Problem 5. Master equation for an ensemble of ion channels. Consider the master equation for the two-state ion channel model:
\[
\frac{d}{dt} P(n, t) = \alpha(N - n + 1)P(n - 1, t) + \beta(n + 1)P(n + 1, t) - [\alpha(N - n) + \beta n]P(n, t).
\]

(a) By multiplying both sides by \(n \) and summing over \(n \), derive the following kinetic equation for the mean \(\bar{n} = \sum_{n=0}^{N} nP(n, t) \):
\[
\frac{d\bar{n}}{dt} = \alpha(N - \bar{n}) - \beta \bar{n}.
\]

(b) Derive a corresponding equation for the variance \(\sigma^2 = \langle n^2 \rangle - \langle n \rangle^2 \). That is, multiply both sides of the master equation by \(n^2 \) and sum over \(n \) to determine an equation for the second moment, and then use part (a). Show that the variance decays exponentially at a rate \(2(\alpha + \beta) \) to the steady-state value
\[
\sigma^2 = \frac{\alpha \beta}{(\alpha + \beta)^2},
\]
and hence deduce that fluctuations become negligible in the large \(N \) limit.

(c) Compare the results obtained from the master equation with the analysis based on the linear noise approximation.

(d) The steady-state distribution is
\[
P_n^* = \frac{\alpha^n \beta^{N-n}}{(\alpha + \beta)^N} \frac{N!}{n!(N-n)!} = p_0^n (1 - p_0)^{N-n} \frac{N!}{n!(N-n)!},
\]
where \(p_0 = \alpha/(\alpha + \beta) \). Taking logarithms of both sides of this equation (3.12) and using Strirling’s formula \(\log(n!) \approx n \log n - n \), show that the steady-state solution of the master equation (3.7) can be written in the form
\[
P(x) \sim e^{-N\Phi(x)},
\]
with quasipotential
\[
\Phi(x) = -x \log(\alpha/\beta) + x \log x + (1 - x) \log(1 - x) = \int_x^\infty \ln \Omega_+(x') dx'.
\]
Compare with the steady-state solution of the Fokker-Planck equation derived using a system-size expansion.

(e) Construct the master equation for an ensemble of \(N \) identical, independent channels each of which has two subunits. That is, determine an equation for the evolution of the probability distribution \(P_{n_0,n_2}(t) \) that there are \(n_j \) ion channels with \(j \) open subunits such that \(N = n_0 + n_1 + n_2 \).
Problem 6. Bistability in an autocatalytic reaction. Consider the following autocatalytic reaction scheme for a protein that can exist in two states X and Y:

$$X \xrightarrow{k_1} Y, \quad X + 2Y \xrightarrow{k_3} 3Y.$$

Let $[X]$ and $[Y]$ denote the concentrations of the molecule in each of the two states such that $[X] + [Y] = Y_{\text{tot}}$ fixed. The kinetic equation for $[Y]$ is

$$\frac{d[Y]}{dt} = -k_2[Y] + k_1[X] + k_3[Y]^2[X],$$

where V is cell volume.

a) Let $y = [Y]/Y_{\text{tot}}$. Show that after an appropriate rescaling of time, the corresponding kinetic equation for y is

$$\frac{dy}{dt} = y(\mu(1 - y)y - 1) + \lambda(1 - y),$$

where $\mu = k_3Y_{\text{tot}}^2/k_2$, $\lambda = k_1/k_2$. Determine the existence and stability of the fixed points for y. Plot the bifurcation diagram with μ treated as a bifurcation parameter and $\lambda = 0.03$. Hence, show that the system is bistable over a range of values of μ.

b) Suppose that there are N_0 molecules, that is, $N_0 = VY_{\text{tot}}$, where V is cell volume. Construct the birth-death master equation for the probability $P_n(t)$ that there are $N(t) = n$ molecules in state Y at time t.

c) Show that the steady-state distribution is

$$P^*_n = \frac{C_N N_0!}{n!(N_0 - n)!} \prod_{m=0}^{n-1} \left[\lambda + \frac{\mu}{N_0^2} m(m - 1) \right].$$

Plot $P^*_n(n)$ as a function of n (treated as a continuous variable over the range $[0, 400]$) for $N_0 = 400$, $\mu = 4.5$ and $\mu = 6$ with $\lambda = 0.03$. Comment on the location of the peaks in terms of fixed points of the deterministic system.

d) Derive the corresponding Fokker-Planck equation using a system-size expansion of the master equation in powers of $1/N_0$, and determine the steady-state solution. Calculate the steady-state solution and compare with the exact solution of part (c) for $N_0 = 40$ and $N_0 = 400$.

Problem 7. Computer simulations: Two-state ion channels. In this problem we investigate the diffusion approximation of the master equation (3.7) for an ensemble of two-state ion channels. Take $\alpha = 1$, $\beta = 2$ and $N = 100$.

(a) Numerically solve the master equation ODE using Euler’s direct method for $t \in [0, 1]$ and $\Delta t = 0.01$. Plot the histogram of $P_n(T)$ for $T = 1$ and compare with the steady-state distribution (3.12).

(b) Use Gillespie’s SSA to generate sample paths for the number $n(t)$ of open ion channels for $t \in [0, 10]$. The two reactions are $n \rightarrow n + 1$ at a rate $\alpha(N - n)$ and $n \rightarrow n - 1$ at a rate βn.

By averaging over sample paths, compare the histogram of $n(T)$ with the distribution $P_n(T)$ for $T = 1$.

(c) Use Euler’s direct method to simulate the Langevin equation

$$\Delta X(t) = [\alpha(1 - X) - \beta X] \Delta t + \frac{1}{\sqrt{N}} \sqrt{\alpha(1 - X) + \beta X} \Delta W(t),$$

obtained by carrying out a system-size expansion of the master equation. Here $X(t)$ is the fraction of open ion channels at time t. Construct a histogram of $X(T)$ for $T = 1$ and compare with the results of part (b). Repeat for $N = 10$ and $N = 1000$ and comment on the differences.