ¹(x)] gives

e������	�
[1!I
�
]"g �

������	�


��

e
 �
�

��

=(x!x�)

�J(t!x�/c
�
!u(x�)) dx�dt. (4.1)

Expanding equation (4.1) to "rst order in u (x) and imposing equation
(2.13) leads to the linear integral equation

�
�

��

e
 �
�

��

=(x!x�) J�(t#[x!x�]/c
�
) [u(x)!u(x�)] dx�dt"0.

(4.2)

Substitution of a solution of the form u(x)"e	� into equation (4.2)
yields the characteristic equation

�
�

��

e
 �
�

��

=(x)J�(t#x/c
�
) [e�	�!1] dxdt"0. (4.3)

Asymptotic stability then holds if all non-zero solutions � of equation
(4.3) have negative real part. Such solutions depend indirectly on the
coupling g via the speed c

�
, which satis"es equation (2.13). Equation

(4.3) can also be derived by taking a long-wavelength limit of the
characteristic equation (3.19) for traveling waves. That is, we set
z"e	�, multiply both sides of equation (3.19) by e��, and take the
limit ¹PR with c

�
"(k¹)�� "xed. More speci"cally, equation (3.4)
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shows that

lim
���

B
�
(x)"	

����
= (x) �

�

��

e
J�(t#x/c
�
) dt. (4.4)

It then follows from equation (3.11) and (4.4) that

lim
���

e��BI (e	�, p)"�
�

��
�

�

��

e�	���	����=(x) e
J�(t#x/c
�
) dtdx.

(4.5)

Since lim
���

e��[I
�
!1#gA]"0, we "nd that equation (3.19)

reduces to equation (4.3) after setting �P�/c
�
#ip.

We shall now use the characteristic equation (4.3) to determine the
stability of a solitary pulse. Using the fact that J (t)"0 for t60, we
"rst rewrite equation (4.3) in the form

�
�

�

[e�	�!1]= (x) f (x/c
�
) dx"0, (4.6)

where

f (�)"�
�

�

e�	��

 J�(t) dt. (4.7)

Let �"a#ib and expand equation (4.6) into real and imaginary parts
to obtain the pair of equations

H(a, b),�
�

�

[e��� cos(bx)!1]=(x) f (x/c
�
) dx"0, (4.8)

G(a, b),�
�

�

e��� sin(bx)= (x) f (x/c
�
) dx"0. (4.9)

The integrals in equations (4.8) and (4.9) can be evaluated along
identical lines to the analysis of equation (2.13). That is, we substitute
equations (2.10), (2.3) and (4.7) into (4.8) and (4.9), and then integrate
over x and t to obtain a pair of contour integrals. Exploiting the
analytical properties of JI (�) we "nd that

H (a, b)"ReP(c
�
#a#ib)!P(c

�
) (4.10)

G(a, b)"!ImP(c
�
#a#ib) (4.11)

where

P(z)" z
(1#z)

JI (!iz) (4.12)

Note that P(z) is real when z is real, and P(z)P0 as �z�PR.
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Suppose that J (�) is given by the synaptic delay kernel of equation
(2.16). We then have the following theorem concerning the asymptotic
stability of solitary waves:

Theorem 2. ¸et C
�
and C

�
denote, respectively, the fast and slow

solution branches c
�
"c

�
(g), g7g


, of the self-consistency condition

(2.13) for the velocity of a solitary pulse with synaptic delay kernel (2.16),
see Fig. 1. Here g


is the critical coupling for the existence of a solitary

wave.=e then have the following stability results: (i) ¹he branch C
�
is

unstable for all �
�
and . (ii) ¹he branchC

�
is stable for all  in the case of

zero axonal delays (�
�
"0). (iii) For non-zero delays and su.ciently fast

synapses (large ), there exists a Hopf bifurcation point g
�
such that c

�
(g)

is stable (unstable) for g'g
�
(g


6g(g

�
).

Proof. We "rst investigate the stability of the lower branch C
�
.

Di!erentiation of equations (4.8) and (4.9) with respect to a and b gives

�H(a, 0)
�a

"!�G(a, b)
�b �

���

"!�
�

�

xe���=(x) f (x/c
�
) dx (4.13)

whilst di!erentiation of equation (2.13) with respect to g yields

dg
dc

�

"g�
c�
�
�

�

�

x=(x) f (x/c
�
) dx (4.14)

Comparison of equations (4.13) and (4.14) shows that �H(a, 0)/
�a�

���
'0 when dg/dc

�
(0, that is, when c

�
3C

�
. Since lim

���
H(a, 0),

!P(c
�
)(0, it follows that H (a, 0) must cross the positive a-axis at

least once when c
�
3C

�
. This implies that H(a, 0)"0 has at least one

solution for a'0 and, hence, that the branch C
�

is unstable.
We now determine the stability of the upper branch C

�
. The delay

kernel J (�) of equation (2.16) is unimodal with a maximum at
�
���

"�
�
#��. Hence, the function f (�) of equation (4.7) is also

unimodal with a maximum at �"�
���

such that f (�) '0 for 0(�(
�
���

. Since=(x) is a monotonically decreasing function of x, it follows
from equation (4.8) thatH (a, b)(0 for all a'0 and b70 when c

�
�
���

is su$ciently large. In other words, the branch C
�

is stable in the
large-c

�
limit. It can also be established that H(a, 0)"0 does not have

any positive de"nite solutions when c
�
3C

�
so that the upper branch is

stable with respect to static bifurcations. Therefore, we investigate
possible (Hopf ) instabilities of the upper branch by reducing the
velocity c

�
for "xed , �

�
and searching for solutions a"0, b90 of

equations (4.8) and (4.9). Let c
�
denote the largest velocity for which

such a solution exists. Also set c

"c

�
(g


), which is the critical velocity

at which the two solution branches C
�

meet. In Fig. 7, we plot the
critical velocities c


() and c

�
() as a function of  and various delays.
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Fig. 7. Plot of critical velocities c

() and c

�
() as a function of the inverse rise-time

 and various axonal delays �
�
. (See text for details).

For a given delay �
�
, c

�
3C

�
if c

�
'c


() and c

�
3C

�
if c

�
(c


(). It

can be seen from Fig. 7 that if �
�
90 then there exists a critical inverse

rise-time 
�

such that c

()'c

�
() for (

�
and c

�
()'c


() for

'
�
. The crossover points in the particular cases �

�
"1 and �

�
"0.5

are labelled by A and B respectively. Suppose that we now reduce c
�
or,

equivalently g, along the branch C
�

for "xed  and �
�
'0. For '

�
,

we "nd that a Hopf bifurcation occurs at a critical coupling g
�
such

that c
�
(g

�
)"c

�
() and solitary waves are unstable for all c

�
(c

�
(). On

the other hand, if (
�
then the branch C

�
remains stable until it

merges with the unstable lower branch C
�

at c
�
"c


(). This com-

pletes the proof.
Theorem 2 is illustrated in Fig. 8, where we plotH (0, b) and G(0, b)

as a function of b for �
�
"1, "4 and various velocities c

�
. The

corresponding variation of H (a, 0) with a is also shown. It can be seen
that H(a, 0) has a zero on the positive a-axis when c

�
(c


+0.4, and

that there exists a Hopf bifurcation point at c
�
+0.8. The fact that

axonal delays can induce a Hopf instability for solitary pulses has also
been observed by Ermentrout and Golomb (1998). A number of com-
ments are in order.

1. The proof of Theorem 2 holds for any monotonically decreasing,
positive symmetric weight kernel = (x). For example, rather than
the exponential function (2.3), one can equally well take = (x)"
e�������/�2
��, or = (x)"�(�!�x�)/2�.
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Fig. 8. Plot of F (b)"H(0, b) (solid curves) and F (b)"G(0, b) (dashed curves) as
a function of b for �

�
"1, "4 and various velocities: (a) c

�
"2.0, (b) c

�
"0.8,

(c) c
�
"0.3. The corresponding variation of H (a, 0) with a is shown in Fig. 8d. The

functionH(a, 0) develops a zero on the positive a-axis as c
�
passes through the critical

point c

+0.5 from the branchC

�
to C

�
. There also exists a Hopf bifurcation point on

the branch C
�

at c
�
+0.8.

2. Linear stability analysis is itself insu$cient to determine (i) whether
the Hopf bifurcation is subcritical or supercritical and (ii) the new
state generated by the instability.

3. The results of Theorem 2 can be used to conjecture about the
stability properties of "nite wavelength traveling waves. More spe-
ci"cally, in the case of the dispersion curves shown in Fig. 2 with
"2 and �

�
"0, the stability (instability) of the corresponding fast

(slow) solitary wave solutions suggests that dispersion curve I is
stable, whereas II and III are unstable, at least for su$ciently small k.
A direct analysis of their stability properties, both in terms of
solutions of the full characteristic equation (3.19) and through
numerical simulations, is currently under investigation.

4. Theorem 2 can be extended to the case of dendritic interactions with
the delay kernel J (�) now given by the Green's function G(�

�
, t) of

a semi-in"nite dendritic cable, see equation (2.20). Again denote the
fast and slow solution branches by C

�
and C

�
respectively, see

Fig. 3. Then C
�

is unstable and C
�

stable for all �
�
; the upper

branch cannot destabilize via a Hopf bifurcation unless additional
axonal delays are included. It is also possible to take into account
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active membrane properties under the assumption that variations of
the dendritic membrane potential are small so that the channel
kinetics can be linearized along the lines developed by Koch (1984).
The resulting membrane impedance of the dendrites displays
resonant-like behavior, which has recently been shown to induce
resonant-like synchronization and bursting e!ects in networks of
oscillatory IF neurons (Bresslo! 1999). We have also found that
active dendrites can induce Hopf instabilities for solitary pulses in
excitable networks.

5. Two-dimensional networks

One of the interesting features of two-dimensional excitable media is
that it is possible to have waves with non-trivial geometric structures
such as spirals and target patterns (Tyson and Keener 1988). A number
of recent numerical studies have shown that such waves can also occur
in two-dimensional networks of integrate-and-"re neurons (Chu et al.
1994; Horn and Opper 1997; Usher et al. 1995; Kistler et al. 1998). In
this "nal section, we indicate how to extend our analysis of traveling
waves in one dimension to the case of plane waves in two-dimensional
networks, and relate our results to recent work by Kistler et al. (1998)
on the so-called spike response model (Gerstner 1995). The case of
more complex solutions will be the subject of future work.

A two-dimensional sheet of IF neurons with synaptic coupling
evolves according to the equation

�<(r, t)
�t

"!<(r, t)#g ���

=(�r!r��) �
�

�

J (�)E(r�, t!�) d�d�r�,

(5.1)

where r"(x, y) and E(r, t)"�
� �� 	(t!¹

�
(r)) is the output spike

train of the neuron at r. Equation (5.1) is supplemented by the condi-
tion that <(r, t) is reset to zero whenever the neuron at r reaches
threshold h"1. For simplicity, we have set the external bias I

�
to zero

(so that the network is operating in the excitable regime). A plane wave
solution is de"ned according to ¹

�
(r)"(m#k . r)¹ where ¹"¹(k) is

the self-consistent period of oscillations and k"(k
�
, k

�
) is the wavevec-

tor. The speed of the wave is c"1/(¹�k�). The collective period ¹ is
determined from a two-dimensional version of the phase-locking equa-
tion (2.5),

1"g ���

= (�r�)K
�
(k . r) d�r. (5.2)
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Similarly, a solitary pulse propagating with speed c
�

in the direction
n; corresponds to a solution in which each neuron "res once with
¹(r)"n; . r/c

�
. The speed c

�
satis"es (cf. equation (2.13))

1"g ��� �
�

��

= (�r�) e
J (t!n; . r/c
�
) dtd�r. (5.3)

The stability of plane waves and pulses can be analyzed along
identical lines to Sects. 3 and 4. For the sake of illustration, consider
a pulse propagating in the x-direction with speed c

�
so that n;"(1, 0).

By considering perturbations of the "ring times, ¹(r)"x/c
�
#u (r), we

obtain a linear integral equation for u (r) analogous to equation (4.2).
This has solutions of the form u(r)"e	�e	p .r with p"(p

�
, p

�
) and

� satisfying the characteristic equation (see also equation (4.6))

�
�

��
�

�

�

= (�r�) [e�	�e�	p .r!1] f (x/c
�
) dxdy"0. (5.4)

In equation (5.4), we can restrict � to be real (due to the presence of the
factor e	p .r) so that the condition for asymptotic stability is �(0 for all
p90. Similarly, one can derive a two-dimensional version of the
characteristic equation (3.19) for traveling plane waves by considering
perturbations ¹

�
(r)"(m#kx)¹#u

�
(r) with u

�
(r)�z�	����
e�	p . r.

It is instructive to compare our stability analysis based on the
characteristic equation of the linearized "ring time map to the results
of Kistler et al. (1998). They considered traveling waves and pulses in
a network of excitable neurons based on the spike response model
(Gerstner 1995). The spike response model is essentially an integrated
version of the IF model for which

<(r, t)" �
� ��

�(t!¹
�
(r))#g ���

�
� ��

= (�r!r��) � (t!¹
�
(r�)) d�r�

(5.5)

for all t'0 with

�(t)"!e�
� (t), �(t)"�



�

e�	
�

 J (t�) dt�. (5.6)

Reset is taken care of by the "rst term on the right-hand side of
equation (5.5). Additional aspects of refractoriness could be incorpo-
rated into equation (5.5) by appropriate generalizations of �(t). These
would be particularly important in the case of high frequency traveling
waves (small collective period ¹), since neurons that had recently "red
would still be in their refractory phase when the next wave front
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arrived. Plane wave solutions are obtained by imposing the appro-
priate phase-locking ansatz for the "ring times in equation (5.5) and
setting <(r, ¹

�
(r))"1. The resulting equation for the collective period

¹ is given by (5.2), which can then be used to generate dispersion
curves. Note that, in contrast to Figs. 1 and 2 of the IF model studied in
Sect. 2, only a single dispersion curve �"� (k) was found by Kistler et
al. (1998) for each set of parameter values, and this corresponded to the
continuation of a single long-wavelength solution. The origin of this
discrepancy is that Kistler et al. (1998) took the activity function E(r, t)
to be of the form E(r, t)"�

� �� 	(c[t!(x#m)¹]) rather than
E(r, t)"�

� �� 	 (t!(kx#m)¹) as in our own work. This introduces
an additional factor of 1/c on the right-hand side of equations (5.2) and
(5.5), which leads to a corresponding modi"cation in the dispersion
curves. However, the biophysical interpretation of E(r, t) as an output
spike train supports the version adopted by ourselves. It is also the
form used by Ermentrout (1998).

In order to determine the stability of a plane wave in the spike
response model, Kistler et al. (1998) considered the e!ect of perturbing
a single wavefront. That is, they took ¹

�
(r)"(n#kx) ¹!a	

���
sin(p

�
y) for x(0 and then used equation (5.4) to calculate the change

of potential at x"0 to "rst order in the amplitude a: 	<(y)"
<(0, y, ¹

�
(0, y))!<(0, 0, 0). Their condition for local stability was

	<(
/2p
�
)(0, i.e. neurons that have previously "red too early have

a reduced potential. For example, in the particular case of a long-
wavelength solitary pulse this leads to the condition

	< (
/2p
�
)"ag �

�

��
�

�

�

= (�r�) [cos(p
�
y)!1] f (x/c

�
) dxdy(0,

(5.7)

where we have used the relation ��(t)"f (t), see equations (4.8) and (5.6).
Comparison of equation (5.7) with the characteristic equation (5.4)
shows that the stability criterion of Kistler et al. (1998) does not
guarantee asymptotic stability as de"ned in this paper. Moreover,
equation (5.7) does not make sense when the network is restricted to be
one-dimensional by setting= (�r�)"= (x) 	(y), say. It is also clear that
in the case of "nite-wavelength plane waves, restricting perturbations
of initial data to a single wavefront is a much more restrictive class of
Cauchy problem than considered in Fig. 6 and Theorem 1. In particu-
lar, it does not generate the full spectrum of the linearized "ring time
map as determined by the solutions of the characteristic equation
(3.19). As we have pointed out in Sect. 3, details concerning this
spectrum are crucial for understanding desynchronization e!ects in the
strong coupling regime.
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