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Abstract We study an excitatory all-to-all coupled net-
work of N spiking neurons with synaptically filtered
background noise and slow activity-dependent hyper-
polarization currents. Such a system exhibits noise-
induced burst oscillations over a range of values of the
noise strength (variance) and level of cell excitability.
Since both of these quantities depend on the rate of
background synaptic inputs, we show how noise can
provide a mechanism for increasing the robustness of
rhythmic bursting and the range of burst frequencies.
By exploiting a separation of time scales we also show
how the system dynamics can be reduced to low-
dimensional mean field equations in the limit N → ∞.
Analysis of the bifurcation structure of the mean field
equations provides insights into the dynamical mecha-
nisms for initiating and terminating the bursts.

Keywords Noise-induced bursting ·
Excitatory network · After hyperpolarization (AHP) ·
Slow adaptation · Mean-field model

1 Introduction

A major area of study in neurobiology is understand-
ing the dynamical mechanisms that underly the pro-
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duction of oscillations (Buzaki 2007). One particularly
interesting way rhythmic burst oscillations can arise
is through a recurrently connected network of neu-
rons possessing excitatory synapses and slow activity-
dependent depression or adaptation (Tabak and Rinzel
2005; Van Vreeswijk and Hansel 2001). Such rhythms
have been found in several brain areas including the
Pre-Bötzinger complex (PreBotC) (Smith et al. 1991)
and the developing chick spinal cord (O’Donovan
1999). In the present work we explore the role of
random synaptic fluctuations in modulating rhythmic
bursting in an excitatory neuronal network model with
slow adaptation. Specifically, we establish the following
results: (1) Independent noise input to cells can induce
very regular population-level oscillations in the aver-
aged firing rate of the neurons. (2) Noise can increase
the parameter range where rhythmic population oscilla-
tions exist, while also increasing the available frequency
range, thereby making the rhythm generator more
robust. (3) Under the assumption that the variability
of noise depends on the rate of background synaptic
inputs, we illustrate how noise can be an important
modifying component to the global network behavior.
(4) By performing an analytical reduction of the large
spiking network to a mean-field description, we reveal
the mechanism of the population burst as a bifurcation
in the mean-field model, which we show for two dis-
tinct adaptation mechanisms – one a linear, synaptically
mediated adaptation, resulting in a Hopf bifurcation,
and the other a nonlinear, calcium-mediated adapta-
tion, resulting in a saddle-node on an invariant cycle
Rinzel and Ermentrout bifurcation (SNIC). By ana-
lyzing the bifurcation structure of these mean-field
models, we establish that population-level burst oscil-
lations in excitatory networks can behave analogously
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to the Hopf or SNIC classifications of single model
neurons (Rinzel and Ermentrout 1998).

The PreBotC is a rhythmogenic network in the mam-
malian brainstem thought to control the inspiratory
phase of breathing (Smith et al. 1991). Cells in the
PreBotC exhibit synchronized bursts of action poten-
tials that together form a population-level oscillation
with periods on the order from seconds to minutes
in a slice preparation (Funk and Feldman 1995). The
rhythmogenic PreBotC cells form a synaptically con-
nected network that requires glutamatergic excitatory
neurotransmission to create the breathing rhythm (Ge
and Feldman 1998). On the other hand, inhibition
appears non-essential since the rhythm persists when
inhibition is blocked (Brockhaus and Ballanyi 1998;
Johnson et al. 2002). Many studies have focused on how
intrinsic currents in a minority population of intrinsi-
cally rhythmic bursting, so called “pacemaker” cells,
could mediate population rhythmicity (Butera et al.
1999a, b; Del Negro et al. 2001; Tryba et al. 2003. More
recently, however, there is evidence that pacemaker
bursting cells may not be necessary for the production
of the population rhythm, and it has been hypothesized
that the rhythm is an emergent network property medi-
ated by recurrent excitation (Pace et al. 2007; Feldman
and Del Negro 2006; Del Negro et al. 2002).

Developing chick spinal cord is another area where
excitatory neurotransmission plays a role in rhythmic
burst generation. In this preparation synchronized pop-
ulation burst episodes are observed between silent
periods on the order of many minutes. These episodes
are thought to be a population-level phenomenon
which is terminated through an activity-dependent
depression (Chub and O’Donovan 2001; O’Donovan
1999) and mediated through purely excitatory synapses.
The absence of inhibition is a consequence of the fact
that the chloride reversal potential in the develop-
ing nervous system is above the resting potential and
therefore GABAergic synapses are excitatory (Cupello
2003; Sernagor et al. 1995).

Modeling studies suggest that emergent synchro-
nized oscillatory network bursting is a generic property
of recurrently connected excitatory neuronal networks
with slow activity-dependent depression. This type of
bursting can induce synchronization at the single spike
level as has been shown by Tsodyks et al. (2000) in the
case of a network of predominantly excitatory leaky
integrate-and-fire (LIF) cells. These cells transiently
synchronize and then synaptically depress, effectively
decoupling the network until the depression wears off
and a population spike recurs. More recently, Loebel
and Tsodyks (2002) have shown how this network

behavior can be well captured by a low-dimensional
mean-field equation representing the population firing
rate. Van Vreeswijk and Hansel (2001) have shown
similar rhythmic population bursting in LIF model cells
coupled to a slow activity-dependent hyperpolarizing
current.

Tabak et al. (2000, 2001, 2006) have employed a form
of Wilson-Cowan mean-field equations (Wilson and
Cowan 1972) to investigate the dynamics of synchro-
nized population bursts in developing chick spinal cord.
In this model synchronization occurs at the level of the
mean firing rate of each cell rather than at the level
of individual spikes. Analysis of the mean-field equa-
tions establishes how a burst oscillation mediated by
recurrent excitation is terminated by slowly activating
synaptic depression, which then slowly deinactivates
until the next bursting episode is elicited. Recently, an
approximate derivation of the mean-field equations in
Tabak et al. (2000) has been carried out for a popula-
tion of LIF spiking neurons possessing a certain level
of disorder, either due to a spatial heterogeneity in the
excitability of each cell (as determined by an external
bias current) or due to each cell being driven by a small
amount of white noise (Vladimirski et al. in press).
Analysis of the spiking network dynamics establishes
that burst oscillations are more robust in the presence
of spatial heterogeneity due to the crucial role of a sub-
population of cells with intermediate excitability, which
are able to become active in response to input from
more excited subpopulations, thus generating sufficient
input onto the remaining less excitable cells to initi-
ate a full population burst. Spatial heterogeneity also
appears more effective than white noise in generating
spontaneous rhythmic bursting, assuming that the noise
is independent of the bias current.

Kosmidis et al. (2004) have explored the role of
noise in a computational model of PreBotC consisting
of an excitatory network of Hodgkin Huxley neurons.
All cells were identical and possessed an activity-
dependent calcium-activated potassium current that
terminates bursts and intrinsic calcium currents IL and
IT (high and low threshold activated calcium currents,
respectively) that can only produce autonomous burst-
ing in synaptic isolation (i.e. pacemaker activity) with
a sufficiently large depolarizing current. The authors
show how noise-induced population bursts can occur
below the threshold of autonomous pacemaker burst-
ing, with the oscillations persisting over a finite range
of white noise current input strengths (variance). The
oscillations appear at a critical level of noise, beyond
which increasing the noise produces a progressive in-
crease in the burst frequency along with a decrease
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in the burst amplitude until bursting stops when the
amplitude reaches zero for sufficiently high levels of
noise.

Many theoretical studies have focused on how
random membrane fluctuations can affect cellular ex-
citability and firing rate (Destexhe et al. 2001; Lindner
et al. 2004). In these studies the random current inputs
to the excitable cells are taken to be Gaussian white
noise or near-white noise processes. White noise
inputs can produce coherent spiking in single cells (see
Lindner et al. 2004 for a review). In excitable neuronal
models such as LIF and relaxation oscillators, it has
been found that there is an optimal white noise ampli-
tude, termed coherence resonance (CR), that produces
the most regular spiking statistics, usually indicated by
the height and sharpness of the power spectrum (Gang
et al. 1993; Rappel and Strogatz 1994) and is found to be
a generic property of excitable systems possessing fast
and slow time scales (Pradines et al. 1999). White-noise-
induced oscillations have also been observed at the net-
work level, in which there is an optimal noise strength
that causes the most coherent spike–synchronization
(Rappel and Karma 1996; Pham et al. 1998; Han et al.
1999). If the network size is made sufficiently large
(N → ∞) then the coherence can be described in
terms of a deterministic mean-field model (Kurrer and
Schulten 1995; Pikovisky and Ruffo 1999). Recently,
mean-field equations have also been derived for a
large-N excitatory spiking network of VSLI model
(non-leaky IF model) cells possessing a slow activity-
dependent hyperpolarizing current (AHP) in addition
to white noise inputs (Gigante et al. 2007). In this
model, noise is set to a fixed value and a population
firing-rate is derived via the numerical computation
of a truncated set of eigenfunctions for the associated
nonlinear Fokker-Planck equation (Mattia and Giudice
2002). Population-level burst oscillations are found to
depend on the synaptic coupling and the strength of the
AHP but the level of noise itself was not investigated
as a control parameter.

Motivated by the above studies we present a sys-
tematic analysis of the effects of synaptic noise on the
production of rhythmic synchronized bursting in an
excitatory network with slow adaptation, where ran-
dom fluctuations in network activity kindle an ever-
increasing excitation leading to a burst; the burst is then
terminated by a slow AHP current resulting in a well-
defined rhythmic pattern. Note that in this model the
burst phenomena is purely network driven. There are
no intrinsic voltage-gated currents that autonomously
elicit bursting in isolated cells. One main conclusion
from this analysis is that Poisson–like synaptic inputs,

which cause both noise strength and excitability to
increase together, can provide a greater range of burst
frequencies compared to the case where no noise is
present.

For simplicity, we consider a globally coupled net-
work of N LIF neurons with slow AHP currents and
synaptically filtered background noise. We assume that
the membrane time constant is fast relative to the
synaptic and AHP time scales so that we can reduce the
complex spiking model to a firing rate model through
short-time averaging. Using stochastic analysis we then
reduce the rate–based network equations to a low-
dimensional mean field equation in the large-N limit.
We show through numerical simulations that the mean-
field equations match well the behavior of the full large-
N spiking model. We find that the mean-field system
exhibits a non-oscillatory, low firing-rate “resting” state
for sufficiently weak noise and bias current. The system
exhibits oscillations for an intermediate range of noise
strengths and input currents as indicated by bifurcation
analysis of the mean-field system. The existence of
oscillations over this parameter range is analogous to
population-level coherence resonance. In this paper we
consider two distinct forms of AHP current that both
serve the purpose of burst termination, but produce
different bifurcation mechanisms to bursting. The first
models a linear synaptically activated AHP current in
which bursting occurs via a Hopf bifurcation. The sec-
ond models a nonlinear calcium–dependent potassium
current in which bursting occurs via a saddle–node on a
limit cycle (SNIC) bifurcation.

While the mechanisms for AHP current activation
is quite diverse (e.g. voltage, synaptic, or second-
messenger activated, see Hille 2001), the particular
AHP schemes are chosen so that (1) isolated cells
do not exhibit autonomous bursting in the absence
of synaptic input, thus showing that the population
rhythm is an emergent network-level phenomenon,
and (2) reveal that the excitability mechanism of the
network system can take the Hopf and SNIC forms
analogous to that observed in single-neuron excitabil-
ity (see Rinzel and Ermentrout 1998). The onset of
oscillations through the Hopf mechanism emerge at a
finite frequency. On the other hand, SNIC oscillations
emerge through a homoclinic cycle, exhibit arbitrarily
long periods near the bifurcation, and transient super-
threshold inputs can produce arbitrarily long latencies
to complete the oscillation. Voltage-gated AHP mech-
anisms are not studied in the present work because
the LIF model is not a realistic model of nerve mem-
brane voltage. However, we postulate that one could
construe a voltage-gated AHP model in combination
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with a more realistic model of membrane voltage that
exhibits network level bursting similar to the two AHP
models presently studied. For parsimony, we leave such
prospects for another time.

2 Methods

2.1 Derivation of the N-cell spiking network

Consider a globally coupled network of N model neu-
rons labeled i = 1, . . . , N. Each neuron is described by
a somatic membrane voltage variable vi that captures
the spiking dynamics of the cell. The membrane voltage
receives a synaptic input s(t), a synaptic noise current
xi(t), a bias current Iv , and an activity-dependent hyper-
polarization (AHP) hi current. The voltage is modeled
with LIF dynamics as

τv

dvi

dt
= −vi + s − hi + Iv + xi, vi < θ. (1)

When vi is below the spiking threshold θ , the cell has
a linear response to the total input s − hi + Iv + xi.
Immediately after firing, vi is reset to a hyperpolarized
level vr < 0 for a refractory time τr, during which the
cell is held “offline” such that the synaptic inputs and
the bias current Iv have no affect on the vi dynamics. In
order for all terms in Eq. (1) to have the same physical
units, we assume that the voltage is scaled by a unit
resistance.

The synaptic dynamics are modeled as an “alpha”
function response to each spike event in the network
with time constant τs. We denote the list of spike events
elicited by the ith cell by Si = {ti

j}∞j=1. Hence, the synap-
tic dynamics are

τs
ds
dt

= − s + w (2)

τs
dw

dt
= − w + as

N

N∑

i=1

∑

j∈Si

δ
(

t − t i
j

)
, (3)

where as is a positive parameter and δ(t) is the Dirac
delta function. For simplicity, we take the network
to be homogenous and globally coupled. Thus, each
cell in the network receives the same synaptic input
s(t). Figure 1 depicts schematically the network setup
where the i = 1 . . . N all-to-all coupled cells produce
the population synaptic activity s(t), and an outside
neural structure provides randomly fluctuating synaptic
currents to the population.

The synaptic noise xi(t) is modeled as an “alpha”
function response to a Poisson input spike train μi(t) =∑

j δ(t − ti
j), where the inputs ti

j, j ∈ Z are statistically

vi (t),  hi (t)

i = 1,...,N

xi (t)

Fig. 1 Schematic diagram of the all-to-all coupled network de-
fined by voltage variables vi(t) and adaptation variables hi(t) (and
other variables not shown), for i = 1 . . . N indicated by the lower
circular array of open circles. The exogenous synaptic input xi(t)
is indicated by the gray circles above

independent for each i. We conceive of this synaptic
noise as arising outside the network as an exogenous
input from other neural sources. Hence, similar to
Eqs. (2) and (3), the synaptic kinetics processes the
synaptic noise input as

τx
dxi

dt
= − xi + yi (4)

τx
dyi

dt
= − yi + axμi(t), (5)

where upon each Poisson event, the y variable is in-
creased by ax, representing the synaptic strength of the
input. Let q(y, t) represent the probability density that
yi = y at time t. The dynamics of this distribution due
to the Poisson input can be described by the master
equation

τx
∂q(y, t)

∂t
= ∂

∂y

[
yq(y, t)

] + ν
[
q(y − ax, t) − q(y, t)

]
,

(6)

where the first term on the right-hand side of Eq. (6)
represents the negative gradient of the probability flux
given no spike input occurs, and the second term repre-
sents the probability shift of y by ax at a rate ν that the
spike events do occur. If we assume that the input to
each cell is weak so that ax is small, then we can Taylor
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expand the second term in Eq. (6) to second order in
ax, leading to the Fokker–Planck equation

τx
∂q(y, t)

∂t
= − ∂

∂y

[
(νax − y)q(y, t)

] + νa2
x

2

∂2

∂y2

[
q(y, t)

]

(7)

The attracting steady state solution to Eq. (7) is a
Gaussian distribution q(y) with mean νax and vari-
ance νa2

x/2τx. The corresponding steady-state probabil-
ity density for xi = x, which we denote by p(x), is also
Gaussian with the same mean but half the variance.
This follows from approximating Eqs. (4) and (10) by
a multidimensional Ornstein-Uhlenbeck process (see
below). Hence, the synaptically driven noise x provides
a constant input current νax to the membrane voltage
equation and a fluctuating part with variance σ 2/4
where

σ =
√

ν

τx
ax (8)

For simplicity, we will absorb the mean current νax into
the membrane bias current by performing the shift x →
x − νax and setting

Iv = I0 + νax. (9)

for some fixed background I0. Under these approxima-
tions, we can replace Eqs. (4) and (5) by the multidi-
mensional Ornstein-Uhlenbeck process

τx
dxi

dt
= − xi + yi (10)

τx
dyi

dt
= − yi + σ

√
τxξi(t) (11)

where ξi(t) is a white noise process with 〈ξi〉 = 0,

〈ξi(t)ξ j(t′)〉 = δ(t − t′)δi, j.
In this paper we model the noise according to

Eqs. (10) and (11) and investigate how rhythmic burst-
ing depends on the level of cellular excitability (as de-
termined by the bias current Iν) and the noise strength
σ , both treated as independent parameters. We then
apply our results to the particular case of Poisson in-
puts, for which variation in one of the control para-
meters ν or ax generates a natural path through Iv-σ
parameter space.

The activity-dependent hyperpolarizing (AHP) cur-
rent hi is assumed to have slow kinetics relative to
other time scales in the model. Taken together with the
aforementioned time-scale separation between soma
and synapse, we have τv 	 τs, τx 	 τh where τh denotes
the time constant for AHP activation. We consider two
distinct activating schemes for the AHP current, which
differ in their underlying biophysical interpretation
and also produce distinct mechanisms for population

burst rhythmogenesis (see Section 3). The purpose
behind either type of AHP current is that elevated
activity, defined in terms of prevalence of spiking or
the consequent synaptic activity s(t), will slowly acti-
vate the AHP current, thereby depressing the elevated
activity. The first scheme is modeled as a synaptically
activated AHP current, in which the synaptic inputs s(t)
and xi(t) produce spiking in the voltage equation at a
short time scale and slowly activate hi according to the
linear equation

τh
dhi

dt
= −hi + ah(s + xi), (12)

where ah is a positive constant. This simple activation
scheme loosely models the slow kinetics associated with
a synaptically activated matabotropic outward current
(see Jonas and Kaczmarek 1999, for a review).

The second AHP model we examine possesses a
more complicated activation scheme based upon a
calcium-activated potassium current. We now assume
that each time a cell fires a bolus ac of calcium enters the
cell and the resulting increase in calcium concentration
activates the AHP current. Let ci denote the intracom-
partmental calcium level of the ith cell. The nonlinear
AHP dynamics is then

τh
dhi

dt
= − hi + h∞(ci) (13)

τc
dci

dt
= − ci + ac

∑

j∈Si

δ
(

t − t i
j

)
. (14)

where 1/τc is the rate at which calcium is cleared from
the cell and h∞(c) is a smooth sigmoidal activation
curve of the form

h∞(c) = ah

exp(−β(c − γ )) + 1
(15)

Here β and γ are the gain and threshold of activation,
respectively. Figure 2 illustrates the activation scheme
for the linear synaptically activated AHP given by
Eq. (12) (Fig. 2(a)) and the nonlinear calcium-mediated
AHP given by Eqs. (13) and (14) (Fig. 2(b)).

2.2 Large-N limit: reduction to a mean-field description

2.2.1 Mean-field model for linear synaptic AHP

In order to derive a mean-field model, we first assume
that the total input ui ≡ s − hi + xi + Iv in Eq. (1) is
slowly varying relative to the fast membrane dynamics
as specified by τv . For simplicity we set the threshold
to unity (θ = 1) and the reset level to negative unity
(vr = −1). Solving the LIF Eq. (1) for constant input ui
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Synaptic inputHyperpolarizing
current
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h(t) s(t) + x(t)
Synaptic inputHyperpolarizing

current

Spike initiation

(a)

(b)

Fig. 2 Schematic diagram of the two different AHP models. (a)
Linear synaptically activated AHP current evolving according to
Eq. (12). (b) Non-linear calcium-mediated AHP current given by
Eqs. (13) and (14)

shows that each neuron fires spikes at a uniform rate
f (ui) with

f (u) = 1

τr + ln
(

u+1
u−1

)�(u − 1), (16)

where � is the Heaviside step function. When ui is
time–dependent but slowly varying, we can still use
f (ui) to represent the short-term average firing rate of
the neuron. The assumption that synaptic inputs are
slowly varying also means that we can perform a short-

term time average of Eq. (3) and replace the input spike
trains by a mean firing rate according to

1

N

N∑

i=1

∑

j∈Si

δ
(
t − ti

j

) → 1

N

N∑

i=1

f (ui). (17)

There are two factors that make this a reasonable
approximation. First, there is the separation of time–
scales τv 	 τs, τx. Second, in the case of a sufficiently
large network, population averaging contributes to
smoothing out the synaptic input s, assuming that the
neurons fire asynchronously. It follows that the approx-
imation Eq. (17) will tend to break down at low spike
rates and small N. Finally, the separation of time-scales
(τh � τs, τx) allows us to adiabatically eliminate xi(t)
from Eq. (12) (see Gardiner 2004). That is, the slow
variable hi cannot effectively track the relatively fast
fluctuations of xi(t) and we can replace xi by its mean
value 〈xi〉 = 0 in the h Eq. (12).

It follows from the above analysis that in the large–
N limit, the population dynamics reduces to the set of
mean field equations

τh
dh
dt

= − h + ahs (18)

τs
ds
dt

= − s + w (19)

τs
dw

dt
= − w + as〈 f 〉. (20)

where 〈 f 〉 represents the population (ensemble) aver-
age of the firing rates of each cell

〈 f 〉 = lim
N→∞

1

N

N∑

i=1

f (s − hi + Iv + xi)

=
∫

f (s − h + Iv + x)p(x)dx. (21)

Here p(x) is the steady–state Gaussian distribution
for the Ornstein–Uhlenbeck noise process given by
Eqs. (10) and (11):

p(x) =
√

2

πσ 2
e−( 2x

σ )
2

. (22)

Note that in the large–N limit we have used ergod-
icity to replace the sum over the N time–dependent
random variables xi by an integral over the stationary
distribution p(x). Hence, the ensemble averaged firing
rate is shaped by noise through a convolution of f
with a Gaussian distribution Eq. (22), where the noise
strength σ controls the width of the Gaussian.
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2.2.2 Mean-field reduction for nonlinear
calcium-activated AHP

In the case of calcium-activated AHP, the hi dynam-
ics cannot so easily be adiabatically reduced because
of the presence of nonlinearities. Carrying out time–
averaging as in the previous example leads to the sto-
chastic activation dynamics

τh
dhi

dt
= − hi + h∞(ci) (23)

τc
dci

dt
= − ci + ac f (s − h + Iv + xi). (24)

We see that stochastic fluctuations in the calcium con-
centration driven by synaptic noise can be amplified
by the nonlinearities f and h∞. Such an effect will
be particularly strong when ci is close to the activa-
tion threshold γ and the gain β is large, see equation
Eq. (15). In order to carry out a mean–field reduction,
we need to average these equations with respect to
xi under the approximations 〈 f (I + xi)〉 = f (〈(I + xi)〉)
and 〈h∞(ci)〉 = h(〈ci〉). Combining this with averaging
the synaptic equations as in the previous case, we obtain
the following mean-field model:

τh
dh
dt

= − h + h∞(c) (25)

τc
dc
dt

= − c + f (s − h + Iv) (26)

τs
ds
dt

= − s + w (27)

τs
dw

dt
= − w + as〈 f 〉. (28)

In spite of the severe approximations involved in car-
rying out this reduction, we find numerically that the
mean–field model captures well the dynamics of the
full spiking model in the large-N limit (see Section 3).
Note that the mean–field analysis of (Vladimirski et al.
in press) handles nonlinearities in a similar fashion.

2.2.3 Stability analysis of the mean-field equations

We now have two different mean-field models, de-
pending on the choice of linear activation Eq. (18) or
nonlinear activation Eq. (25). In Section 3 we show that
these two systems exhibit noise–induced burst oscilla-
tions via distinct bifurcation mechanisms. The starting
point for the bifurcation analysis is to consider the
stability of steady–state solutions. Recall from Eq. (16)
that the firing rate function f is monotonic increasing,
implying that 〈 f 〉 is also a monotonically increasing

sigmoidal function of s − h. In the linearly activated
case Eq. (12), solving for a steady state (h∗, s∗, w∗),
where h∗ = ahs∗, allows a reduction to a single-variable
fixed-point equation

0 = −s∗ +
√

2

πσ 2

∫
f (z)e−2[ z−((1−ah)s∗+Iv )

σ
]2

dz. (29)

The second term in Eq. (29) intersects the straight line
s = s∗ to form one, two, or three steady state solutions,
depending on the exact shape of f and σ . For nota-
tional simplicity we set kj = 1/τ j, for j = u, h, s. We
linearize Eqs. (18–20) about the fixed point by setting
z = z∗ + zeλt for z = (h∗, s∗, w∗)T and expanding to
first order in z. This generates the linearized system

dz
dt

=
⎛

⎝
−kh ahkh 0

0 −ks ks

−ks A ks A −ks

⎞

⎠ z, (30)

where

A = 4
√

2as

σ 3
√

π

∫

R

xf (s − h + Iv + x)e−2
(

x
σ

)2

dx, (31)

The real part of the eigenvalues of the linearized system
Eq. (30) indicate the stability of the fixed point.

In the nonlinearly activated system Eq. (13) the
method is much the same as above except the fixed
point z = (h∗, c∗, s∗, w∗)T is defined by

h∗ = h∞ ◦ f (s∗ − h∗ + Iv), (32)

where ◦ represents functional composition, and

0 = −s∗ +
√

2

πσ 2

∫
f (z)e−2[ z−(s∗−h∗+Iv )

σ
]2

dz, (33)

and the linearized equation for z is

dz
dt

=

⎛

⎜⎜⎝

−kh khh′∞ 0 0
−kc f ′ −kc kc f ′ 0

0 0 − ks ks

−ks A 0 ks A − ks

⎞

⎟⎟⎠ z, (34)

where the prime indicates derivative in the input vari-
able evaluated at the fixed point z.

2.3 Numerical methods for the spiking model

Numerical simulations are implemented using the
MATLAB (Mathworks inc.) computing environment
with a simple forward Euler variable time step algo-
rithm for the hi, s, w, xi, and yi variables, where the yi

are integrated stochastically (see Gardiner 2004). For
simplicity we set the threshold to unity (θ = 1) and the
reset level to negative unity (vr = −1). We also choose
τv = 1ms as a baseline time scale for the model. To
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correctly model the refractory period, upon spiking, we
reset vi to vr − 1 and define the vi dynamics to be

dvi

dt
= 1

τr
, vi < vr. (35)

Hence, upon spiking vi will increase linearly to vr in
time τr. Let u j

i =s−h j
i +x j

i + Iv denote the total input to
the ith cell at the jth discrete time step and let v

j
i denote

the corresponding membrane potential. We treat u j
i as

constant on a short time scale and calculate analytically
the time to spike T j

i for each v
j
i according to

T j
i =

{
ln

(−v
j
i +Iv+u j

i

u j
i +Iv−1

)
, u j

i + Iv > 1

∞, otherwise
(36)

We choose an upper and a lower bound on time steps
tmin and tmax. For the j th iteration of the algorithm a
time step tj is chosen by minimizing the following set

tj = min
{
tmax,

{{
T j

i

}N
i=1|T j

i > tmin
}
,
}
, (37)

where the maximum time step is chosen small enough
to ensure sufficient accuracy of the input variables, and
the minimum time step is chosen to provide sufficient
temporal fidelity of spike times. Those T j

i that are
smaller than tj will fire during the time step and
their somatic voltages are advanced to v

j+1
i = vr − 1 +

(tj − T j
i )/τr for the next time step. For those that

do not fire but are above vr (they are “online”) the
voltage is advanced by the analytical solution of the LIF
equation,

v
j+1
i = e−t jv

j
i + (

1 − e−t j
) (

u j
i + Iv

)
(38)

Those v
j
i that are below vr − t j/τr, so that they are

offline and stay offline during the time step tj, are ad-
vanced to v

j+1
i = v

j
i + tj/τr. Finally, those v

j
i that will

come online during the interval tj (v j
i > vr − tj/τr)

are then advanced to

v
j+1
i = e−zvr + (1 − e−z)

(
u j

i + Iv

)
, (39)

where z = tj − τr(vr − v
j
i ). Upon each time step, the

number of spikes k that occur during tj is then fed into
the synaptic integrator

w j+1 = −w j

τs
+ as

τs
k. (40)

This algorithm accurately keeps track of spike times
and offline-to-online transitions assuming the ui are
constant over each short time step. The algorithm is
based on Shelly and Tao (2001) second-order numerical
scheme of integrate–and–fire cells, which approximates
the synaptic response times as in Eq. (40) (while still

guaranteeing second-order convergence). However, we
have replaced their second-order Runge-Kutta time
step and backward linearly interpolated spike time esti-
mate with the analytical solution Eqs. (38–39) because
in our model the inputs change slowly.

3 Results

3.1 Linear synaptically activated AHP

Numerically solving the large-N LIF spiking network
given by Eqs. (1–3), Eqs. (10) and (11) with linear syn-
aptically activated AHP currents, Eq. (12), establishes
that for an appropriate choice of parameters the net-
work can produce regular spontaneous burst oscilla-
tions. Figure 3 illustrates these synchronized population
bursts for a network of N = 500 neurons. The top panel
(Fig. 3(a)) shows the network synaptic activity s(t) for
the stochastic spiking model (solid line) and the mean-
field model (dashed line) for N = 500 cells. Figure 3(b)

Fig. 3 Stochastic simulations of the spiking network model
for N = 500 and a linear synaptically activated AHP current,
Eqs. (1–3), (10), (11) and (12). Corresponding mean field solution
of Eqs. (18–20) is shown by dashed curves. (a) s(t) trace, (b)
hi(t), i = 1 . . . N traces are depicted as thin solid lines; mean-
field h depicted by a gray dashed line. (c) shows a single voltage
trace of the stochastic spiking model. The neuron spikes upon
reaching threshold (θ = 1) and is reset to −2 and held offline for
a refractory time τr during which it increases to vr and is put back
online. Notice the stochastic voltage fluctuations between bursts
and the variable burst duration at the single-cell level, in addition
to the random smaller spiking events in between the main bursts.
The parameters are τv = 1ms, τh = 500ms, τs = 5ms, τx = 5ms,
Iv = 0.95mv, σ = 0.25, vr = −1, θ =1, τr =1ms, as =3, and ah =1
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shows all the hi(t) variables as thin solid lines clustered
tightly together throughout every oscillation cycle. The
mean-field h(t) is indicated by the grey dashed line. The
mean-field model matches well with the large-N spiking
model, although the oscillation period is roughly 3-6%
longer than the stochastic simulations. Note that the
hi(t) variables have a small variation over a burst cycle
indicating that the adiabatic elimination is a reasonable
approximation. The population-level synaptic variable
s(t) is also very smooth. Examination of a single voltage
trace (Fig. 3(c)) indicates that at the single cell level the
burst duration is variable and smaller spiking episodes
randomly occur in the inter-burst cycle. To illustrate
the randomness of the single–cell spiking behavior,
we show a single burst cycle in a raster plot for 20
cells from the N = 500 in Fig. 4. The network spiking
initially climbs slowly during a kindling stage due to
the slow decay of the AHP current. Once the spiking is
high enough, the network accelerates quickly through
positive synaptic feedback to a high rate of spiking
(the burst) which then terminates to a quiescent state
through the activation of the AHP. The decay of AHP
triggers a subsequent kindling stage, thus forming an

Fig. 4 Stochastic simulation of the network model with linear
AHP given by Eqs. (1–3), (10) (11) and (12) for N = 500 and σ =
0.25. (a) Raster plot of 20 of the 500 cells. Individual spike times
(abscissa) are indicated by a single black dot for the i = 1 . . . 20
cells (ordinate). (b) Spike counts for the N = 500 network in 1 ms
bins revealing that the network is asynchronously activated on
a 1 ms time scale. (c) Single voltage trace v(t) of the i = 1 cell.
Notice the small spiking events that occur preceding prior to the
main population burst. All other parameters are the same as in
Fig. 3

oscillation. Notice that in the pre-burst kindling stage
multiple spike events occur in quick succession due to
the slowly fluctuating noise.

The population burst oscillation can be controlled
by noise. Figure 5 plots the synaptic s(t) variable of
the large-N spiking model (solid line) and the mean-
field reduction (dashed line) over nearly two orders of
magnitude of noise levels from σ = 0.025 to σ = 0.95.

For the particular choices of model parameters we
observe that for very low noise levels (Fig. 5(a); σ =
0.025) no burst oscillations are observed. As noise
is increased, burst oscillations are seen to emerge in
both the spiking model and the mean-field model.
Figure 5(b) shows that there is a discrepancy between
the precise onset of existence of the burst oscillations
between the two models. Both Figs. 3 and 5 suggest
that the mean-field model is slightly less active and un-
derestimates the burst frequency of the spiking model.
As the noise level is increased to large noise levels,
both models increase their burst frequency and their
amplitudes diminish. At sufficiently high noise levels
neither the mean-field model nor the spiking model
support burst oscillations. Figure 6 summarizes the re-
lationship between noise and burst frequency for the

Fig. 5 Control of oscillations by noise for linear AHP model. The
population synaptic input s(t) for the stochastic spiking model
(solid line) and the mean-field model (dashed line) over nine
noise strength levels spanning two orders of magnitude ((a) to
(i)). At low noise (σ = 0.025; (a)) no oscillations are observed.
As noise is increased, burst oscillations emerge and increase in
frequency. At high noise the frequency speeds up and the am-
plitude is squashed. The mean-field model matches well with the
qualitative behavior of the spiking model. All other parameters
are the same as in Fig. 3
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Fig. 6 The population burst frequency for the stochastic spiking
model with linear AHP (solid line) and the corresponding mean-
field model (ball-linked line) over 18 noise strength levels span-
ning two orders of magnitude from σ = 0.025 to σ = 0.85. There
exists a window of noise levels that support oscillations. Within
that window frequency increases with increasing noise. The
mean-field model predicts well the behavior of the spiking model,
with a 3–6% frequency difference. All other parameters are the
same as in Fig. 3

spiking model and mean-field model over a similar
range of noise levels as shown in Fig. 5.

Burst oscillations can also be controlled by the ap-
plied bias current Iv . Figure 7 shows the variation of Iv

for a fixed σ = 0.45.
At low current levels no oscillations are observed

and the network is in a low activity steady state
(Fig. 7(a)). Increased bias current produces oscillations,
and the burst oscillation frequency increases with in-
creased current (Figs. 7(b-f)). At sufficiently high cur-
rent levels the system oscillations disappear and the
network is now in a high activity steady state (Fig. 7(g)).

We find that the presence of noise can increase the
available frequency range of burst oscillations of the
system as Iv is varied. Figure 8 shows the firing rate
(Hz), indicated by grayscale in (Fig. 8(a)), as a func-
tion of both the bias current Iv (abscissa) and noise σ

(ordinate).
For this figure the shaded patch associated with a cer-

tain firing rate corresponds to the parameter pair asso-
ciated with the lower left vertex of each grid square. For
low noise levels (σ = 0.025) a sweep through increasing
bias currents can achieve a limited range of firing rates,
from approximately 0.5 to 0.75 Hz, as shown by the
solid dotted black line in Fig. 8(a) and (b). However,
linearly increasing the noise with the bias current as in
the case of Poisson background inputs, see section 2.1.1,
can produce firing rates in a much wider range. This is
indicated by the open circled line in Fig. 8(a) and (b),
which shows the frequency varying from approximately

Fig. 7 Varying bias current in linear AHP model. The population
synaptic input s(t) for the stochastic spiking model (solid line) and
the mean-field model (dashed line) over seven bias current levels
((a) to (g)) for a fixed noise level σ = 0.45. For sufficiently low
noise no oscillations are observed. As current is increased, burst
oscillations emerge and increase in frequency. At sufficiently high
current the oscillations disappear but with no accompanying am-
plitude modulation, unlike Fig. 5 where we varied noise strength.
The mean-field model matches well with the qualitative behavior
of the spiking model. All other parameters are the same as in
Fig. 3

0.5 to 2.5 Hz, corresponding to an eight fold increase
in available frequencies compared to varying current
alone with very low noise. Thus, the inclusion of noise
in the system increases the robustness of the oscillation.

The slight overestimation of the period by the mean-
field model shown in Figs. 3 and 5 was observed for any
parameter choices that elicited burst oscillations. The
discrepancies between the mean-field model and the
large-N spiking model are due to a number of factors
that are neglected in the derivation of the mean-field
model. (a) Fluctuations in the slow activation variable
hi(t) driven by the synaptic noise xi(t), see Eq. (12). (b)
As mentioned earlier, at low firing rates a scalar firing
rate description of spike activity breaks down because
temporal averaging of spike emission must be carried
out over long time scales. At higher firing rates this will
not be a problem. This is supported by the observation
the mean-field model captures very well the shape of
the spike model burst at high firing rates, but not
as well at low rates. (c) For finite N, the population
average 〈 f 〉 of Eq. (21) randomly fluctuates about the
ensemble average over the stationary distribution p(x).
Reduction of network size produces irregular burst
amplitudes and periods (data not shown). All of the
preceding factors introduce discrepancies between the
mean-field equations and the spiking model. The value
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Fig. 8 (a) The population burst frequency for the mean-field
model with linear AHP, indicated by greyscale (right) as a func-
tion of the bias current Iv (abscissa) and noise σ (ordinate). (b)
Fine grained burst rate as a function of Iv (solid dotted line)
with σ = 0.025 (black dot path in (a)), and as a function of both
Iv and σ scaled together: σ(Iv) = 0.025 + (1.47 − 0.025)(Iv −
0.95)/(1.47 − 0.95) (open circled dotted line; path shown in (a)).
All other parameters are the same as in Fig. 3

of deriving the mean-field equations, however, does
not lie in reproducing the spiking model precisely, but
in permitting mathematical analysis of the dynamical
mechanisms that produce bursting.

We now focus on the bifurcation structure of the
mean–field Eqs. (18–20). We proceed by projecting
the solution of these equations onto a two-dimensional
submanifold along with the projected null surfaces to
gain insight into the system behavior. Figure 9 shows
the projected solution (thick solid line) in the s-h phase
plane along side the projected s null surface (thin solid
line) and h null surface (thin dashed line) for four
noise levels (Fig. 9(a–d)). For low noise levels the
system settles onto a stable fixed point representing a
“silent” or low activity state; the inset in Fig. 9(a) sug-
gests that the stability of the fixed point is stable.
Panel (b) of Fig. 9 reveals that large enough noise
can produce deterministic oscillations. Geometrically,
the oscillation emerges as the leftmost local minimum
of the projected s null surface elevates with respect
to the fixed h null surface. As the intersection of the
surfaces moves rightward with increasing σ , it appears
to become unstable. By numerically calculating the

Fig. 9 Varying noise in the phase plane for linear AHP model.
Projected mean-field dynamics in the s–h plane for four noise lev-
els (a–d) and fixed bias current Iv = 0.95. The mean-field solution
(thick solid line) evolves from an initial condition marked by a
dot (·). For low noise ((a), σ = 0.05) the system settles into a low-
activity fixed point indicated by the intersection of the projected
null surfaces (see inset) of s and h (thin solid line and thin dashed
line, respectively). With increased noise ((b), σ = 0.35) a large
amplitude oscillation emerges. At σ = 0.75 ((c)) the oscillation
amplitude diminishes. (d) At high noise σ = 0.95 there exists a
stable spiral. The same parameters are used as in Fig. 3

eigenvalues of the linearized system about this fixed
point as in Eq. (30), we find that the real part of a
single complex eigenvalue pair goes from negative to
positive if noise is elevated above a certain threshold.
The first Lyapunov coefficient (see Kuznetsov 2004)
at this bifurcation point is positive. Hence, the fixed
point destabilizes in a subcritical Hopf bifurcation.
An analogous mechanism of rhythmogenesis occurs
in two-variable models of single-cell excitable mem-
branes such as the Fitzhugh-Nagumo equations and the
Morris-Lecar equations, both of which are examples of
relaxation oscillators (Izhikevich 2007). Hence, during
noise–induced population-level rhythmic bursting the
globally coupled excitatory network acts like a low-
dimensional relaxation oscillator. As the noise level
is further increased the system undergoes a super-
critical Hopf bifurcation at σ = 0.95, beyond which
the network settles into a stable spiral (see inset of
Fig. 9(d)).
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Next we probe the mean-field system in the pro-
jected phase plane as we vary Iv and keep the noise
fixed at an intermediate noise level. As suggested by
Fig. 7, we find that the oscillation exists over a finite
range of bias currents. Figure 10 shows the projected
s–h phase plane over four bias currents. For low bias
current (Fig. 10(a)) the system settles into a low-
activity fixed point indicated by the intersection of the
projected null surfaces (see inset) of s and h (thin
solid line and thin dashed line, respectively). With in-
creased current (Fig. 10(b)) a finite amplitude oscilla-
tion emerges that persists over a range of values of Iv

without a significant change in amplitude (Fig. 10(c)).
At sufficiently high bias currents (Fig. 10(d)) there
exists a high-activity stable fixed point analogous to
the low-activity resting state at low currents. Stability
analysis of the fixed point over this parameter range
shows that initiation and termination of bursting both

Fig. 10 Varying current in the phase plane for linear AHP
model. Projected mean-field dynamics in the s–h plane for four
bias current levels (a–d) and fixed noise σ = 0.45. The mean-
field solution (thick solid line) evolves from an initial condition
marked by a dot (·). For low bias current ((a), Iv = 0.8) the
system settles into a low-activity fixed point indicated by the
intersection of the projected null surfaces (see inset) of s and h
(thin solid line and thin dashed line, respectively). With increased
current ((b), Iv = 0.9) a large amplitude oscillation emerges. At
Iv = 1.25 (c) the oscillation amplitude in s does not change much.
(d) At high current Iv = 1.45 there exists a high-activity stable
fixed point analogous to the low-activity state for low current. All
other parameters are as in Fig. 3

su
p

erc
ri

ti
ca

l 
H

o
p

f

s
u

b
c
r
it

ic
a
l H

o
p

f

s
u
b
c
r
it

ic
a
l 
H

o
p
fBautin point

Bautin point

Bifurcation manifolds in current-noise space

low-activity

non-oscillatory 

state

high-activity

non-oscillatory

state

high-activity

non-oscillatory

state

high-activity

non-oscillatory

state

Fig. 11 Bifurcation diagram in Iv (abscissa) and noise σ (or-
dinate) with all other parameters as in Fig. 3. Burst oscillations
exist in the interior of the region bounded by subcritical (solid
lines) and supercritical Hopf curves (dashed lines), which meet
at Bautin codimension-two bifurcation points (open circles). The
dotted lines represent some of the paths in parameter space that
have been explored in the above analysis, see Figs. 5, 8, and 7,
correspond to the vertical, diagonal, and horizontal dotted lines,
respectively

occur via a subcritical Hopf bifurcation. Figure 11 il-
lustrates the bifurcation results from Figs. 8, 9, and 10
in the Iv-σ parameter plane. The lower left corner,
when noise and current are low, corresponds to the
low-activity, non oscillatory “resting” state. Increasing
noise or current can produce burst oscillations via a
subcritical Hopf bifurcation where the state of the sys-
tem enters the inner region encircled by Hopf bifur-
cation manifolds. Along the manifolds there are two
codimension two Bautin bifurcation points separating
supercritical Hopf (dashed line) and subcritical Hopf
(solid line) boundaries. Moving to the right in this
parameter space puts the system in a non oscillatory
“high” activity state. The thin dotted lines represent
the paths in parameter space that have been explored
in the above analysis contained in Figs. 5, 8, and 7
corresponding to the vertical, diagonal, and horizontal
dotted lines, respectively.

3.2 Nonlinearly activated AHP results

Numerical simulations of the spiking model Eqs. (1–
3) with nonlinear activation of h (Eqs. (13) and (14))
establishes that oscillations exist for an appropriate
set of parameters as shown in Fig. 12. As before, the
mean-field model matches well the burst shape and
period (Fig. 12(a)). Figure 12(b) shows all of the AHP
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variables h(t) (thin solid lines) and a single c1(t) trace of
the spiking model (solid line), where the jagged c1(t)
is due to ac/τc discrete jumps upward corresponding
to influx due to spike events from the cell in question.
The mean field approximation (dashed lines) matches
well, but for the c(t) variable it only captures mean-
value-like behavior because spikes are not explicitly
modeled in the mean-field model. Just as in the linearly
activating AHP model the single voltage spiking traces
(Fig. 12(c)) reveal small spiking events in the run up
to the large bursting events. Note that due to the non-
linear activation the variance of the hi(t) traces varies
through the burst cycle, where during the silent state
the AHP traces coalesce, and during the burst the traces
disperse maximally at the peak of bursting. As we shall
see, the mean-field approximation breaks down if the
dispersion of the AHP traces is too great.

Just as with the linear AHP model, the modulation
of noise strength of the nonlinear model can con-
trol the existence and period of the burst oscillations.
Figure 13 reveals that at low noise levels burst oscilla-

Fig. 12 Stochastic simulations of spiking network model for N =
500 and a nonlinear calcium activated AHP current, Eqs. (1–3),
(10), (11), (13) and (14). Corresponding mean–field solution of
Eqs. (18–20) is shown by dashed lines. (a) s(t) trace, (b) All the
hi(t) traces and a single c1(t) trace of the spiking model (solid line)
are depicted along side the mean-field solutions h(t) and c(t) of
Eqs. (13) and (14), which are depicted by thick gray dashed lines.
(c) shows a single voltage trace of the stochastic spiking model.
The neuron spikes upon reaching threshold (θ = 1) and is reset
to −2 and held offline for a refractory time τr during which it
increases to vr and is put back online. Notice the stochastic volt-
age fluctuations between bursts and the variable burst duration
at the single-cell level, in addition to the random smaller spiking
events in between the main bursts. The parameters are τv = 1 ms,
τh = 500 ms, τs = 5 ms, τx = 5 ms, τc = 10 ms, Iv = 0.95 mv,
σ = 0.2, vr = −1, θ = 1, τr = 1 ms, as = 3, ah = 2, ac = 1, and
γ = 0.3, and β = 100

tion existence and period can be predicted by the mean-
field model Eqs. (25–28). At high noise levels, however,
there is a significant mismatch between the two models
(Fig. 13(f)). Discrepancies also arise between the mod-
els at high current levels. As can be seen in Fig. 12(b),
the AHP traces disperse during the transition to and
from bursting and coalesce during the silent phase. At
high noise or current levels, the cells switch between
these two states more often such that dispersion domi-
nates cohesion of the AHP variables and the mean-field
description breaks down. To illustrate this breakdown
we simulate the nonlinear AHP spiking model and the
mean-field reduction for two bias currents and a fixed
noise value σ = 0.25, see Fig. 14. In these simulations
(and all other simulations in this paper) we initialize
the AHP variables to the same value (no dispersion).
Over time the AHP variables will disperse as the ran-
dom spiking of each cell differentially activates the
respective AHP currents. Figure 14 panels (a) and (b)
show the system with a lower level of bias current
(Iv = 1.80) where the mean-field model matches very
well the full spiking system. Changing the current to
a larger amount (Iv = 1.87) causes the solution of the
full spiking model to follow the mean-field model for
one burst cycle, but on the second cycle, after the AHP
traces have dispersed, the full spiking model diverges

Fig. 13 Varying noise strength for nonlinear AHP model. The
population synaptic input s(t) for the stochastic spiking model
(solid line) and the mean-field model (dashed line) over six noise
strength levels spanning two orders of magnitude ((a) to (f)). At
low noise (σ = 0.025; (a)) no oscillations are observed. As noise
is increased, burst oscillations emerge and increase in frequency.
At high noise the frequency speeds up and the amplitude is
squashed. The mean-field model matches well with the qualita-
tive behavior of the spiking model except at the highest noise
level (f). All other parameters are the same as in Fig. 12
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Fig. 14 Breakdown of mean-field theory in nonlinear AHP
model. The population activity at two high current levels Iv = 1.8
((a) and (b)) and Iv = 1.87 ((c) and (d)) illustrate how the mean-
field model breaks down when AHP dispersion is too great. (a)
and (c) show synaptic input s(t) for the stochastic spiking model
(solid line) and the mean-field model (dashed line). (b) and (d)
show all the hi(t) variables (thin black lines) and the mean-field
h(t) variable (thick grey dashed line). All other parameters are
the same as in Fig. 12

from the mean-field prediction. Because of this effect,
we restrict our subsequent analysis of the non-linear
AHP mean-field system to low noise and bias current
levels, where the mean-field model is quantitatively
predictive.

By carrying out phase plane and bifurcation analysis
of the calcium mediated AHP mean-field Eqs. (18–20)
we will establish that the noise-induced mechanism of
burst rhythm onset is due to a SNIC bifurcation. First
we note that the projected s null surface for both the
linear and nonlinear models are identical, being given
by Eq. (33). On the other hand, the projected null
surface of the h variable is now nonlinear, see Eq. (32).
Figure 15 shows the evolution of the mean-field system
in the s-h projected plane for four increasing noise lev-
els (panels (a–d)). At low noise levels the null surfaces
intersect to form three fixed points (Fig. 15(a)). The
rightmost fixed point is unstable. The leftmost fixed
point, which is stable (see inset of Fig. 15(a)), and the
middle fixed point, which is unstable are formed by
the local minimum of the s null-surface crossing with
the horizontal “foot” of the h null-surface. As the noise
level is increased, the local minimum of the projected
s null-surface elevates with respect to the foot of the
h null-surface, causing the left and middle fixed points
to disappear in a saddle node bifurcation, leaving a
periodic solution in its place (Fig. 15(b)). As the noise

Fig. 15 Increasing noise produces a SNIC in nonlinear AHP
model. Projected mean-field dynamics Eqs. (18–20) of the nonlin-
ear calcium mediated AHP in the s-h plane for four noise levels
(a–d) and fixed bias current Iv = 0.9001. The mean-field solution
(thick solid line) evolves from an initial condition marked by a
dot (·). For low noise ((a), σ = 0.05) the system settles into a
low-activity fixed point indicated by the leftmost intersection of
the projected null surfaces (see inset) of s and h (thin solid line
and thin dashed line, respectively). With increased noise ((b),
σ = 0.15) a large amplitude oscillation emerges. At σ = 0.5 (c)
the oscillation amplitude diminishes. (d) At high noise σ = 1.10
(where the mean-field system is no longer a valid predictor of
the full spiking model) there exists a stable spiral (see inset). The
same parameters are used as in Fig. 12

is increased further the slope of the middle section
of the s null surface becomes less positive and the
amplitude of the oscillation as measured in the h or the
s dimension is decreased (Fig. 15(c)). At very high noise
levels the mean-field system undergoes a supercritical
Hopf bifurcation to a non-oscillatory state (Fig. 15(d)).
Numerical simulations of the full spiking model suggest
a similar qualitative behavior in the high-noise regime
(data not shown), but the mean-field model can make
no quantitative predictions here.

Finally, increasing the bias current can also give rise
to a SNIC bifurcation to burst oscillations in the nonlin-
ear calcium-mediated AHP model. Figure 16 shows the
evolution of the mean-field system in the s-h projected
plane for two current levels (panels (a) and (b)). In a
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Fig. 16 Increasing current produces a SNIC in nonlinear AHP
model. Projected mean-field dynamics Eqs. (18–20) of the non-
linear calcium mediated AHP model in the s-h plane for two
current levels ((a) and (b)) and fixed noise σ = 0.25. The mean-
field solution (thick solid line) evolves from an initial condition
marked by a dot (·). For low current ((a), Iv = 0.7) the system
settles into a low-activity fixed point indicated by the leftmost
intersection of the projected null surfaces (see inset) of s and h
(thin solid line and thin dashed line, respectively). With increased
current ((b), Iv = 0.8) a large amplitude oscillation emerges. The
same parameters are used as in Fig. 12

similar fashion to increasing the noise at fixed bias cur-
rent, the nonlinear AHP mean-field model undergoes a
SNIC through flattening of the projected s null-surface,
where upon the leftmost two fixed point intersections
shown in Fig. 16(a) collide and annihilate leaving a
periodic solution shown in Fig. 16(b).

4 Discussion

In this paper we have shown that a globally connected
excitatory network of LIF model neurons possessing a
slow activity-dependent adaptation current can exhibit
coherent population burst oscillations when driven by
synaptically filtered noise. Due to the time scale sep-
aration imposed by the slow AHP current and synap-
tic filtering (τv 	 τx, τs 	 τh) we were able to derive
low-dimensional deterministic mean-field equations for
the two different AHP currents in the large-N limit.
The mean-field dynamical systems are amenable to
mathematical analysis and we have shown that noise
induced bursting can come about through a subcritical
Hopf bifurcation in the linear synaptically activated

AHP model, and a SNIC bifurcation in the nonlinear
calcium-mediated model. In the linear model, by ana-
lyzing the joint dependence of the oscillations on the
noise strength σ and the overall excitability (as deter-
mined by the bias current Iv), the burst oscillations
are predicted to exist within an “island” of the Iv-σ
parameter space determined by a continuous Hopf
bifurcation curve (Fig. 11). Moreover, by conceiving
the noise source as a Poisson input we reason that an
increase in input strength ax or the Poisson rate ν will
scale both the noise and bias current together, suggest-
ing a natural diagonal (rightward increasing) pathway
through Iv-σ parameter space. We have shown that
for a particular choice of parameters that this pathway
through Iv-σ space can afford both a larger parameter
range that supports oscillations and a frequency range
that is many times greater (approximately eight times)
compared to the zero noise case.

Our results complement the work of Van Vreeswijk
and Hansel (2001), who have studied the basic prin-
ciples of emergent population burst oscillations in de-
terministic networks, and Vladimirski et al. (in press),
who have shown through mean-field analysis that pop-
ulation heterogeneity can provide added robustness to
population burst oscillations. Furthermore, the present
work is distinct from other studies on noise–induced
population burst oscillations, including both mean–
field models at fixed noise levels (Gigante et al. 2007)
(Vladimirski et al. in press), and conductance–based
models of intrinsically activated currents (Kosmidis
et al. 2004).

The derivation of the mean-field model rests on
several approximating assumptions, including the
aforementioned separation of time scales, and the asyn-
chrony of spiking in the large-N network. We also
assume the ergodicity of the large-N system so as to
use the steady state Gaussian probability density p(x),
Eq. (22), in order to integrate the firing rate function
over the random inputs as in Eq. (21). We have shown
that the nonlinear calcium-mediated AHP mean-field
model is only valid for sufficiently small currents or
noise levels where the hi(t) variables are not dispersed
too much. At higher current and noise levels, oscillatory
behavior can still persist, but the full spiking model
behavior cannot be predicted by the mean-field system.
More generally, we note that the requirements for
the validity of the mean-field model are not necessary
conditions for oscillatory behavior in the full spiking
model. In fact, we have observed that direct input
of white noise to the membrane equation in lieu of
synaptic filtering Eqs. (10), (11) can also produce robust
population oscillations. We leave the systematic study
of fast noise inputs for future work.
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As stated in the introduction, Kosmidis et al. (2004)
have shown numerically that white noise inputs to a
Hodgkin-Huxley neural network exhibits burst oscil-
lations over a finite range of noise levels. Similar to
our present results they found that increased noise
strength produces increasing bursting frequency while
decreasing the amplitude. Although, there are many
differences between their model and ours, we find the
qualitative agreement between the models suggestive
of a deeper principle, namely, that large-N recurrent
neural networks can exploit ensemble ergodicity, where
fast synaptic transmission in the network computes an
effective instantaneous average activity that is a shared
input to every cell in the network in the noisy neural
population, and slow AHP currents activate and deacti-
vate based on long-time averaged activity. Oscillations
exist in the network when the excitability of the cells,
due to noise or a constant bias, is in a intermediate
range, which is analogous to coherence resonance in
other excitable neural systems (Lindner et al. 2004).

Our analytical and modeling study has potential ap-
plications to real biological neural networks. In the
PreBotC slice preparation, extracellular potassium lev-
els can be manipulated to control the existence and
period of burst oscillations (Funk and Feldman 1995).
Increase of extracellular potassium, which reduces the
potassium outward leak current, thereby depolarizing
the cell, could also increase the noisiness of the cellular
environment.

For our two distinct AHP current models we have
shown two distinct bifurcation mechanisms to oscil-
lations that could have important consequences for
burst rhythmogenesis. At the level of general single
cell modeling it has been hypothesized that SNIC
bifurcations in excitable membranes modeled as a re-
laxation oscillators can account for the high spiking ir-
regularity and predict long latency to spiking from weak
super-threshold depolarizing inputs, whereas Hopf
instabilities exhibit more regular spiking and do not
exhibit long post input latencies to spike (Gutkin and
Ermentrout 1998). Furthermore, SNIC bifurcations ex-
hibit an absolute threshold to spiking, whereas Hopf
instabilities exhibit a “soft” ill-defined threshold to
spiking. All of these theoretical results apply to our
model because the spiking network reduces to a relax-
ation oscillator through the mean-field approximation
in the large–N limit. This suggests that examining the
behavior of the spiking and mean-field systems to tran-
sient inputs or abrupt parameter changes could gener-
ate experimental predictions regarding PreBotC burst
rhythmogenesis. Of course, with a large network the
oscillations are quasi–deterministic and very regular.
In a smaller network however, more irregular popu-

lation burst patterns can be observed. These irregular
activity patterns are similar to up and down states
observed in cortical slices (see McCormick and Yuste
2006, for a review). Up-states (high activity) and Down
states (low activity) in cortex are thought to be due
to recurrent excitatory network ensembles that exhibit
transient up and down episodes. Such episodes can
be toggled by inputs, and stochastic forces ostensibly
produce the random-like switching observed in slice
work. Recently, noise driven mean-field equations of
up–down dynamics have been studied (Holcman and
Tsodyks 2006). While the present work does not ex-
plore finite–N fluctuations, our model could be adapted
to study such up–down phenomena.
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