a)

$$
\begin{gathered}
H_{t+1}=\frac{\alpha H_{t}}{\alpha H_{t}+k} N_{t} \\
N_{t+1}=N_{t}+r\left(N_{t}-H_{t}\right)
\end{gathered}
$$

b)

$$
\begin{gathered}
H^{*}=\frac{\alpha H^{*}}{\alpha H^{*}+k} N^{*} \\
N^{*}=N^{*}+r\left(N^{*}-H^{*}\right)
\end{gathered}
$$

From the second equation $N^{*}=H^{*}$. Then from the first one

$$
H^{*}=\frac{\alpha H^{*}}{\alpha H^{*}+k} H^{*} .
$$

Either $H^{*}=0$ or $\alpha H^{*}+k=\alpha H^{*} . H^{*}=0, N^{*}=0$ is the only equilibrium.
c) Find the Jacobian:

$$
\left(\begin{array}{ll}
\frac{\alpha k N_{t}}{\left(\alpha H_{t}+k\right)^{2}} & \frac{\alpha H_{t}}{\alpha H_{t}+k} \\
-r & 1+r
\end{array}\right)
$$

at $(0,0)$:

$$
\left(\begin{array}{ll}
0 & 0 \\
-r & 1+r
\end{array}\right)
$$

$\lambda=0,(1+r)$. Since $1+r>1$ the point is unstable.

