6720: Complex Analysis

Professor Paul C. Bressloff

I. Analytic functions

- 1.1 Cauchy-Riemann Conditions
- 1.2 Harmonic functions
- 1.3 Multi-valued functions
- 1.4 Complex integration and Cauchy's theorem
- 1.5 Cauchy's integral formula
- 1.6 Taylor series and analytic continuation
- 1.7 Laurent series and singularities

II Fluid flow and conformal mappings

- 2.1 Ideal fluid flow
- 2.2 Force due to fluid pressure
- 2.3 Conformal mappings
- 2.4 Bilinear transformations
- 2.5 Some examples from fluid flow
- 2.6 Schwarz-Cristoffel transformations

III Contour integration

- 3.1 Cauchy residue theorem
- 3.2 Evaluation of certain definite integrals
- 3.3 Principal value integrals
- 3.4 Integrals with branch points

IV Integral transforms

- 4.1 Fourier and Laplace transforms
- 4.2 Applications to differential equations
- 4.3 Scattering theory

V Asymptotic analysis of integrals

- 5.1 Asymptotc expansions
- 5.2 Laplace type integrals
- 5.3 Fourier type integrals
- 5.4 The method of steepest descent
- 5.5 Some physical applications

Recommended texts

M. J. Ablowitz and A. S. Fokas Complex variables (Cambridge University Press, 1997)

J. P. Keener Principles of applied mathematics (Perseus Press, 2000)

Complex analysis

Assignment II (Deadline March 25th)

[1]. Consider a flow around a cylindrical obstacle of radius α with the complex potential $\Omega(z) = u_0(z + \alpha^2/z)$. Let P and P_{∞} denote the pressure at a point on the cylinder and far from the cylinder, respectively.

(a) Use Bernoulli's equation $P + \rho |u|^2/2 = c$ along streamlines to show that

$$P - P_{\infty} = \frac{1}{2}\rho u_0^2 (1 - 4\sin^2\theta)$$

(b) Show that a vacuum is created at the points $\pm ia$ if the velocity of the fluid satisfies $u_0 \ge \sqrt{2P_{\infty}/(3\rho)}$. This phenomenon is often called *cavitation*.

[2]. Find a conformal map f that maps the region between tweo circles |z| = 1 and $|z - \frac{1}{4}| = \frac{1}{4}$ onto an annulus $\rho_0 < |z| < 1$ and find ρ_0 .

[3]. Determine the conformal map f that takes the region D exterior to the pair of circular discs of radius R to the region outside a circular disc of unit radius centered at the origin (see figure 1). Use the following steps:

(a) Show how the map $\omega = 2R/z$ takes the region D to the infinite strip $-i < Im\omega < i$.

(b) Show how the map $\xi = e^{\pi(i-\omega)/2}$ takes the infinite strip to the upper-half complex ξ -plane (c) Show how the map $\eta = (\xi+i)/(\xi-i)$ takes the upper-half complex ξ -plane to the region outside the unit disc, that is, $|\eta| > 1$.

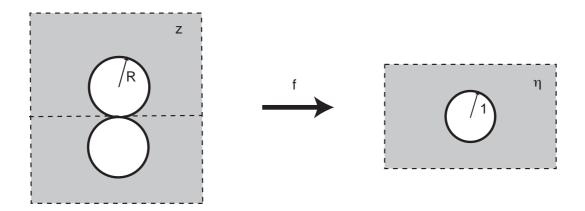


Figure 1: Find the conformal map f

[4]. A circular cylinder of radius R lies at the bottom of a channel of fluid that at a large distance from the cylinder has a constant velocity u_0 in the horizontal direction.

(a) Show that the complex potential is given by

$$\Omega(z) = \pi R \mathfrak{u}_0 \coth\left(\frac{\pi R}{z}\right)$$

[Hint: Use the conformal map found in [3] and a symmetry argument. Also need to calcualte asymptotic velocity in η plane.]

(b) Use Bernoulli's equation to show that the difference in pressure between the top and the bottom points of the cylinder is $\rho \pi^4 u_0^2/32$ where ρ is the density of the fluid.

[5] Consider the Schwarz-Cristoffel transformation from a closed n-sided polygon (with interior angles $\pi \alpha_i$, i = 1, ..., n) to the upper-half complex plane defined by

$$\frac{d\omega}{dz} = \gamma \prod_{i=1}^{n} (z - a_i)^{\alpha_i - 1}$$
(1)

For a closed polygon $\sum_{i=1}^{n} \alpha_i = n - 2$. (a) Using the bilinear transformation

$$z = i\frac{1+\zeta}{1-\zeta}$$

which transforms the upper half z-plane onto the unit disc $|\zeta| < 1$, show that the conformal map from a closed polygon to the unit disc is also given by the Schwarz-Cristoffel transformation with $z \to \zeta$, $\gamma \to \hat{\gamma}$ and $a_i \to \zeta_i$ where the points ζ_i lie on the unit circle. (b) Show that the function

$$\omega = \int_0^z \frac{1}{(1-t^6)^{1/3}} dt$$

maps a regular hexagon into the unit disc. [Hint: use a symmetry argument]