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Fast Evaluation of Fluctuations in Biochemical
Networks With the Linear Noise Approximation
Johan Elf1 and Måns Ehrenberg1

Department of Cell & Molecular Biology, Uppsala University, BMC, 751 24 Uppsala, Sweden

Biochemical networks in single cells can display large fluctuations in molecule numbers, making mesoscopic
approaches necessary for correct system descriptions. We present a general method that allows rapid characterization
of the stochastic properties of intracellular networks. The starting point is a macroscopic description that identifies
the system’s elementary reactions in terms of rate laws and stoichiometries. From this formulation follows directly
the stationary solution of the linear noise approximation (LNA) of the Master equation for all the components in
the network. The method complements bifurcation studies of the system’s parameter dependence by providing
estimates of sizes, correlations, and time scales of stochastic fluctuations. We describe how the LNA can give precise
system descriptions also near macroscopic instabilities by suitable variable changes and elimination of fast variables.

[Supplemental material is available online at www.genome.org.]

A key element in systems biology is the design of mathematical
models that faithfully describe the dynamics of intracellular
chemical networks. In general, chemical reactions in single cells
occur far from thermodynamic equilibrium (Keizer 1987), and
the molecule copy numbers can sometimes be very small (Gup-
tasarama 1995). Both these properties make it mandatory to ana-
lyze the stochastic behavior of chemical reactions in living sys-
tems. Most people agree with the statement that if the average
number of molecules of a certain type in a cell is very small, then
the relative size of the copy number fluctuations can be quite
significant. This intuition is often backed up with the assertion,
made famous by Erwin Schrödinger (1944) in his book, What Is
Life?, that if the average copy number is n, then the size of the
fluctuations around it must be √ n (Poisson statistics). This would
mean that if the average number (n) of molecules of a certain
kind in an Escherichia coli cell is 100 or more (corresponding to a
concentration >0.2 µM; Donachie and Robinson 1987), then the
relative fluctuations ( √ n/n = 1/ √ n) would be 10% or less. Accord-
ingly, when there are more than, say, 1000 molecules in the cell,
then the relative fluctuations would be only 3% and therefore
insignificant in most instances. However, intracellular chemical
reactions take place far from equilibrium. Therefore, Poisson sta-
tistics may not apply, and the stochastic fluctuations around an
average of n molecules can be much larger as well as much
smaller than √ n (Paulsson and Ehrenberg 2001; Elf et al. 2003b).
Because Poisson statistics cannot be assumed to be valid for living
systems, characterization of the stochastic properties of intracel-
lular networks is nontrivial. The purpose of this work is to outline
a method that allows for such a characterization in a straightfor-
ward and simple way.

Chemical reactions in the test tube are normally described
macroscopically by (1) applying the law of mass action (Cornish-
Bowden 1995; Fersht 1998) and (2) neglecting random deviations
from the average number of molecules during the time evolution
of the concentrations involved in the studied reactions. Such
macroscopic descriptions have in the past also been used to de-
scribe intracellular chemical reactions with some notable excep-

tions in which stochastic reasoning has been applied (e.g., Berg
1978). More recently, however, the urgent need to take stochastic
aspects of chemical reactions in single cells into account has been
realized, and this insight has resulted in a burst of publications
dealing experimentally as well as theoretically with the intrinsi-
cally random nature of gene expression (Becskei and Serrano
2000; Kepler and Elston 2001; Paulsson and Ehrenberg 2001;
Thattai and van Oudenaarden 2001; Elowitz et al. 2002; Ozbudak
et al. 2002). The focus on gene expression is explained by the fact
that the copy number of individual messenger RNAs can often be
very small, in particular in bacterial cells like E. coli, and this
frequently leads to highly significant relative fluctuations in mes-
senger RNA copy numbers and, sometimes, also to large fluctua-
tions in protein levels.

To deal with the stochastic nature of these reactions, one
has to abandon the macroscopic perspective of chemical reac-
tions, where fluctuations are neglected, in favor of mesoscopic
approaches (van Kampen 1997). One technique is to solve the
chemical Master equation, which describes the time evolution of
the probability distribution for all the different molecular com-
ponents in the system (van Kampen 1997), either analytically or
numerically. Alternatively, one can simulate the molecule num-
ber trajectories for such systems, using Monte Carlo methods,
implemented by, for example, the Gillespie algorithm (Gillespie
1976, 1977). These well-established approaches are based on an
assumption of homogeneous probability distributions in space,
corresponding to much faster diffusion of all components
throughout the system than the rates of all chemical reactions
(van Kampen 1997). It is likely that this assumption will turn out
to be untenable for many intracellular reactions, and attempts
have been made to develop Monte Carlo methods to simulate
space–time trajectories for stochastic reaction-diffusion-coupled
systems (Stundzia and Lumsden 1996). Recently, we developed
an efficient algorithm (Elf et al. 2003a) for such simulations, built
on the Gillespie and the next reaction algorithms (Gibson and
Bruck 2000), but in the present work we assume spatial homo-
geneity throughout.

Large relative fluctuations of copy numbers characterizes
manymRNA levels in bacterial cells, but there are also other cases
in which noise becomes highly significant, also when the average
molecule copy numbers are very large. One example is systems
with a continuum of macroscopic stationary states, like a limit
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cycle attractor (Barkai and Leibler 2000; Qian et al. 2002). An-
other example is systems that operate near critical points
(Dogterom and Leibler 1993; Elf et al. 2003b). In all these cases,
relaxation to a steady-state solution is slow or a steady state may
not exist at all, meaning that very large and slowly changing
fluctuations in component copy numbers can emerge.

No simple methods for the mesoscopic analysis of such sys-
tems exist today, and numerical approaches are often difficult to
carry out because of the high computational demands normally
associated with this type of problem. Monte Carlo methods, such
as the Gillespie algorithm (Gillespie 1977), are useful only for
very limited sets of parameters, because a complete simulation
must be carried out for every chosen set of parameter values.

Here, we present a general method, based on the linear noise
approximation (LNA; van Kampen 1997), that allows rapid char-
acterization of the stochastic properties of intracellular networks
over large parameter regions. Our analysis is useful for initial
characterization of fluctuations in all kinds of intracellular reac-
tions. We describe the method qualitatively and also give four
simple, and yet realistic, examples that clarify its principles and
demonstrate its applicability. The examples highlight: (1) the
importance of taking stoichiometric relations into account in
mesoscopic descriptions, although they enter macroscopic mod-
els in a trivial way; (2) the fundamental connection between, on
one hand, the sensitivity of a system response to a change in a
flow and, on the other, the relative size of random fluctuations;
(3) coupled fluctuations in metabolic networks; and (4) how the
LNA can be made more accurate close to near-critical points by
elimination of fast variables (Gardiner 1985).

All examples are chosen so that analytical approximations
of solutions of the Master equation can be obtained, and these
approximations are then used to clarify the origin of fluctuations
in each case and to trace the effects of different parameters on the
stochastic properties of the system.

How the present theory can be applied to arbitrarily large
biochemical networks is described in the Discussion.

RESULTS

The Linear Noise Approximation
The chemical Master equation describes how the joint probabil-
ity distribution of the copy numbers of different chemical species
evolve in time in a spatially homogenous chemical system (van
Kampen 1997). As shown in the Methods section, the Master
equation can be written directly from the rate constants and
stoichiometries of all the elementary reactions of a chemical sys-
tem, but neither analytical nor numerical solutions are in general
available. Fortunately, the Master equation can often be simpli-
fied in a linear noise approximation (LNA). This is obtained
through van Kampen’s �-expansion of the Master equation (van
Kampen 1997). In this formulation, the Master equation allows
for analytical solutions that are locally valid close to macroscopic
trajectories or stationary points of the system. These solutions
often give very accurate descriptions of the size of molecule num-
ber fluctuations and how they are correlated. They can therefore
be used for rapid, initial characterizations of the stochastic prop-
erties of chemical systems as guidelines for decisions about
whether the fluctuations are so large that mesoscopic consider-
ations are necessary or whether a macroscopic approach will suf-
fice. The �-expansion means that the Master equation is Taylor-
expanded near macroscopic system trajectories or stationary so-
lutions in powers of 1/ √ �, where � is the system volume. When
the Master equation is approximated near a macroscopically
stable stationary solution, terms of first order in 1/ √ � give the
macroscopic rate equations, and terms of second order in 1/ √ �

give the Linear Noise Approximation (LNA). The rationale be-

hind this approach is that for constant average concentrations,
relative fluctuations will tend to decrease with the inverse of the
square root of the volume. The LNA is therefore very accurate for
systems for which the local linearization of the chemical rate
laws is valid for component copy numbers that are frequently
reached by fluctuations away from the stationary state. This is
true when fluctuations are sufficiently small in relation to the
component means. However, we have found that the LNA can
give very good estimates of fluctuations in molecule numbers,
also when they are larger than the corresponding means, and,
furthermore, that the technique of separation of fast variables
(see below) can be used to improve further the performance of
the LNA.

Here, the LNA is derived for the stationary state of a general
system of chemical reactions (Supplemental material available
online at www.genome.org; Methods). The correlation matrix, C,
containing the variances and covariances for the fluctuations of
all the components in the system, is calculated from the linear-
ized macroscopic rate equations near the stationary point as de-
scribed by the Jacobian matrix, A, and the stoichiometries of the
reactions and their rates as described by the diffusion matrix, D.
The relation between the matrix C, containing information
about the fluctuations, and the macroscopic matrices A and D is
given by a Lyapunov matrix equation, equation 32.

AC + CAT + D = 0 ( 1 )

How to calculate the A and D matrices from the chemical reac-
tions and how to solve the equation for C is described in Meth-
ods. Here we focus on a few special cases in which the LNA is used
to understand the origin of noise in biochemical processes.

The first example is a system that contains only one type of
molecule, X. These molecules are synthesized and consumed by
two different reactions with rate laws f1(�) and f2(�), respectively.
The reaction rates are given in molar concentration per second
and � is the molar concentration of X. The first reaction adds n
molecules to X in a single event, and the second reaction re-
moves m molecules from X in a single event:

� →
f1���

nX

mX →
f2���

� ( 2 )

The macroscopic rate equation becomes

d�

dt
= nf1 ��� − mf2 ��� ( 3 )

When equation 3 is linearized around the steady state, �, the
equation for the deviation �� from steady state is

d��

dt
= �nf �1 ��� − mf �2 ���� �� = ��� ( 4 )

�

� is the compounded rate constant (in units of sec�1) by which
the system relaxes back to steady state after a perturbation. From
equation 37 in Methods, the LNA approximation C of the vari-
ance �X

2 for the number of X molecules at the steady state is

C = − �
�n2 + m2� f1 ���

2�
( 5 )

The variance �X
2 normalized to the average number ( 〈 X〉 ) of mol-

ecules is often called the Fano-factor (Fano 1947). Open systems
at thermodynamic equilibrium obey Poisson statistics, and for
those the Fano-factor is always 1. For the creation–elimination
scheme in equation 2, the Fano-factor is approximated by
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�X
2

�X�
≈

C

��
= −

f1 ���

�

1
�

�n2 + m2�

2
( 6 )

To obtain this expression, we have also approximated 〈 X〉 with
the macroscopic steady-state value �� of the number of X mol-
ecules in the steady state. The numerical magnitude of the Fano-
factor is primarily determined by the ratio between the rate
f1(�)/� of turnover of all the molecules in the X-pool and the rate
of relaxation �. The Fano-factor is also shaped by the creation (n)
and elimination (m) stoichiometries. Below we use equation 6 to
inspect the role of the stoichiometries (Example 1) and the role of
the relaxation rate � (Example 2) for the stochastic properties of
the scheme in equation 2.

Example 1: The Mesoscopic Importance of
Stoichiometries in Chemical Reactions
At the macroscopic description level, one can often compensate
for a change in the stoichiometric order of a reaction by a change
in a rate constant, so that the dynamics of the reaction remains
unchanged. At the mesoscopic level, this cannot be done.

To illustrate the role of the stoichiometries, we compare two
different reaction systems (A and B) with different reaction stoi-
chometries:

A�� →
k1

nX

2X →
k2�2

�

B� � →
nk1

X

2X →
k2�2

�

( 7 )

Both systems have identical macroscopic differential equations
and steady-state values:

d�

dt
= nk1 − 2k2�2 ⇒ � = �nk1�2k2 ( 8 )

From equation 5, the following approximations for the variances
in the two cases are obtained:

CA =
�n + 2�

4
�� CB =

3
4

��. ( 9 )

The Fano-factors (equation 6) for systems A and B are (n + 2)/4
and 3/4, respectively. For system A, the Fano-factor increases lin-
early with the stoichiometry of the creation reaction, whereas the
corresponding increase in the rate constant (but not the stoichi-
ometry) for system B leaves the Fano-factor unchanged. This ex-
ample is described in more detail and with general stoichiom-
etries in the Supplemental material.

Example 2: Zero-Order Sensitivity and the Size
of Mesoscopic Fluctuations
Goldbeter and Koshland Jr. (1981) pointed out that the extent of
modification in certain enzymatically catalyzed modification–
demodification reactions can be ultrasensitive to the amount of
either the modifying or the demodifying enzyme. It was also
shown (Berg et al. 2000) that such systems can display large fluc-
tuations, which will tend to attenuate the macroscopically pre-
dicted ultrasensitivity.

We exemplify this by treating the case with a protein that is
converted from its unmodified state X1 to its modified state X2 by
one enzyme and back to X1 from X2 by another. With a constant
total concentration �0 of modified and unmodified target con-

centrations, the state of the system is completely described by the
concentration �1 of X1, because the concentration �2 of X2 is
given by the conservation relation �0 = �1 + �2. The reaction
scheme is

X1
→←
f2��1�

f1��1�

X2 ( 10 )

The macroscopic rates of modification and demodification are
f1(�1) and f2(�1), respectively. The modifying enzymes obey Mi-
chaelis-Menten kinetics, and when steady-state relations for their
internal states are rapidly established (see discussion about el-
ementary complex reactions in Methods), the rate equations are
given by

f1��1� =
Vmax1�1

Km + �1
f2��1� =

Vmax2 ��0 − �1�

Km + ��0 − �1�
( 11 )

The same Km value is assumed for both enzymes, and the frac-
tions of enzyme-bound target molecules are assumed to be neg-
ligible. The macroscopic dynamics is thus given by

d�1

dt
= f2��1� − f1��1� ( 12 )

with the steady-state condition

f1��1� = f2��1�. ( 13 )

The macroscopic stationary value ��1 is the LNA estimate of the
average number of X1 molecules. In Figure 1A, this estimate is
compared with the correct value as calculated directly from the
Master equation, for different values of Vmax2. The sensitivity
amplification (logarithmic gain; Savageau 1976) of the system is

a�1Vmax2
=

d�1��1

dVmax2�Vmax2
�

�

( 14 )

The sensitivity amplification is the percentage change in the con-
centration of �1 in response to the percentage change in Vmax2.
The system can be said to be ultrasensitive if | a�1Vmax1| > 1 (Gold-
beter and Koshland Jr. 1982). If �0 � Km, both enzymes are close
to saturation when Vmax1 = Vmax2 and the reaction displays ul-
trasensitivity (Goldbeter and Koshland Jr. 1981), because of zero-
order kinetics in both the modification and demodification re-
actions. Zero-order kinetics means that the flow in either direc-
tion is insensitive to the concentrations of modified and
unmodified substrates, so that the “force” that restores the sys-
tem to its steady state is very weak.

The Master equation for the probability of having X1 un-
modified molecules can be solved analytically in special cases
(Berg et al. 2000). The LNA approximation of the Fano-factor is
(equation 6)

C

��1

=
1

�1

f1��1�

f �1��1� − f �2��1�
= a�Vmax2

( 15 )

The equivalence between the sensitivity in equation 14 and the
Fano-factor in equation 15 is seen by implicit derivation of the
steady-state equation (equation 13; Elf et al. 2003b):

d�1��1

dVmax2�Vmax2
�

�

= −
Vmax2

�1

�f2��Vmax2

�f2���1 − �f1���1
�

�

=
f2��1�

�1

1

f �1��1� − f �2��1�
( 16 )

The maximal value of the Fano-factor, (2Km + �0)/(2Km), is ob-
tained when Vmax1 = Vmax2. The LNA of the Fano-factor (equa-
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tion 15) is plotted in Figure 1B for increasing Vmax2 and is com-
pared with values calculated from the exact Master equation for
some parameter sets. The comparison reveals that the LNA is very
accurate in these cases.

The Fano-factor are much larger than 1, as seen in Figure 1B.
The reason for these large fluctuations and the strong deviation
from Poisson statistics (Fano-factor 1), is high turnover rates of
the molecules at steady state in combination with slow relax-
ation back to steady state. This is exactly what is described in
equation 15, where f1/�1 is the turnover rate of the pool and
f �1(�1) � f �2(�1) is the rate of relaxation. The high turnover rate
creates a lot of chemical “noise” (large diffusion) that decays very
slowly (weak restoring force), and this leads to very large fluctua-
tions.

Example 3: Coupled Fluctuations in Multiple
Component Systems
Similar principles apply to systems with more than one molecu-
lar species; that is, slow relaxations, high turnover rates, and large
jumps in molecule numbers (high reaction stoichiometries)
cause large fluctuations. The degrees of freedom are, however,
larger in multicomponent systems, and intriguing stochastic
phenomena of a novel type arise because of correlations between
the fluctuations of different components. For instance, fluctua-
tions in one species (e.g., mRNA) can induce fluctuations in an-
other species (e.g., protein). Furthermore, fluctuations can bring
the molecule number of one species to a very high value while
compensating fluctuations can bring the molecule numbers of
another species to a very low value in such a way that the flow
properties of the system remain almost unchanged. The latter
case is relevant for many biosynthetic reactions, and we will
therefore discuss a simple example illustrating this type of de-
generate behavior.

Although the Master equation is usually impossible to solve
for multicomponent systems, the LNA can be used to estimate
the covariance matrix directly from the macroscopic rate equa-
tions and the stoichiometry matrix as described in Methods.

To illustrate, we consider an anabolic system, where, respec-
tively, molecules X and Y are synthesized from reservoirs A and B
at rates k1 and k2. X and Y are assumed to associate irreversibly
with association rate constant k5 in the formation of a het-
erodimer C. The molecules X and Y also decay with first-order
rate constants k3 and k4, respectively, as described by the scheme:

A →←
k3�1

k1

X B →←
k4�2

k2

Y X + Y →
k5�1�2

C ( 17 )

The concentrations of the A, B, and C molecules are assumed to
be constant, and the concentrations of X and Y are �1 and �2,
respectively. This general system is analyzed in the Supplemental
material. Here, we focus on the most interesting parameter re-
gime, where X and Y are synthesized at equal rates (k1 = k2 = �),
and decay with equal and low rates (k3 = k4 = µ), that is,

A →←
	�1

�

X B →←
	�2

�

Y X + Y →
k5�1�2

C ( 18 )

Low decay rates imply that the degradation events are rare com-
pared to the rate of formation of C molecules, that is, µ 
 √ �k5.
This, as we shall see, is the condition for anomalously large com-
ponent number fluctuations.

The macroscopic differential equations for the concentra-
tions and their steady-state values are

d�1

dt
= � − k5�1�2 − 	�1

d�2

dt
= � − k5�1�2 − 	�2

�
⇒

	 > 0: �1 = �2 = � �

k5
+

	2

k5
2 −

	

2k5
≈ � �

k5

	 = 0: �1 =
�

�2k5

( 19 )

For µ = 0, the system has infinitely many (neutrally stable) fixed
points on the curve �1 = �/�2k5. The stochastic reaction events
will make the concentrations fluctuate freely (free diffusion) on
this curve, such that the variance is infinite.

When 0 < µ 
 √ �k5, the fluctuations may still be very large,
as can be seen in the Monte Carlo simulation (Fig. 2C). This is
again a close-to-zero-order phenomenon, but now in two dimen-
sions. The fluctuations in Figure 2C are anticorrelated such that
the major consumption term, k5�1�2, is close to constant, that is,
both synthesis and consumption rates are near zero order.

The primary source for the anomalously large fluctuations
and the highly correlated fluctuations is therefore, again, high
turnover of the molecule pools compared with the (decay) rate of

Figure 1 Properties of the modification–demodification system (one-component system). (A) Average number of molecules in X1 state, 〈 X1〉 . (B) The
Fano-factor (C/ 〈 X1〉 ). The lines correspond to the LNA equation 15, the circles to values from the numerical solution of the corresponding Master
equation. The total concentrations of X1 and X2 are 10

�5 M and vmax1 = 10
�6 M/sec.
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relaxation to steady state. This is quantified in the LNA of the
system as described in Methods.

In the LNA of the two-component system, given by equa-
tion 18, the fluctuations are analyzed in the variables
w = �1 � �2 and u = �1 + �2. This change of variables follows au-
tomatically with our method (see Supplemental material). The
advantage of using these variables is seen by subtracting the dif-
ferential equations in equation 19 to get the differential equation
for w = �1 � �2:

d�1

dt
−
d�2

dt
=
dw
dt

= − 	��1 − �2� = − 	w ⇒ w�t� = ce − 	t ( 20 )

The difference between X and Y decays at a rate set by µ, which
is small compared with the turnover rate of the X and Y pools
(�/�). The variance in w(�2

w) as calculated by the LNA, normalized
to the number of molecules in one of the pools at steady state, is

�w
2

��
= ��

�

1
	

+ 1�. ( 21 )

This expression is exact, except for the small difference between
a true concentration average and a macroscopic stationary state
value. (The exact expression can be derived with moment-
generating functions.) It can now be seen that it is the large
separation between the turnover rate of the X and Y pools (�/�)
and the relaxation rate µ that causes the very large fluctuations
in w.

Results from the LNA of the full system (equation 17) over
large parameter regions are shown in Figure 2. The LNA is com-
pared with solutions of the Master equation at some points. A
major advantage of the LNA is that the stochastic properties of a
system can be rapidly scanned over a large parameter space at a
very modest computational cost.

Example 4: Elimination of Fast Variables
In Example 3, large fluctuations arise because of one very slow
relaxation mode in the coupled system. This behavior is typical
of systems near critical points, like phase transitions (Haken
1982). In Methods, we describe a method to make the LNA more
accurate in these cases. Themethod requires that the dynamics of

Figure 2 Properties of a system with coupled exit flow (two-component system, equation 17). (A) The average concentrations (Y-axis) of X molecules
for an increasing rate of X synthesis (k1, X-axis). Lines correspond to LNA and circles to estimates from Gillespie simulations. The synthesis rate of Y
molecules is k2 = 10

�6 M/sec, and the association rate constant is k5 = 10
6 M/sec. These parameters are also used in B–D. (B) The Fano-factor for X

molecules, 〈 �X2〉 / 〈 X〉 , as given by LNA (lines) and Gillespie simulation (circles). (C) Gillespie simulation of the variation of the number of X and Y molecules
(Y-axis) over time (X-axis) for balanced synthesis (i.e., k1 = k2 = 10

�6 M/sec). (D) The modified Fano-factor, �2
w/ 〈 �X1〉 , at the point of balanced synthesis

(Y-axis) for different values of the decay rate (X-axis) as given by LNA (lines) and Gillespie simulation (circles).
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the system is mainly determined by a few slow variables, which
are linear combinations of the original concentrations, and that
the fast variables will be at steady-state values, conditional on the
present values of the slow variables. This approach gives precise
estimates of the stochastic system behavior when the rate laws
are approximately linear in the slow variables (but not necessar-
ily in the fast variables), and gives a much more accurate descrip-
tion of the system dynamics than direct usage of the LNA.

It should be noted that this technique does not mean that
one just assumes rapid equilibration among some of the molecu-
lar species. The number of relevant slow variables can, in fact, be
lower than such a direct elimination would presuppose. To illus-
trate the principle, we exemplify with a four-component system,
in which the large fluctuations are contained in just one slow
variable. The example is an extended version of the system dis-
cussed in Example 3 above:

EA →
k1eA

EA + A EB →
k4eB

EB + B

A + EA⇀↽
k3 �eA

tot − eA�

k2aeA

AEA B + EB⇀↽
k6 �eB

tot − eB�

k5beB

BEB

A + B →
k7ab

AB ( 22 )

A and B molecules are synthesized by enzymes EA and EB, respec-
tively. A and B can bind EA and EB, and thereby inhibit their own
synthesis, and can also bind each other irreversibly. Lower-case
letters correspond to concentrations. The stationary, marginal
distribution P(B) (see Methods for a definition of marginal dis-
tribution) for the B molecules is estimated by three different
methods and the results are shown in Figure 3. The distribution

estimated by the Gillespie simulation (gray line) of the full sys-
tem (equation 22) has similar mean and variance as the normal
distribution resulting from the LNA, but the shape of the latter
(black line) is very different from the more accurate distribution
obtained from the Gillespie simulations. However, this failure of
directly applying the LNA can be overcome by elimination of fast
variables (see Supplemental material). Figure 3 shows that the
elimination of all but one slow variable and application of the
LNA gives a much better representation of P(B) than direct ap-
plication of the LNA to the four-variable system (dashed line).

DISCUSSION
The results in this work follow in a straightforward way from the
mesoscopic treatises by van Kampen (1997), Gardiner (1985),
and Keizer (1987). However, these seminal contributions to sto-
chastic kinetics primarily deal with simple chemical reactions in
large volumes so that relative fluctuations are small. The focus of
the present study is, in contrast, on biochemical networks with
elementary complex reactions (Keizer 1987) in the small volumes
of single cells. Here, relative fluctuations can be very large, and
general analytical approaches have been absent.

We have outlined a direct path (Methods) frommacroscopic
descriptions of intracellular chemical networks to the linear
noise approximations (van Kampen 1997) of the Master equa-
tions associated with these systems. The starting point was to
formulate the macroscopic dynamics in terms of elementary or
elementary complex (Keizer 1987) reactions where the stoichi-
ometries of the different reactions are made explicit. Special at-
tention has been paid to the stochastic properties of chemical
networks that are in macroscopically stable stationary states,
where the LNA corresponds to a linear Fokker-Planck equation
for the movement of a Brownian particle in a multidimensional
harmonic potential (Wax 1954). Its solution (Risken 1984)
evolves to a multidimensional normal distribution for deviations
in molecule numbers from their macroscopic values. The station-
ary solution of the LNA is completely characterized by its covari-
ance matrix and the Jacobian matrix associated with the macro-
scopic stationary state. We have used well-known results about
the Lyapunov matrix equation (Horn and Johnson 1991) to de-
rive an explicit expression for the covariance matrix in terms of
the eigenvalues of the Jacobian matrix, from the macroscopic
system at steady state, and the diffusion matrix. The analytical
expressions for the cross- and autocorrelation functions of the
stationary solution to the linear Fokker-Planck equation of the
Master equation have also been described.

This type of analysis facilitates screening of any intracellular
network with respect to its stochastic properties. The character-
istics of the covariance and Jacobian matrices will decide when
fluctuations are so small and fast that a system can be analyzed
macroscopically. They will reveal the existence of anomalously
large fluctuations that require mesoscopic approaches for precise
system descriptions.

Our results show how giant fluctuations in multidimen-
sional systems can arise owing to large terms in the diffusion
matrix (large turnover rates of component pools that generate
internal noise) and small eigenvalues of the Jacobian matrix
(weak restoring forces). When there is a single stable, but weakly
attracting, stationary state so that diffusion is almost free in its
neighborhood, very large relative fluctuations can occur for sys-
tems of finite size. A striking example is the behavior of anabolic
reactions in which two or more substrates are independently syn-
thesized and then irreversibly joined by an unsaturated enzyme.
When the rates of synthesis of all substrates are balanced, all
combinations of substrate concentrations that are compatible
with the joint exit flow are macroscopically allowed, and there is

Figure 3 LNA combined with elimination of fast variables (four-
component system, equation 22). The stationary marginal distribu-
tion for the number of B molecules, P(B), has been estimated by three
different methods: (1) by Gillespie simulation (gray line), which con-
verges toward the correct solution; (2) direct application of LNA (solid
black line), which approximates the distribution with a normal distribu-
tion; and (3) LNA combined with elimination of fast variables (dashed
black line). Parameters: � = 10�15l; k1 = 200 sec�1; k2 = 1.67 � 105

M�1 sec�1; k3 = 10,000 sec�1; k4 = 100 sec�1; k5 = 1.67 � 105 M�1

sec�1; k6 = 1000 sec�1; k7 = 1.67 � 106 M�1 sec�1; eA
tot = 83 nM;

eB
tot = 167 nM.
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free diffusion throughout this continuum of states. In growing
systems or in systems in which the rates of synthesis are attenu-
ated by feedback or product inhibition there will be a single
stationary state, but it is often so weakly constrained that highly
significant fluctuations prevail (Elf et al. 2003b).

Our discussion of the LNA complements existing numerical
tools (Sauro 1993; Mendes 1997) for the analysis of stability prop-
erties of stationary states and bifurcations (Strogatz 1994) in ki-
netic reaction networks. These tools normally make use of the
Jacobian matrix and its eigenvalues. The explicit formulation of
the diffusion matrix from the Liapunov equation now makes it
easy to obtain also mesoscopic system properties near stationary
points.

Our general analysis, exemplified by concrete examples of
how anomalous fluctuations arise in intracellular networks, has
also been extended beyond direct applications of the LNA to
intracellular systems. When fluctuations are large compared with
the range of validity of linear rate laws, then the LNA is expected
to fail in many cases. We have analyzed systems in which the
macroscopic stationary states are almost degenerate. In those
cases, the eigenvalues of the Jacobian are very small, although
the flows through the system are significant. Here, large fluctua-
tions are associated with slow relaxation modes, and we have
used this system property to systematically eliminate fast vari-
ables (Gardiner 1985) with small fluctuations. This approach im-
proves the performance of the LNA in cases in which the slow
variables can be described by linear rate laws, although the fast
variables display nonlinear dynamics.

We have described several cases in which the LNA or the
LNA improved by elimination of fast variables gives accurate me-
soscopic system descriptions. However, in cases in which fluc-
tuations bring a system far from the region of validity of the local
LNA, a more detailed mesoscopic analysis is required. This is, for
instance, the case in systems with noise-induced transitions
(Horsthemke and Lefever 1984), which is exemplified (Fig. 4) by
how the LNA performs for a system with noise-induced oscilla-
tions (Vilar et al. 2002). In the parameter region where an as-
ymptotically stable macroscopic steady state exists, the LNA

works, but where periodic oscillations occur because of random
fluctuations, the LNA fails to reproduce the oscillations. How-
ever, the LNA correctly predicts a marked increase in the size of
the fluctuations at the point where the stochastically induced
oscillations begin to emerge (Fig. 4).

The linear Fokker-Planck equation used here to discuss the
stochastic properties of intracellular chemical networks can be
reformulated in terms of stochastic differential equations (Meth-
ods). This formulation is mathematically equivalent to the Fok-
ker-Planck equations and allows direct comparisons of the effects
of intrinsic noise in intracellular chemical networks, on the one
hand, with the consequences of external noise on technical feed-
back systems, on the other (Glad and Ljung 2000).

METHODS

Macroscopic and Mesoscopic Dynamics
Consider an intracellular biochemical system with volume � and
N different chemical components. The concentrations of the
components are summarized in the vector x = (x1, …, xN)

T and
the numbers of molecules in X = �x = (X1, X2, …, XN)

T. The state
of the system is defined by X (or x), and a state change takes
place by one of R elementary reactions. The probability that the
elementary reaction number j will occur in a small time interval
�t is given by �f̃j(x, �)�t, where f̃j(x, �) is a transition rate. By
such an event the chemical component number i changes from
Xi to Xi + Sij molecules. The integers Sij, i = 1, 2, …, N; j = 1, 2, …,
R are the elements of the N � R stoichiometric matrix S of the
reaction network (Heinrich and Schuster 1996).

When the system volume � increases further and further,
the relative fluctuations in the network will eventually become
insignificant. In the limit of infinitely large �, the stochastic
concentration vector x will normally become deterministic, and
the transition rates f̃j(x, �) will simplify to their macroscopic rate
law counterparts fj(�). We define

� = lim
�→ �
X→ �

�− 1X = lim
�→ �

x,

lim
�→ �

f̃ j �x,�� = fj��� ( 23 )

Figure 4 Example of failure of local linearization and LNA. This figure demonstrates the application of LNA to the system described by Vilar et al.
(2002). We use the same equations and parameters as in the original article. In a certain parameter regime, the mesoscopic system displays periodic
oscillation, whereas the macroscopic model describes an asymptotically stable steady state (A). As can be seen in B, the LNA well describes the
Fano-factor for the repressor and repressor–inhibitor complex up to a certain value for the decay rate for the repressor (�R ≈ 0.0275h�1). Above this
point, the system displays large stochastic fluctuations and for even higher values (�R > 0.05h

�1) also periodic oscillations that cannot be described by
the LNA. However, the large fluctuations predicted by LNA indicate that a more thorough stochastic analysis should be conducted. At the bifurcation,
at �R ≈ 0.101h�1, the macroscopic steady state loses stability and the oscillations are described also by a macroscopic model.
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Here, � = (�1, …, �N)
T is the vector of macroscopic concentra-

tions for which the dynamics is determined by N ordinary rate
equations (Cornish-Bowden 1995), according to

d�i

dt
= �

j = 1

R

Sij fj ��� i = �1, 2,…, N	

⇔ �̇ = Sf ��� f ��� = � f1���,…, fR����T ( 24 )

The Master equation (van Kampen 1997) for the system deter-
mines the time evolution of the probability distribution P(X, t)
for the molecule number vector X and can be written in compact
form as

dP�X,t�
dt

= ��
j = 1

R �

i = 1

N

E − Sij − 1� f̃ j �x,��P�X,t�, ( 25 )

where E�Sij is a step operator. When it acts on a function g(X1, …,
Xi, …, XN), it removes Sij molecules from Xi, that is, E

�Sijg(X1, …,
Xi, …, XN) = g(X1, …, Xi � Sij, …, XN) and E

�SijE�Skjg(…, Xi, …, Xk,
…) = g(…, Xi � Sij, …, Xk � Skj, …). Equation 24 is the complete
macroscopic system description and equation 25 is the full Mas-
ter equation for the same reaction network. Both equations 24
and 25 assume spatial homogeneity by fast diffusion of all com-
ponents. When this is not the case, the Master equation has to be
extended (Elf et al. 2003a). The stoichiometric matrix S appears
in both equations 24 and 25, whereas the mesoscopic rate law f̃j
in equation 25 is replaced by its macroscopic counterparts fj in
equation 24. How the macroscopic equation 24 emerges from the
mesoscopic equation 25 when the system volume goes to infinity
is shown in the derivation of the linear noise approximation in
the Supplemental material (equation A8).

A crucial point in the mesoscopic description is correct iden-
tification of the elementary reactions in equations 24 and 25.
Elementary means that the transition rates f̃j(x, �) should be
constant as long as x does not change, that is, the rates do not
depend on variables not included in the state description. A re-
action can be “elementary complex” (Keizer 1987) as when it is
catalyzed by an enzyme with internal states that equilibrate on a
much shorter time scale than the time scale for product forma-
tion. Conversion of a substrate X1 to a product X2, carried out by
an enzyme with Michaelis-Menten kinetics, is under such con-
ditions elementary complex and can be characterized by the
compounded transition rate f̃(x1) = �maxx1/(Km + x1).

Linearization of Macroscopic Dynamics and the Linear
Noise Approximation
In this section we first recapitulate selected parts of the standard
treatment (Strogatz 1994) of linearized dynamics around a sta-
tionary state and then derive an analytical solution to the linear
noise approximation of the Master equation, equation 25. If a
stationary state exists for the macroscopic dynamics in equation
24, it follows from the algebraic system of equations:

0 = Sf ��� ( 26 )

Linearization of equation 24 around the stationary solution vec-
tor � = (�1, �2, …, �N) associated with equation 26 leads to a
matrix equation for the deviations �� = (��1, …, ��N) from �
according to

�̇� = A��. ( 27 )

A is the Jacobian matrix, with the elements

Aik =
��Si· f ����

��k
�


= 


( 28 )

When A can be written as A = Q�Q�1, where � is a diagonal
matrix with the eigenvalues (�1, �2, …, �N) of A as elements and
Q is a matrix with the eigenvectors of A in the columns, the
solution to equation 27 is

�� = Qe�tQ − 1���0�, ( 29 )

where ��(0) is the initial condition (Strang 1988). The linear
transformation ��̃ = Q�1��, where ��̃ = (��̃1, …, ��̃N), leads to a
new set of variables (normal modes) with the property that

��̃i �t� = e�it ��̃i�0� i = 1,2..N ( 30 )

The Linear Noise Approximation
The mesoscopic counterpart to the macroscopic solutions in
equations 29 or 30, the linear noise approximation (van Kampen
1997), follows from the Master equation, equation 25, by linear-
izing the rate laws as in equation 27 and by approximating its
difference relations by differentials. To our knowledge, the gen-
eral multidimensional LNA has not been derived in the literature
and is therefore given in the Supplemental material. In the LNA,
the probability distribution for the vector �X, describing random
deviations in molecule numbers from their macroscopic values
�
 = �(�1, …, �N)

T, is obtained from a linear Fokker-Planck
equation (Supplemental equation A9). This equation (Risken
1984) depends on the Jacobian A defined in equation 28 and on
the noise-generating diffusion matrix BBT, which is given by

BBT = �S�diag �f����� �S�diag �f�����T = S diag �f���� ST.
( 31 )

The matrix diag(f(�)) is diagonal with the elements fj(�); j = 1, 2,
…, R. It depends on the macroscopic rate laws f(�), rather than
on the mesoscopic transition rates f̃(�), because the difference
between the two disappears in the LNA (see Supplemental mate-
rial). The stationary distribution of the Fokker-Planck equation is
a multivariate Gaussian with zero mean vector and covariance
matrix C = 〈 �X�XT〉 , which is determined by the (Lyapunov) ma-
trix equation

AC + CAT + �BBT = 0, ( 32 )

where A and BBT are evaluated at the stationary state � = �. C
contains the second-order moments of the stationary Gaussian
distribution for the stochastic vector �X, according to

<�Xi�Xk> = Cij i,k = �1, 2, …N	 ( 33 )

Knowledge of A and C also gives the time correlation matrix for
�X according to

��X�t + ����X�t��T� = C exp �A���� ( 34 )

Equation 32 can be solved for C numerically with standard meth-
ods, but analytical expressions can also be obtained. The prop-
erties of C are best explained from the analytical solution that
exists for the covariance matrix C̃ for the new variables
�X̃ = Q�1�X, that is, fluctuations as normal modes (compare with
equation 30). �X̃ is associated with the linearly transformed
stoichiometric matrix S̃ = Q�1S, and it follows from equation 31
that B = QB̃. The covariance matrix C̃ for �X̃ is defined from
C = QC̃Q* (Horn and Johnson 1985), where Q* means Q complex
conjugated and transposed, and A = Q�Q�1. Insertion in equa-
tion 32 gives

AC + CAT + �BBT = 0 ⇔

�C̃ + C̃�* + �B̃B̃* = 0 ⇔

C̃jk = �
�B̃B̃*�jk
�j + �k

( 35 )

The diagonal elements of C̃, that is, the variances 〈 �X̃i
2〉 , are the

summed squares of the transformed stoichiometric coefficients
S̃ij (which can be complex valued) multiplied with their corre-
sponding rate laws (flows), divided by the real part of the rate of
relaxation for the normal mode ��̃i in equation 30:

C̃ii =
�

2�Re �i�
�
j
fj ����S̃ij�

2. ( 36 )
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It is seen that internal noise is boosted by high rates fj and large
stoichiometry coefficients | S̃ij| and that fluctuations are attenu-
ated by a large (negative) real part of the eigenvalue of the
normal mode ��̃i in equation 30. When A is symmetric, Q can be
made unitary and then S̃ = QTS, which simplifies analysis and
interpretation (see Example 3 in the Supplemental material).

Single-Component Systems
When there is only one chemical species X1, then equation 32 is
scalar and the LNA of the stationary variance becomes

2�1C11 + ��
j
S1
2
jfi ��1� = 0 ⇒ C11 = −

��
j
S1
2
j fj ��1�

2�1
( 37 )

The Fano-Factor and the Correlation Coefficient
The Fano-factor (Fano 1947) is a measure of the relative size of
the internal fluctuations. It is defined as the variance divided by
the average value, that is, FXi = 〈 �Xi

2 〉 / 〈 Xi〉 , which in LNA is ap-
proximated by FXi ≈ Cii/(��i). FX = 1 when X has Poisson statis-
tics. As both the average value and variance of internal fluctua-
tions are proportional to the volume of the system, the Fano-
factor is independent of volume. Another volume-independent
stochastic measure is the correlation coefficient rki = �ki

2/ √ �k
2�i

2,
which in the LNA becomes rki ≈ Cki/ √ CkkCii. It is zero for uncor-
related fluctuations and +1 or �1 if fluctuations are perfectly
linearly correlated or anticorrelated, respectively.

Elimination of Fast Variables Can Make the LNA More
Accurate Near Critical Points
Starting from the full system description in terms of S and f(�),
we first identify the correlation matrix C̃ from the LNA in equa-
tion 35, using equations 28 and 31. We identify the variables
(�̃1…�̃j), which correspond to the slow relaxation modes where
| Re�1…j| 
 | Re�j + 1…N | . The macroscopic dynamics of the system
(equation 24) are then formulated in terms of transformed vari-
ables �̃ = Q�1� similar to equation 30:

�̇ = Sf��� ⇔ �̇̃ � Q − 1Sf�Q�̃� = g��̃� ( 38 )

Next, the fast variables �̃j + 1…�̃N are locked to their macroscopic
steady-state values, �̃j + 1…�̃N conditional on �̃1…�̃j, by setting
the differential equations gj + 1…gN equal to zero and solving the
following system of equations:

�
gj+ 1��̃1,..,�̃N�

�

gN��̃1,..,�̃N�
� = �

0

�

0� ⇒ �
�̃j+1

�

�̃N

� = �
hj + 1��̃1,…,�̃j�

�

hN ��̃1,…,�̃j�
� ( 39 )

Subsequently, the LNA is applied only to the slow variables to get
their stationary probability density function P1(X̃1, …, X̃j). This is
a normal distribution centered at the macroscopic steady state
with a covariance matrix C̃1…j, 1…j. For each value of (X̃1, …, X̃j),
the fast variables are locked to their conditional stationary values
�̃j + 1…�̃N, and the overall stationary distribution function is
therefore:

P̃�X̃� = �X̃1,…,X̃j
��X̃j+ 1 − �hj+ 1�x̃1,…,x̃j��

…��X̃N − �hN �x̃1,..,x̃j��P1�X̃,..,X̃j�dX̃,..,dX̃j, ( 40 )

where �(X̃k � �hk
(x̃1, …, x̃j)) is the Dirac function and x̃i = ��1X̃i.

P̃(X̃) is not a normal distribution any more because the h = (hj + 1,
…, hN) functions generally are nonlinear. Finally, we get the
probability distribution function in the original variables as

P �X� = � � P̃ �Q − 1X�, ( 41 )

where � is a normalization constant. For a multidimensional
P(X), it is convenient to consider only the marginal distributions,
defined as

P �Xj� = �X1,…,Xj− 1,Xj+ 1,…,XN
P�X�dX1..dXj− 1dXj+ 1dXN. ( 42 )
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