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Preface

In recent years there has been an explosion of interest in the effects of noise in
cell biology. This has partly been driven by rapid advances in experimental tech-
niques, including high-resolution imaging and molecular-level probes. However, it
is also driven by fundamental questions raised by the ubiquity of noise. For exam-
ple, how does noise at the molecular and cellular levels translate into reliable or
robust behavior at the macroscopic level? How do microscopic organisms detect
weak environmental signals in the presence of noise? Have single-cell and more
complex organisms evolved to exploit noise to enhance performance? In light of the
above, there is a growing need for mathematical biologists and other applied math-
ematicians interested in biological problems to have some background in applied
probability theory and stochastic processes. Traditional mathematical courses and
textbooks in cell biology and cell physiology tend to focus on deterministic models
based on differential equations such as the Hodgkin-Huxley and FitzHugh-Nagumo
equations, chemical kinetic equations, and reaction-diffusion equations. Although
there are a number of well-known textbooks on applied stochastic processes, they
are written primarily for physicists and chemists or for population biologists. There
are also several excellent books on cell biology written from a biophysics perspec-
tive. However, these assume some background in statistical physics and a certain
level of physical intuition. Therefore, I felt that it was timely to write a textbook for
applied mathematicians interested in learning stochastic processes within the con-
text of cell biology, which could also serve as an introduction to mathematical cell
biology for statistical physicists and applied probabilists.

I started my interest in stochastic cell biology, as distinct from my work in math-
ematical neuroscience, around eight years ago when I volunteered to teach a course
in biophysics for the mathematical biology graduate program at Utah. I was imme-
diately fascinated by the molecular processes underlying the operation of a cell, par-
ticularly the mechanisms for transporting proteins and other macromolecules to the
correct subcellular targets at the correct times. Such an issue is particularly acute for
neurons, which are amongst the largest and most complex cells in biology. In healthy
cells, the regulation of protein trafficking within a neuron provides an important
mechanism for modifying the strength of synaptic connections between neurons,
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and synaptic plasticity is generally believed to be the cellular substrate of learning
and memory. On the other hand, various types of dysfunction in protein trafficking
appear to be a major contributory factor to a number of neurodegenerative diseases
associated with memory loss including Alzheimers disease.

In writing this book, I have gone back to my roots in theoretical physics, but
refracted through the lens formed by many years working in applied mathemat-
ics. Hence, the book provides extensive coverage of analytical methods such as
initial boundary value problems for partial differential equations, singular pertur-
bation theory, slow/fast analysis and quasi-steady-state approximations, Green’s
functions, WKB methods and Hamilton-Jacobi equations, homogenization theory
and multi-scale analysis, the method of characteristics and shocks, and reaction-
diffusion equations. I have also endeavored to minimize the use of statistical me-
chanics, which is not usually part of a mathematician’s tool-kit and requires a cer-
tain level of physical intuition. It is not possible to avoid this topic completely, since
many experimental and theoretical papers in cell biology assume some familiarity
with terms such as entropy, free energy and chemical potential. The reason is that
microscopic systems often operate close to thermodynamic equilibrium or asymp-
totically approach thermodynamic equilibrium in the large-time limit. This then im-
poses constraints on any model of the underlying stochastic process. In most cases,
one can understand these constraints by considering the Boltzmann-Gibbs distribu-
tion of a macromolecule in thermodynamic equilibrium, which is the approach I
take in this book.

There are two complementary approaches to modeling biological systems. One
involves a high level of biological detail and computational complexity, which
means that it is usually less amenable to mathematical analysis than simpler reduced
models. The focus tends to be on issues such as parameter searches and data fitting,
sensitivity analysis, model reductions, numerical convergence, and computational
efficiency. This is exemplified by the rapidly growing field of systems biology. The
other approach is based on relatively simple conceptual or “toy”” models, which are
analytically tractable and, hopefully, capture essential features of the phenomena
of interest. In this book I focus on the latter for pedagogical reasons and because
of my own personal tastes. In the introductory chapter, I summarize some of the
basic concepts in stochastic processes and non-equilibrium systems that are used
throughout the book, describe various experimental methods for probing noise at
the molecular and cellular levels, give a brief review of basic probability theory
and statistical mechanics, and then highlight the structure of the book. In brief, the
book is divided into two parts: Part I (Foundations) and Part II (Advanced Topics).
Part I provides the basic foundations of both discrete and continuous stochastic pro-
cesses in cell biology. It’s five chapters deal with diffusion, random walks and the
Fokker-Planck equation (chapter 2), stochastic ion channels (chapter 3), polymers
and molecular motors (chapter 4), biochemical signaling and adaptation (chapter
5), and gene expression and regulatory networks (chapter 6). Part II covers more
advanced topics that build upon the ideas and techniques from part I. Topics in-
clude transport processes in cells (chapter 7), self-organization of the cytoskeleton
(chapter 8), self-organization in reaction-diffusion models (chapter 9), WKB meth-
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ods for escape problems (chapter 10), and some more advanced topics in probability
theory (chapter 11). The chapters are supplemented by additional background mate-
rial highlighted in gray boxes, and numerous exercises that reinforce the analytical
methods and models introduced in the main body of the text. I have attempted to
make the book as self-contained as possible. However, some introductory back-
ground in partial differential equations, integral transforms, and applied probability
theory would be advantageous.

Finally, this book should come with a “government health warning.” That is,
throughout most of the book, I review the simplest mechanistic models that have
been constructed in order to investigate a particular biological phenomenon or illus-
trate a particular mathematical method. Although I try to make clear the assumptions
underlying each model, I do not carry out a comparative study of different models
in terms of the degree of quantitative agreement with experimental data. Therefore,
the reader should be cautioned that the models are far from the last word on a given
phenomenon, and the real biological system is usually way more complicated than
stated. However, it is hoped that the range of modeling and analytical techniques
presented in this book, when combined with efficient numerical methods, provide
the foundations for developing more realistic, quantitative models in stochastic cell
biology.
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