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Summary. A model for the interactions of cortical neurons is derived and
analyzed. It is shown that small amplitude spatially inhomogeneous standing
oscillations can bifurcate from the rest state. In a periodic domain, traveling
wave trains exist. Stability of these patterns is discussed in terms of biological
parameters. Homoclinic and heteroclinic orbits are demonstrated for the

space-clamped system.
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1. Introduction

In a previous paper [4] spatially inhomogeneous equilibria were demonstrated in
equations modeling idealized neuronal nets. These equilibria arose through an
instability of the spatially homogeneous zero state to perturbations of some
characteristic wave number. Bifurcation theory was used to show the existence and
stability of the new equilibria, which occur when an eigenvalue of the linearized
problem becomes positive by crossing the imaginary axis through zero. Another
type of bifurcation may occur when a pair of complex conjugate eigenvalues cross
the imaginary axis. In many instances this gives rise to temporal oscillations,
through a Hope bifurcation [6, 13, 3]. Such results have been used with great
success in the analysis of systems of chemical reaction and diffusion (1, 10, 7].

Oscillation occurs throughout the brain and is an outstanding feature of the nervous
system. Examples of such periodic behavior range from the repetitive firing of a
single nerve cell [18] to the grand-mal epileptic seizures involving whole regions of
the cortex [17]. It is shown that the equations for thalamo-cortical nets proposed
by Wilson and Cowan [19] can exhibit small amplitude spatially inhomogeneous
temporal oscillations. The importance of short-range lateral inhibition and strong
disinhibition for the creation of inhomogeneous oscillations is demonstrated.
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Finally, large amplitude oscillations are shown to exist in local spatially decoupled
net equations, using phase plane techniques.

Neuronal net equations may be derived in numerous ways and we briefly summarize
one such derivation here (for details see the above papers). Consider a population
of N cells with the following simple properties:

1) the lth cell is connected to the jth cell with ‘weight’ k;;;
i) each cell sums its input currents linearly, and its membrane impedance generates
a net change in membrane potential, at the axon hillock ; i
iii) this change generates, in a nonlinear fashion, a propagated current pu]sti
1v) such current pulses then stimulate other cells and the process begins

again.

In Ermentrout and Cowan [4] we showed that the following continuum equations
embodied the above assumptions:

%=—Y+S(K*Y+P); YO,r) = ¢(); Y:R* x R>R (L)

where Y is the vector of firing frequencies of the cells, ¢ the initial data, K+ Y a
matrix spatial convolution, P the input current, and S is a nonlinear thréshold
function. Generally, S; is monotone increasing, bounded, with a Lipschitz constant,
M,. Furthermore S;(6) = 0, where 6, is the ‘threshold.” When Kis a compact
integral operator (as it is in this paper) and the initial data are continuous, then
both existence and uniqueness can be shown for (1.1) (Theorem 5.1 [14]). In the
first paper, the stationary states of (1.1) were analyzed; here we study the steady
state temporal behavior of such nets.

In the case when K is a constant spatially independent matrix, rather than an
integral operator, (1.1) becomes a system of nonlinear ordinary differential equa-
tions and the Hopf bifurcation theorem may be applied. One can then use any
number of available formulas for the stability of these new limit cycles [13, 8]. In
the case when n = 2, i.e., two populations of cells, one excitatory and one inhibi-
tory, one can use phase-plane techniques to show the existence of large amplitude
asymptotically stable limit cycles. In particular the origin is an unstable node;
there are no other singular points, and all solutions starting in the neighborhood
of the origin remain bounded, so there exists at least one asymptotically stable limit

cycle. (We discuss this in Section 3.)

2. Linearization

In this section we consider spatially extensive interactions between two populations
of excitatory and inhibitory cells. For a large class of kernels (connectivity func-
tions), the stable local network becomes unstable through a pair of pure imaginary
eigenvalues, giving rise to small amplitude periodic solutions. As in [4] and [19] we
assume that all cells are interconnected, with the strength of interconnection depen-
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dent only on the distance between pairs, and finally that P = 0. This leads to the
coupled nonlinear integrodifferential equations:

0
2X (1, 1) = = X(, ) + S0edbee # X0, 1) = cawic® Y, 1)

@2.1)
BT (1 1) = ~ Y0, 1) + S s X(r, 1) = e Y0, 1)

withw, *u = f ‘fw wir — ru(r’) dr’, oyy represents the synaptic weight of connec-
tions between population / and population j. Sy is a smooth function as described
in Section 1 (an explicit form for S, will be given in Section 3) and Ais a srhall
parameter which may be interpreted as modifying the synaptic weight of the
excitatory cells. Some simple assumptions must now be made so that the model,
while remaining physically realistic, is mathematically tractable. Since by assump-
tion the number of connections made between any two cells decreases isotropically
with increasing distance between them, w); must be symmetric and decreasing for
r > 0. In addition, as the range of spatial interactions decreases, we require (2.1)
to become ordinary differential equations. Finally, in order that the eigenfunctions
of the linearized operator be easily computable, the Fourier transform of w;; must
exist. These conditions may be represented as:

) fw wilr) dr = 1
2 wl-r)= wir) 2.2)

3) j_m wi(r) e~ dr = Wi (p),

with p = £2 exists, and
a) lim,.. o W,(p) = 0,
b) W,,(p) is monotonically decreasing forp > 0.

Some typical connectivity functions are

i) i:l/—; exp (—r?) (Gaussian),
ii) 3 exp (—|r]) (‘exponential’),
i) ﬂ'(—]':t‘r'f) (‘arctangent”).

If the monotonicity assumption on the Fourier transform is relaxed, two additional
kernels of biological interest are permitted:

0 |r]>1
3 Irl<1

1=1r] |r} <1 .
= ¢ le’.
v) w(r) { 0 ir| > 1 triangle

‘square’,

V) wr) = {
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Given such w(r), the w,; may be constructed as w;; = (w(r[o,;)/a,;), where o, is a
space constant determining the spread of connections between cells of type / to
type j.

To determine stability, the eigenvalues of the linearized problem must be obtained.
The linearized system is:

2_ (u) — (_u + S;I(O)[aeeAwee U OgeWie ¥ U]) = L()t)(u) (23)
ot \v —v + Si(0)[eeidwe; * u — aywy; * V) v

With the above assumptions on the kernels, w;;, (2.3) has a continuous spectrum of
double eigenvalues of the form:

(::) exp (o714 ifr) + (:j) exp (o™t — ir).

Asin [4], we fix a length 28, and require solutions to be spatially periodic, of period
28. (Thus we are actually studying a ‘ring’ of cells.) The operator, L(X), is now
compact and the spectrum is discrete. To further facilitate the nonlinear analysis,

we impose additional constraints:

X(r) = X(-r),

Y(’) = Y(—r)a
and consequently seek spatially even 28-periodic solutions to (2.1). Finally, due to
the compactness, the right hand sides of (2.1) and (2.3) are Fredholm of index zero.
With these assumptions bifurcation to temporally periodic solutions can be demon-
strated [3] as long as some simple conditions hold analogous to those of the ordinary
Hopf theorem. In particular it is required that L(2) have a pair of complex conjugate
eigenvalues, B(}) + iw(}) such that at A, B(Xo) = 0, wy # 0, and (9B(X)[ON)|r=», # O.
Finally the remaining eigenvalues must remain in the left half-plane for A near A,.
Let w(n?) = f 'fm exp (inmr|8)w,(r) dr, n € Z. Then the eigenfunctions of L(2) are
of the form:

$2 () _ (OF W nD\  nar _ o, o, |

(4)2* ) = oz o n?) Cos —- = ®= cos énr; £ = 3 2.4
and the ®* are complex vectors satisfying:

H@, n?)®* = oz (N@*
with

H()‘, nz) = (— 1 +: S;(O)‘feewe;(nz) - S;(O}aiewiefnz) , )

ASi(0)eceiWi(n?) —1 — §i(0)oy194(n*)

and o are the corresponding complex conjugate eigenvalues of H (A, n%, o, =
5}). Since H is a 2 x 2 matrix, the condition for the existence of a pair of pure

imaginary eigenvalues is that the trace vanish and the determinant remain positive.
Assuming that the reciprocal connections, «,, and o, are strong, the determinant:

A(n, 2) = (1 + S0 Wi(n?))(—1 + Se(0) A W (n?)
+ Se’(o)sil(o)’\aeiaiewei(nz)ﬁ’ie(nz) (2.5)
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is positive for all A in (A, — ¢, Ag + £) where ¢ is a small positive number. The
condition that the trace vanish gives a relationship between A and n. Since

Tr (A, n2) = =2 + Si(0)aWy(n?) + SAO)eeWee(n?), (2.6)
Tr (A, n) = 0 implies:

A = [2 + Si(0)a@iy(n?)[Se(0)areeWee(n)] . 2.7
(See Fig. 2.)

As usual, we define A, = min A,, and let 77 denote that value of n corresponding
10 A,. We also assume that for n # 7, Ay > A, 1.€., there are never two pairs of
complex conjugate eigenvalues crossing the imaginary axis simultaneously. (We
conjecture that if there are two values of nsuchthat A, = A, = A,,, then there may
be quasiperiodic solutions bifurcating from Ao-)

There are two cases to consider, i = 0 and 7 > 0. In the former case, one can
easily show that the bifurcating solutions are spatially homogeneous and bulk
oscillation of net activity occurs. These bulk oscillations also correspond to small
bifurcating solutions of the Jocal net discussed in Section 1. The case 1 > 0 corre-
sponds to bifurcation at a nonzero wave number and generates spatially inhomo-
geneous oscillations. A necessary condition for # > 0 is given by the following

lemma.
Lemma 2.8. Under the assumptions (2.2) a necessary condition for 7 > 0 is that
oy > o, and Si(0)ay > 20%.[(ofi — 022) 2.9)

Proof. From Fig. 1, we see that Ay, # 0 occurs only if [0A(n?)/on%]|,2.o < O where
n? is viewed as a continuous variable (this is why we obtain only a necessary con-
dition). Noting that [8W,;,/on®]|,2-0 = 104[0W|9n?]|,2 =0, W,,(0) = 1 and using (2.6)
we find:

o _ _[2 + Si0)eyloz#(0) Si(0)ayofiw'(0)

on? [n3=o0 Se(0)ace Se(0)ec,
This must be negative, but since #w'(0) < 0 (due to the monotone decreasing
condition):

—0%[2 + Si(0)e] + Si(O)eryot > 0

Tr(An)>0

A \/Tr(x,n)so

Tr(An)<0

Fig. 1. Stability of the linearized system as a function of

wave number, n?, and A n2




270 G. B. Ermentrout and J. D. Cowan

or S{(0)ey(0 — 0%) > 202, Since ay, o), and S;(0) are nonnegative this implies
o;; > 0. and Si(0)ey; > 20Z/(cf — o2,).
We assume that (2.9) holds and 7 > 0. Let wy = w(A,), where w(A,) is given by
w(A) = [Se(0)Si(0)erpictic Wei T2)W (%) Ao

— (=1 + S(0)Aoeeee (M) (2.10)
Near A, the term Tr (A, n?) — 4A(A, n?) will remain negative so that B(A) =
—Tr (A, n?)[2 and (8B/8X)|», = Se(0)a.cWe (%) # 0. Thus the transversality con-
dition holds and the Hopf bifurcation theorem may be applied.
Remarks. The analysis described in the next few sections could easily be appljed to
the case of odd functions, but by considering odd solutions, we exclude the possi-
bility of bulk oscillations. Such bulk activity is known to exist in a number of
chemical and biological systems. The main reason we consider even solutions is
that obtaining spatially inhomogeneous oscillatory solutions is trivial with the
boundaries fixed at zero, since the zero wave number corresponds to the zero
solution, which is by assumption unstable. Thus even if A(77), i = 0 is the minimum
A, the first solution which is possibly stable must correspond to # = 1. In two
species reaction-diffusion equations it is easily shown that the trace is maximal for
7 = 0, and thus the first wave number in which the trace vanishes is always 0. In
(2.1), it is not the boundary conditions which give rise to the inhomogeneous
solutions, but the structure of the equations.
The physical interpretation of lemma (2.8) is that disinhibition of sufficient strength
(o;; large) and range (o; > o..) are required to obtain spatially inhomogeneous
oscillations. Furthermore, we require «,;a;,We;(n®)w;.(n?) to remain large in order
that the determinant remain positive. Since w,(n?) = w(n%c%), w;(n?) = w(n%o%)
and w(z?) decreases as z? increases, we need o,;, ;. small so that w.(n?) and W;,(n?)
remain near 1. Since o,; and o,, determine the spread of lateral inhibition, we thus
require short-range lateral inhibition as well.

3. Stability and Form of Periodic Solutions
In the appendix, formulas for the oscillatory solutions and their stability are

)

frequency, w, the small parameter, A, and the activities x, y in terms of e:

w = wy + ew; + 2w, X, 1) Xi(r, 1) 2 Xo(r, 1)

A=+ el + & (Ym0)=%KﬁJ)+e(EMA)+”"
Let 7 be the critical wave number and w, the corresponding critical frequency.
Assume without loss of generality that A, = 1. Then from A10 we find to lowest
order in &:

then we can expand the

derived. If the amplitude is normalized to be ¢ =

tan 0 = =1+ Pee ;- Pee
(X(r, t)) fim? ( Cos (wo + %wy)t ) + 0(e?)

Y@, 1))~ *%TF \Lcos (o + fwg)t — 6) { = ba

~ B
(3.1)
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Table 1. Parameter values leading to stable small
amplitude oscillations

Recurrent excitation (_B_.J)

Bee Bie Frequency, wq
+ + -
+ - +
+/- - +
+/- + -
- + -—

4 means large, — means small, -+ /— means inter-
mediate

The lowest order term in the expansion for A is

w 2
ST Gl toacx:m 9{/;:—;1 (1= 38) + (3 — will® - ])}
3.2

where C > 0 is a constant depending only on the derivatives of the nonlinearity.

The sign of y, determines the direction of bifurcation; y, < 0 yields subcritical
bifurcation, y, > 0 supercritical (see Fig. 2). From various theorems on stability
of the bifurcating solutions we know that subcritical solutions are unstable and
supercritical ones stable. Thus the calculations for direction of bifurcation also give
stability, i.e., yo > O stable and y, < 0 unstable.

Ifwelet B = 1/(B.. — 1) then B may take on values between 0 and 1, corresponding,
respectively, to infinite recurrent excitation (or infinite disinhibition) and minimal
excitation (zero disinhibition). In Fig. 3 the ratio of the cross terms, B../B,., is plotted
against the zero-order term of the frequency, wq, for various values of 8 to show
regions of stable small amplitude solutions. Table 1 summarizes the results in terms

=0

. L5
A

A
€ =0

-

Fig. 2. Bifurcation diagram for model equations
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of frequency, recurrent excitation, and the crossterm ratio. The only circuits that
give rise to low amplitude solutions via bifurcation are shown in Fig. 4. The two
separate cases, 7 = 0 and 7 # 0, will be discussed separately.

Case 1, i = 0: This solution solves both the coupled and the local network equa-
tions. As previously remarked, one effect of spatial coupling is to synchronize the
elemental circuits so that they all oscillate at the same phase. For the remainder of
this case the discussion will be restricted to the local network. Some very strong
conclusions can be made about both the stable and unstable solutions using phase-
plane techniques. The small amplitude stable solutions are often called soft bifur-

Fig. 4. Local circuits giving rise to stable small amplitude

oscillations. Small circles give relative strengths of connec-

high low tions. Open circles are excitatory and filled circles are
frequency frequency inhibitory
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(t/ /.
1

cations and exhibit smooth transition to the new solutions. The unstable small
amplitude oscillations are sufficient to prove the existence of large-amplitude hard
limit cycles. To show this, assume the bifurcation diagram is as in Fig. 2b. Then the
existence part of the Hopf theorem states there is a small amplitude unstable limit
cycle around the origin for A < A,. The origin is asymptotically stable for A < Ao
and is the only singular point. All trajectories are bounded by the box in Fig. 5;
any point in the annulus R with y, the unstable limit cycle as its inner boundary,

Fig. 5. Phase portrait of limit cycle for local equations. E =
excitatory, I = inhibitory

stable

\unstable

s

stabie ‘\ unstable
A A

Fig. 6. Bifurcation diagram for local equations showing
hysteresis

must remain in y so there is at least one asymptotically limit cycle in R. This is the
so-called hard limit cycle. Furthermore, for A < A,, and sufficiently close, the net-
work has two stable states: the rest state at zero and the hard limit cycle. Thus the
system exhibits a threshold as well: if the initial conditions lie inside y, the system
returns to equilibrium, while if they lie outside of y the system enters the oscillatory
state. For A > A, there again are no other critical points and the origin is unstable
so there must be a limit cycle. The above arguments lead to the conjectured bifur-
cation diagram of Fig. 6. Responses to sub- and superthreshold stimuli are

illustrated in Fig. 7.

E(t)
Eo
1
E(t)
Fig. 7. (a) Subthreshold stimulus; (b) Superthreshold 1

stimulus
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E0) 1 A A
SEGFOSK

biturcating X
solutions

Ex) | ¢

x Fig. 8. Bifurcating solutions: small A and large A

Case 2, n # 0: In this case spatially periodic temporal oscillations are obtained in
the form of standing waves. All the cells are synchronized at the same frequency
and phase, with a spatial cosine amplitude modulation. As above, these results
demonstrate the existence of small amplitude solutions which are stable super-
critically and unstable subcritically. We utilized the planar character of the local
equations to prove the existence of at least one large amplitude limit cycle when the
bifurcation is subcritical and the resulting bifurcating solution unstable. Unfor-
tunately, similar results about the fully coupled equations cannot be obtained.
Careful numerical studies indicate that for parameters leading to subcritical
bifurcation there are indeed large amplitude spatially periodic oscillations both
sub- and supercritically. Fig. 8 illustrates the large amplitude solutions as well as
the stable bifurcating solutions at various parameter values. The main difference is
that there are many more high frequency components in the large amplitude
solutions, as can be seen from the sharp transition regions between high and low

amplitude.

4. Waves in Circular Networks

When the condition that the solutions be even in space is relaxed, traveling waves
can be shown to exist. These waves depend only on the relative coordinate, ¢ =
wt — k-r, where w is the frequency and k the wave vector. The waves have the
property that at each point in space the network exhibits an oscillation of frequency
and with 7 fixed, the network is spatially periodic of frequency |k/|, in the direction
of k.

Wave-like activity is ubiquitous in biological systems. Examples in neurobiology
range from the periodic wavetrains of the Hodgkin-Huxley axon to evoked poten-
tials, spreading depression, and EEG waves. These results show that even a simple
two-component model is sufficient to generate such wavetrains. In a forthcoming
paper, we show the existence of a large variety of other wavelike solutions when the
extent of the medium is infinite. Here the periodicity assumption is somewhat
artificial, but is mathematically convenient.

The type of waves discussed here are planar, i.e., their fronts have no curvature and
travel along the vector k. Since multiple recording of the activities of a large number
of close-packed neurons is difficult, it is hard to differentiate between traveling
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oscillatory waves and standing oscillations. The principal testable difference is in
the phase relationship: standing waves are all in phase, while traveling waves
exhibit distinct phase differences. (For recent experiments concerning traveling
waves see {15, 16, 17].)

The existence proof for these wavelike solutions is a simple application of the
implicit function theorem on the appropriately defined subspaces. We shall not
give the proof here; details may be found in [5]. (Note the theorem is proved on the
infinite line for reaction diffusion equations, so that some changes must be made.)
Unlike the waves discussed in part one of Kopell and Howard [10], these waves
exist in a bounded medium and consequently stable solutions exist. Supercritical
solutions can be shown to exist in a manner analogous to Section 3. Indeed,
Kopell and Howard studied a system on the whole line, while here we consider the
system in a compact domain. To examine stability, we only need to consider per-
turbations of the critical wave number since there is only a discrete family of
periodic solutions (see Sattinger).

5. Other Nonperiodic Behavior

Computer simulations indicate that a variety of other wave-like solutions of (2.1)
exist, such as traveling pulses and wave fronts, but little analytically is known about
such solutions. On the other hand there are a number of bifurcation results we can
use to show that the local (uncoupled) equations admit homoclinic and heteroclinic
orbits as well as periodic solutions. An orbit O(¢) is homoclinic if lim., _» O(t) =
lim,. » O(t) = p, where p is a critical point of the system. A heteroclinic orbit is
one in which lim,._, O(t) = p, and lim,., O(t) = p, where p, # p,. The
importance of these phenomena is that each can give rise to propagating waves if
of sufficient amplitude. In a later paper this wavelike activity will be discussed;
here we shall consider only bifurcation to homo- and heteroclinic orbits in the local
equations. The result is due to Kopell and Howard and involves bifurcation from
a double zero eigenvalue, hence two parameters are necessary to destroy the double
degeneracy. As in the previous bifurcation theorems used, a transversality condition
is necessary for both parameters, and it turns out that a nonzero inhibitory threshold

is required.

Theorem (11). Let X = F(u, A, X) = A(u, DX + Q(X, X) + R(X, p, ) be a
smooth two-parameter family of ordinary differential equations on R? such that
R(0, p, A) = 0,and A(p, A)isa 2 x 2 matrix, Q a quadratic form, and R(X, u, A) =
o(x,x,, pXy, Ax;, p). Also assume:

1. A(0, 0) has a double zero eigenvalue, and a single eigenvalue e.

2. The mapping (u, ) = (det A(y, A), tr A(u, A)) has a nonzero Jacobian at

(, ) = (0,0). . .
3. The matrix [4(0, 0), O(e, €)] obtained by augmenting A(0, 0) using the vector

QO(e, €) has rank two.

Then, it follows that there is a curve f(u, ) =0 such that if f(uo, Ao) = O then
X = F(uo, Ao, X) has a homoclinic orbit. This one parameter family of homoclinic
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orbits in (X, u, A)-space is on the boundary of a two-parameter family of 'periodic
solutions. For all (i, A) sufficiently small, if X = F(u, A, X) has neither a homo-
clinic orbit nor a periodic solution, there is a unique trajectory joining critical
points (e.g., a heteroclinic point).

In order to use the theorem, we need to pick two parameters in the local network
equations:

ax,
ar | (—X1 + S(apAX; — asz)) 6.1)
fi_A_’z — Xz + Si(ag; Xy, p) !! '
dt l

with S@) = 1/(1 + exp(—u)) — %; Si(w,p) = 1/(1 + exp(—(u — (6 + p)))) —
1/(1 + exp (6 + p)). (6.1) may be recast in the following form:
Xl _ =1 + 5'(0)ey1 (2 + AN =802 (X)
(Xz) B ( @2,51(0, 1) -1 )(Xz)
+ (S{(0)e21 X117 + R(X, A, p)

= Ay, ,\)(2) + Q@:) + R(X, A, p).

The trace and determinant must vanish at A = ¢ = 0, i.e.,
(=2 + S'(0)ey;40) = O; (1 — S'(0)x;140) + S(0)SYO, O)exy a5y = O.
This yields equations for A, and 6. We require that «,,0,; be sufficiently large, so

that 0 is nonzero. Next, the map (u, A) — (det 4, tr A) must be nonsingular and
hence the Jacobian must have a nonzero determinant at (i, A) = (0, 0). This map

is given by
A -2 4+ S'(0)a;,(A; + A)

(l‘) (—(—1 + §'(0)(2o + A)ey; + Si(0, P')S'(O)“mam)

and the Jacobian at (0, 0) is
S’(0) 0

(- S0 S '(O)am“:zs: (o, 0)) ’
The determinant is nonzero only if S;(0, 0) is nonzero which occurs as long as 6 is
nonzero, since all other terms are positive. The eigenfunction, e, is:

1
("] + S'(O)an)‘o)'
S'(0)e;2

Thus the augmented matrix of condition 3 is:

("1 + S'(0)azzdo  —S'(0)ayq 0 )

2,540, 0) -1 S7(0, 0)e3,/"

Because S7(0, 0) is nonzero, this matrix has rank two and condition 3 holds. So,
there is a one parameter family of homoclinic orbits of (6.1). Evidently, when the

number of neuronal populations increases, more exotic temporal behavior is found.
Recent results have been obtained when two pairs of eigenvalues cross the imaginary
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axis simultaneously and quasiperiodic solutions obtain. For this to occur four or
more populations are necessary. For three population nets many other states may
occur.
Recalling a remark made in Section 2, we might ask what type of spatiotemporal
behavior can be expected if there are two wave numbers, n and n + 1, which
correspond to a minimal A, i.e., two pairs of eigenvalues which cross the imaginary
axis at the same location. This is bifurcation from a double eigenvalue, which in
some cases can give rise to secondary bifurcations [2, 12, 9]. Little work has been
done for the case when these double eigenvalues are pure imaginary, since most
results on secondary bifurcation are on two-dimensional reaction-diffusion equa-
tions which cannot have such degeneracy. Suppose we consider a two-dimensional
reaction-diffusion scheme which has been linearized. Then the matrix corresponding
to H(A, n?) is

HQ\, n?) = (an('\) — Dyn? a;5(A) )

’ az () ago(A) — Don?

In order for a pair of imaginary eigenvalues to occur for two different values of n,
for some A, n;, ny We require:

Tr H(A, n}) = ay;(A) + aqe(A) — n¥(D; + D,) = 0,

Tr H(A, n§) = a1,(X) + a22(A) — n3(Ds + Dy) = 0.
This can never happen so that two pairs of  pure imaginary eigenvalues cannot
occur with a two-component reaction-diffusion system. We conjecture that
secondary bifurcation will occur and some of the secondary solutions will be
quasiperiodic in space and time. Actual construction of such solutions could be
done via some type of two-timing perturbation [9]. Ina forthcoming work, we hope
to obtain some results on the secondary branches of these rich equations [submitted
for publication].
If the primary states represent some sort of simple neural oscillation, such as
occurring in sleep, etc., then perhaps these secondary states represent pathological
states (epilepsy, etc.).

Appendix A
Calculation of Direction of Bifurcation

We seek solutions to (2.1) of frequency near wg, With wg = VA(A, 7). Let t =

(wo + £2wy + ew; + -+ +)~'7, and expand A, X, Y in terms of e = "(‘;’lg’ 3)

(50 (30N (o) +
=14+ ey, +2ys+---.

To make the analysis simpler, we shall assume that the thresholds are zero and the
nonlinearities are odd. We expand S{u) in Taylor series:

\

S{u) = SiO + 57—(60)i3 $oees (Al)
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We remark that Sj(0) > 0 and S;(0) < 0, since the threshold is zero. Substituting
the expansions for X' Y, ¢, and A into (2.1) and w collecting powers of ¢ leads to the
following family of linear equations:

o X (r, 7 nl O (Xn_{r, T a,(r, 7
(w" or L°) (y,.zr, f;) - _,Zx 4o (yn-ir, f;) i (b,.ir, 1;) (A2)
where
1aff) = (211 SiOan SOkt
v —v + Si(0aWe xu  —Si(0)aywy; x v
The first few a,, b, are,
) a(r,7)=0b(r,7)=0
i) ax(r, ) = fu1eey1Wee * X:(1, 7)
by(r, 7) = far1@eiy1Wes * X,(1, 7)
il)  as(r, 7) = f110eeWee * [yexa(r, 7) + yax2(r, 7)] (A3)
+ fralaeeWee * X:(r, 7) — Wi * y1(r, )P
ba(r, 7) = fa1@eeWee * [y2x1(r; 7) + y1x2(r, 7)]
+ faalaeiWe: # X:(r, 7) — aywy; # y1(r, TP
with £, = S{(0)/k!
Let 8, = Si(0)ay9,4(72).

£ terms. The solution for x,, y, is the real phase normalized eigenfunction of

((¢/or) — Ly):

x(r, T) _ Cos 7 @
(yl(r, r)) N (z cos 7 — e) 75 (A4)
with
_Bu g 08 0 = wo/V BicBes

Pie sin 6 = ("] + Bee)/” B(eﬂei
¢ terms. This gives the inhomogeneous equation
3 x2(’9 7)) <a2(r, 7)) a (xl(ra T)) (f;l)
= + L = — w5 = . AS
(aT * O) (}’2(’: T) b2(r’ 7) “ aT }’1(’s 1') & ( )
In order for a solution to exist, the right hand side must be orthogonal to the
adjoint eigenfunctions of ((6/07) — L,). These eigenfunctions are readily computed:

(107) = (1) ety i (E0D)

The inner product is

[P it s = ()2
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Applying orthogonality conditions leads to
Bes

Bcc - ‘c— cos 0 sin 26 y
: ( ‘) = 0. (AT)
——'9-‘1513—-{) 1 — cos 26 | \**

This has a nontrivial solution if the determinant is zero, i.e., B, sin? 6 = 0. Since
0¢(0, 7/2) and B, = 2, this is impossible s0 y; = @, = 0. By normalizing the
amplitude of our solutions to be e we have automatically required that

G i) = o e

so the solution to (AS5) is

G =

¢2 terms. This leads to a pair of linear inhomogeneous equations as above. Applying
the orthogonality conditions gives the following equations for (yz, wJ).

8. — B“ ccos 8 in 26 (72) _ (x(l + {? cos 26) — p{? sin 24;).

w, {2 sin 20 + p[l + {2 cos26]))’

—B,,ﬂt-z—g 1 — cos 26
p=3w—whe=1- 3wi. (A8)

We solve for y,:

ya = 2 tan {’ =8 (01— 3uf) + 6 — B - 1)}, (A9)

Bee"‘l

with a similar complicated expression for w,. Here we have assumed that S.(u) =
S,(u), so that C > 0 is a positive constant depending on the derivatives of S,. To

second order the solution to (2.1) is

X7\ _ Anr cos ((wo + £2wq)t) .
(Y(r, f)) = ecoTy (l cos ((wo + 2wzt — a)) + O()- (A10)

Remarks. The analysis has been greatly simplified by letting the thresholds vanish.
Even if we had not made this requirement, y;, w; still would be zero, but the
expressions for y; and wg would be extremely complicated.
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Applying orthogonality conditions leads to

ﬁcc - %1 cos 6 sin 20 v
. ( ‘) =0. (A7)
:B—”-;l—ng 1 — cos20 | ‘1

This has a nontrivial solution if the determinant is zero, i.e., Be sin% 8 = 0. Since
6¢(0, #/2) and B.. > 2, this is impossible s0 y; = w; = 0. By normalizing the
amplitude of our solutions to be ¢ we have automatically required that

xn(rs 7)) (¢f(r9 T)) >
, =0 for n#1,
< (y,.(r, 7)) \$3(r, 1)
so the solution to (AS5) is
(xﬂ(rs 7)) = 0.
Yy 2(’ ’ 7)
&2 terms. This leads to a pair of linear inhomogeneous equations as above. Applying

the orthogonality conditions gives the following equations for (yz, @)

B.i cos 60

Bee — sin 26 (7,2) _ (x(l + {2 cos 26) — pl?sin 20) .

sin 6 w, {3 sin 26 + p[l + {?cos 26))’

—ﬁeiT 1 — cos 26
p=3w—whxk=1- 3w3. (A8)

We solve for y,:

v = @€ an {‘ +_§’; (A — 3wd) + (3 — BE - 1)}, (A9)

Cee ee

with a similar complicated expression for w,. Here we have assumed that S.(u) =
Si(u), so that C > 0 is a positive constant depending on the derivatives of S.. To
second order the solution to (2.1) is

X (I' ’ 7) _ nnr cos ((wo + szwz)t) .
(Y(r, ,)) BT (c cos (wo + Swa)l — 0)) + 06). (A10)

Remarks. The analysis has been greatly simplified by letting the thresholds vanish.
Even if we had not made this requirement, vy, @, still would be zero, but the
expressions for y; and w, would be extremely complicated.
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