Problems II
Paul C Bressloff (Spring 2019)

Problem 1. Kinetic law of mass action.

a) Consider the reaction network:

\[A \overset{k_1}{\rightarrow} X, \quad X \overset{k_2}{\rightarrow} Y, \quad X + Y \overset{k_3}{\rightarrow} B, \]

where the concentrations of A and B are buffered (i.e. [A] and [B] are fixed model parameters). Construct a differential equation model for the dynamics of [X] and [Y]. Determine the steady-state concentrations of X and Y as functions of [A] and the rate constants. Verify that the steady-state concentration of Y is independent of [A].

b) Consider the reaction scheme

\[A + B \overset{k_1}{\rightarrow} C + D, \quad D \overset{k_2}{\rightarrow} B, \quad C \overset{k_3}{\rightarrow} E + F. \]

Write down the mass action kinetic equations for [A], [B], [C], [D] Using a conservation equation, determine the steady-state concentrations (some of which are zero).

c) Repeat b) when there is the additional reaction \(k_0 \rightarrow A \), that is, A is produced at a rate \(k_0 \).

Problem 2. Master equation for an ensemble of ion channels. Consider the master equation for the two-state ion channel model:

\[
\frac{d}{dt} P(n,t) = \alpha (N - n + 1) P(n - 1, t) + \beta (n + 1) P(n + 1, t) - \left[\alpha (N - n) + \beta n \right] P(n, t). \quad (II.2)
\]

(a) By multiplying both sides by \(n \) and summing over \(n \), derive the following kinetic equation for the mean \(\bar{n} = \sum_{n=0}^{N} n P(n,t) \):

\[
\frac{d\bar{n}}{dt} = \alpha (N - \bar{n}) - \beta \bar{n}.
\]

(b) Derive a corresponding equation for the variance \(\sigma^2 = \langle n^2 \rangle - \langle n \rangle^2 \). That is, multiply both sides of the master equation by \(n^2 \) and sum over \(n \) to determine an equation for the second moment, and then use part (a). Show that the variance decays exponentially at a rate \(2(\alpha + \beta) \) to the steady-state value

\[
\sigma^2 = \frac{\alpha \beta}{(\alpha + \beta)^2},
\]

and hence deduce that fluctuations become negligible in the large \(N \) limit.

c) Compare the results obtained from the master equation with the analysis based on the linear noise approximation.
(d) Construct the master equation for an ensemble of N identical, independent channels each of which has two subunits. That is, determine an equation for the evolution of the probability distribution $P_{n_0,n_2}(t)$ that there are n_j ion channels with j open subunits such that $N = n_0 + n_1 + n_2$.

Problem 3. Bistability in an autocatalytic reaction. Consider the following autocatalytic reaction scheme for a protein that can exist in two states X and Y:

$$X \overset{k_1}{\underset{k_2}{\rightleftharpoons}} Y, \quad X + 2Y \overset{k_3}{\rightarrow} 3Y.$$

Let $[X]$ and $[Y]$ denote the concentrations of the molecule in each of the two states such that $[X] + [Y] = Y_{\text{tot}}$ fixed. The kinetic equation for $[Y]$ is

$$\frac{d[Y]}{dt} = -k_2[Y] + k_1[X] + k_3[Y]^2[X],$$

where V is cell volume.

a) Let $y = [Y]/Y_{\text{tot}}$. Show that after an appropriate rescaling of time, the corresponding kinetic equation for y is

$$\frac{dy}{dt} = y(\mu(1 - y)y - 1) + \lambda(1 - y),$$

where $\mu = k_3 Y_{\text{tot}}^2/k_2$, $\lambda = k_1/k_2$. Determine the existence and stability of the fixed points for y. Plot the bifurcation diagram with μ treated as a bifurcation parameter and $\lambda = 0.03$. Hence, show that the system is bistable over a range of values of μ.

b) Suppose that there are N_0 molecules, that is, $N_0 = VY_{\text{tot}}$, where V is cell volume. Construct the birth-death master equation for the probability $P_n(t)$ that there are $N(t) = n$ molecules in state Y at time t.

c) Show that the steady-state distribution is

$$P^*_n = \frac{C_{N_0} N_0!}{n!(N_0 - n)!} \prod_{m=0}^{n-1} \left[\lambda + \frac{\mu}{N_0^2 m(m - 1)} \right].$$

Plot $P^*_n(n)$ as a function of n (treated as a continuous variable over the range $[0, 400]$) for $N_0 = 400$, $\mu = 4.5$ and $\mu = 6$ with $\lambda = 0.03$. Comment on the location of the peaks in terms of fixed points of the deterministic system.

d) Derive the corresponding Fokker-Planck equation using a system-size expansion of the master equation in powers of $1/N_0$, and determine the steady-state solution. Calculate the steady-state solution and compare with the exact solution of part (c) for $N_0 = 40$ and $N_0 = 400$.

Problem 4. Spatial polymerization of a filament. Suppose that a polymer filament is placed in a cylinder with uniform cross-section A. Suppose that the monomers within the tube can undergo diffusion along the axis of the tube, which is taken to be the x-axis. Let $x_{\pm}(t)$ denote the
positions of the ± ends of the filament within the tube. The apparent velocities of these ends due
to polymerization/depolymerization are
\[
\frac{dx_+}{dt} = v_+ = t[k_{on}^a(x_+, t) - k_{off}^+]
\]
\[
\frac{dx_-}{dt} = v_- = -t[k_{on}^a(x_-, t) - k_{off}^-].
\]
The ends of the filament act as sources or sinks for monomer, so that the monomer concentration
\(a(x, t)\) along the axis satisfies the inhomogeneous diffusion equation
\[
\frac{\partial a}{\partial t} = D \frac{\partial^2 a}{\partial x^2} - \gamma [\delta(x - x_+)v_+ - \delta(x - x_-)v_-], \quad \gamma = \frac{1}{A_t}.
\]

(a) Derive the diffusion equation by considering conservation of monomer passing through an in-
finitesimal volume \(A\Delta x\) centered about either end of the filament. Explain the minus sign in the
definition of \(v_-\).

(b) Suppose that the tube is infinitely long and
\[a(x, t) \to \alpha, \quad x \to \pm \infty.\]
Look for a traveling wave solution in which the filament maintains a fixed length \(L\) and \(v_\pm = v\),
where \(v\) is the speed of the wave. That is, set \(x_+ = vt, v_- = vt - L\) and go to a moving frame
\(z = x - vt\) with \(a(x, t) = A(z)\) such that
\[-v \frac{dA}{dz} = D \frac{d^2A}{dz^2} + v\gamma[\delta(z + L) - \delta(z)].\]
Explicitly solve this equation by matching the solution at the points \(z = -L, 0\). In particular, show
that
\[A(-L) = \alpha, \quad A(0) = \alpha - 1 + e^{-\gamma v L / D}.
\]

(c) Substituting for \(A\) in the expressions for \(v_\pm\) and setting \(v_+ = v_- = v\), determine \(v\) and \(L\). Show
that a physical solution only exists if
\[\alpha > \frac{k_{off}^+ + k_{off}^-}{k_{on}^+ + k_{on}^-}.
\]

Problem 5. Polymerization ratchet. Consider a Brownian particle moving in the ratchet
potential
\[\mathcal{F}(x) = Fx - n \Delta G, \quad na < x < (n + 1)a.\]
Following the analysis of Lecture 13, we obtain the equation
\[
\frac{d}{dx} \left(e^{\mathcal{V}(x)/k_B T} p_0(x) \right) = -\frac{j_0}{D_0} e^{\mathcal{V}(x)/k_B T}.
\]
for the stationary distribution $\hat{p}_0(x) = \sum_{n=-\infty}^{\infty} p_0(x + na)$.

(a) Integrate the above equation from 0^+ to x, $0 < x < a$, and impose the matching condition
\[
\lim_{x \to a^+} \hat{p}_0(x)e^{F(x)} = \lim_{x \to a^-} \hat{p}_0(x)e^{F(x)}
\]

together with periodicity $\hat{p}_0(a^+) = \hat{p}_0(0^+)$. Hence show that
\[
\hat{p}_0(x) = \frac{\hat{J}_0 k_B T}{FD_0} \left[Ae^{-Fx/k_BT} - 1 \right],
\]

with
\[
A = \frac{e^{\Delta G/k_BT}}{e^{(\Delta G - Fa)/k_BT}} - 1.
\]

(b) Explain the matching condition used in part (a).

(c) Determine the constant flux \hat{J}_0 using the normalization condition $1 = \int_0^a \hat{p}_0(x)dx$. Hence show that the speed of growth $v = \hat{J}_0 a$ is given by
\[
v = D_0 \frac{F^2 a}{(k_BT)^2} \left[A \left(1 - e^{-Fa/k_BT} \right) - \frac{Fa}{k_BT} \right]^{-1},
\]

(d) Show that in the regime $\Delta G \gg Fa$ and $k_B T \gg Fa$,
\[
v \approx 2D_0/a.
\]