## Reviews

**NEW!** Paul C. Bressloff and J. Newby. Stochastic models of intracellular transport *Rev. Mod. Phys. * **85** 135-196 (2013)

**NEW!** Paul C. Bressloff. Spatiotemporal Dynamics of Continuum Neural Fields J. Phys. A **45 **(2012) 033001

P. C. Bressloff. Lectures in Mathematical Neuroscience *In: Mathematical Biology, IAS/Park City Mathematical Series.(M. A. Lewis, M. A. J. Chaplain, J. P. Keener and P. K. Maini (eds)* **14** 293-398 (American Mathematical Society, 2009).

P. C. Bressloff. Pattern formation in visual cortex. *Les Houches Lectures in Neurophysics* (2005).

P. C. Bressloff and S. Coombes. Physics of the extended neuron. * Int. J.
Mod. Phys. B* **11**:2343-2393 (1997).

## Selected papers (2001-)

### Intracellular waves and secretory trafficking

P. C. Bressloff. Propagation of CaMKII translocation waves in heterogeneous spiny dendrites. *J. Math. Biol. * **66** 1499-1525 (2013).

P. C. Bressloff. Two-pool model of cooperative vesicular transport *Phys. Rev. E* **86** 0319111 (2012).

B. A. Earnshaw and P. C. Bressloff. Diffusion-activation model of CaMKII translocation waves in dendrites. *J. Comput. Neurosci.* **28** 77-89 (2010).

S. Coombes and P. C. Bressloff, Saltatory waves in the spike-diffuse-spike model of active dendrites. *Phys. Rev. Lett.* **91**:028102 (2003).

### Molecular motors and random intermittent search

P. C. Bressloff and J. M. Newby. Filling of a Poisson trap by a population of random intermittent searchers. *Phys. Rev. E * **85** 031909 (2012).

P. C. Bressloff and J. Newby. Quasi-steady state analysis of motor-driven transport on a two-dimensional microtubular network. *Phys. Rev. E* **83** 061139 (2011).

J. M. Newby and P. C. Bressloff. Random intermittent search and the tug-of-war model of motor-driven transport. *J. Stat. Mech. * **P04104** (2010).

J. Newby and P. C. Bressloff. Local synaptic signalling enhances the stochastic transport of motor-driven cargo in neurons. *Phys. Biol.* **7** 036004 (2010).

J. Newby and P. C. Bressloff. Directed intermittent search for a hidden target on a dendritic tree. *Phys. Rev. E* **80** 021913 (2009).

P. C. Bressloff and J. Newby. Directed intermittent search for hidden targets. *New J. Phys. * **11** 023033 (2009).

P. C. Bressloff, A stochastic model of intraflagellar transport *Phys. Rev. E* ** 73 ** 061916 (2006).

### Protein receptor trafficking and synaptic plasticity

V. M. Burlakov, N.Emptage, A.Goriely and P. C. Bressloff. Synaptic bistability due to nucleation and evaporation of receptor clusters. *Phys. Rev. Lett. * **108** 028101 (2012).

P. C. Bressloff. Cable theory of protein receptor trafficking in a dendritic tree. *Phys. Rev. E* **79** 041904 (2009).

P. C. Bressloff and B. A. Earnshaw. A dynamical corral model of protein trafficking in spines. *Biophys. J.* **96** 1786-1802 (2009).

P. C. Bressloff, B. A. Earnshaw and M. J. Ward. Diffusion of
protein receptors on a cylindrical dendritic membrane with partially
absorbing traps. *SIAM J. Appl. Math*. **68** 1223-1246 (2008).

P. C. Bressloff and B. A. Earnshaw. Diffusion-trapping model of receptor trafficking in dendrites. *Phys. Rev. E* **75**: 041916 (2007)

B. A. Earnshaw and P. C. Bressloff, A biophysical model of AMPA receptor trafficking and its regulation during LTP/LTD. *J. Neurosci.* ** 26 ** 12362-12373 (2006).

P. C. Bressloff, A stochastic model of protein receptor trafficking prior to synaptogenesis *Phys. Rev. E* ** 74 ** 031910 (2006).

### Stochastic population oscillators and noise-induced synchronization

P. C. Bressloff and Yi Ming Lai. Dispersal and noise: Various modes of synchrony in ecological oscillators. *J. Math. Biol.*
In press (2013)

Y-M Lai, J. Newby and P. C. Bressloff. Effects of demographic noise on the synchronization of metacommunities by a fluctuating environment. *Phys. Rev. Lett* **107** 118102 (2011).

P. C. Bressloff and Y-M Lai. Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise. *J. Math. Neurosci.* **1** 2 (2011).

W. H. Nesse, C. A. DelNegro and P. C. Bressloff. Oscillation
regularity in noise-driven excitable systems with multi-timescale
adaptation. *Phys. Rev. Lett.* ** 101 ** 088101 (2008).

W. H. Nesse, A. Borisyuk and P. C. Bressloff. Fluctuation-driven
rhythmogenesis in an excitatory neuronal network with slow adaptation. *J. Comput. Neurosci.* ** 25 ** 317-333 (2008).

### Stochastic neural networks and fields

P. C. Bressloff and J. Newby. Metastability in a stochastic neural network modeled as a velocity jump Markov process. * SIAM J. Appl. Dyn. Systs.* In press.

P. C. Bressloff and J.Wilkerson. Traveling pulses in a stochastic neural field model of direction selectivity. * Front. Comp. Neurosci. * **6** 90 (14 p.) (2012)

P. C. Bressloff and M. A. Webber. Front Propagation in stochastic neural fields *SIAM J. Appl. Dyn. Syst. * **11** 708-740 (2012).

P. C. Bressloff. Metastable states and quasicycles in a stochastic Wilson-Cowan model of neural population dynamics. *Phys. Rev. E* **82** 051903 (2010).

P. C. Bressloff. Stochastic neural field theory and the system-size expansion. *SIAM J. Appl. Math* **70** 1488-1521 (2009).

### Adaptive neural fields and binocular rivalry

M. A. Webber and P. C. Bressloff. The effects of noise on binocular rivalry waves: a stochastic neural field model. *J. Stat. Mech.* (2012).

P. C. Bressloff and M. A. Webber. Neural field model of binocular rivalry waves. *J. Comput. Neurosci.* **32** 233-252 (2012).

Z. P. Kilpatrick and P. C. Bressloff. Binocular rivalry in a competitive neural network with synaptic depression. *SIAM J. Appl. Dyn. Syst.* **9** 1303-1347 (2010).

Z. P. Kilpatrick and P. C. Bressloff. Spatially structured oscillations in a 2D excitatory neuronal network with synaptic depression. *J. Comput. Neurosci.* **239** 1048-1060 (2010).

Z. P. Kilpatrick and P. C. Bressloff. Stability of bumps in piecewise smooth neural fields with nonlinear adaptation. *Physica D* **239** 1048-1060 (2010).

### Waves propagation in continuum neural fields

P. C. Bressloff. From invasion to extinction in heterogeneous neural fields. *J. Math. Neurosci.* **2** art. 6 (2012).

Z. P. Kilpatrick, S. E. Folias and P. C. Bressloff. Traveling
pulses and wave propagation failure in an inhomogeneous neural network.
*SIAM J. Appl. Dyn. Syst. * **7** 161-185 (2008).

S. E. Folias and P. C. Bressloff, Stimulus-locked waves and breathers in an excitatory neural network.*SIAM J. Appl. Math* **65**:2067-2092 (2005).

S. E. Folias and P. C. Bressloff, Breathing pulses in an excitatory neural network. *SIAM J. Appl. Dyn. Syst. * **3,**: 378-407(2004).

P. C. Bressloff and S. E. Folias, Front bifurcations in an excitatory neural network. *SIAM J. Appl. Math. * **65**: 131-151 (2004).

P. C. Bressloff, Traveling fronts and wave propagation failure in an inhomogeneous neural network *Physica D * **155 **:83-100 (2001).

### Mathematical models of primary visual cortex

M. Galtier, O. Faugeras and P. C. Bressloff. Hebbian learning of recurrent connections: a geometrical perspective. *Neural Comput.* **24** 2346-2383 (2012).

Shushruth, P. Mangapathy, J. M. Ichida, P. C. Bressloff, L. Schwabe and A. Angelucci. Strong recurrent networks compute the orientation-tuning of surround modulation in primate V1. * J. Neurosci.* ** 32 ** 308-321 (2012).

P. C. Bressloff and A. M. Oster. A theory for the alignment of cortical feature maps during development. *Phys. Rev. E* **82** 021920 (2010).

L. Schwabe, K. Obermayer, A. Angelucci and P. C. Bressloff. The
role of feedback in shaping the extra-classical receptive field of
cortical neurons: a recurrent network model * J. Neurosci.* ** 26 ** 9117-9129 (2006).

P. C. Bressloff, Spontaneous symmetry breaking in self-organizing neural fields. *Biol. Cybern.* **93**: 256-274 (2005).

P. C. Bressloff, Spatially periodic modulation of cortical patterns by long-range horizontal connections. * Physica D * **185**:131-157 (2003).

P. C. Bressloff and J. D. Cowan, Spherical model of orientation and spatial frequency tuning in a cortical hypercolumn. * Phil. Trans. Roy. Soc. B * **358**:1643-1667 (2003).

P. C. Bressloff and J. D. Cowan, An amplitude equation approach to contextual effects in primary visual cortex. *Neural Comput. * **14 **:493-525 (2002).

P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas and M.
Wiener, Geometric visual hallucinations, Euclidean symmetry and the
functional architecture of striate cortex * Phil. Trans. Roy. Soc. B ***40 **:299-330
(2001).

## Conferences and Workshops

Search and Exploration, Cargese Research Institute, April 25-30, 2011

SIAM Conference on Applications of Dynamical Systems, Snowbird, May 22 - 26, 2011

Spatio-Temporal Evolution Equations and Neural Fields, CIRM, Marseilles, October 24-28, 2011

Stochastic Modelling in Biological Systems, Oxford, March 18-23, 2012