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Introduction

Outer space is a contractible space on which Out(Fn) acts properly discontinuously.
It was introduced by Marc Culler and Karen Vogtmann in [18]. Outer space is anal-
ogous to the symmetric space associated to an arithmetic lattice or the Teichmüller
space associated to the mapping class group of a surface.

It is useful to keep in mind the comparison maps Out(Fn) → GLn(Z) and
Mod(S) → Out(π1(S)). The first is obtained by sending an automorphism of Fn to
the induced automorphism of the abelianization Zn of Fn. It is always surjective,
and for n = 2 it is an isomorphism. The second comparison homomorphism is
defined on the (extended) mapping class group of a punctured surface S with χ(S) <
0 and it is always injective. When S is a punctured torus it is an isomorphism.

These notes are about the geometry of Outer space. The natural metric on it
is not symmetric, but this is imposed by the features of Out(Fn); e.g. the growth
rates of an automorphism and its inverse may be different. We give a metric
classification of automorphisms, following Bers’ proof of Thurston’s classification
of surface automorphisms. For the most part, the exposition is hands-on, with many
exercises involving concrete examples. There are several harder exercises, indicated
by asterisks. The last lecture gives a glimpse of the current developments.

I would like to thank Yael Algom-Kfir, Pritam Ghosh, Brian Mann and Cather-
ine Pfaff for correcting some of the mistakes in an earlier version, and to the orga-
nizers of minicourses where I presented some variant of these notes at the following
locations: University of Chicago, University of Utah, Goa, Technion, University of
Buffalo, Yale University, Berlin and Vercors. Special thanks go to Yael Algom-Kfir
and Catherine Pfaff for carefully reading the manuscript and suggesting several
improvements.

c©2013 American Mathematical Society
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LECTURE 1

Outer space and its topology

In this lecture we will talk about the topology of Outer space. For more infor-
mation see the excellent survey [37].

A graph is a cell complex of dimension ≤ 1. The rose Rn is the graph with 1
vertex and n edges.

1.1. Markings

A marking of a graph Γ is a homotopy equivalence f : Rn → Γ. This is a convenient
way of specifying an identification between π1(Γ) with the free group Fn (thought
of as being identified with π1(Rn) once and for all) with a (deliberate) ambiguity
of composing with inner automorphisms (no basepoints!). Two marked graphs
f : Rn → Γ and f ′ : Rn → Γ′ are equivalent if there is a homeomorphism φ : Γ → Γ′

such that φf ≃ f ′ (homotopic).
In practice one defines the inverse of a marking, i.e. a homotopy equivalence

Γ → Rn. If the edges of Rn are oriented and labeled by a basis a, b, · · · of Fn

(thus identifying π1(Rn) = Fn), the inverse marking can be defined by specifying a
maximal tree T in Γ, orienting all edges in Γ−T , and labeling them with a (possibly
different) basis of Fn, expressed as words in a, b, · · · . Such a choice defines a map
Γ → Rn by collapsing T to a point and sending each edge to the edge path specified
by the label.

Exercise 1.1. Show that the two marked graphs in Figure 1.1 are equivalent. We
follow the convention that capital letters represent inverses of lower case letters.
Unlabeled edges form a maximal tree.

a
b

b

aB

Figure 1.1. Equivalent marked graphs

1.2. Metric

Ametric on a finite graph is an assignment ℓ of positive numbers ℓ(e), called lengths,
to the edges e of Γ. The volume of a finite metric graph is the sum of the lengths
of the edges.
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6 MLADEN BESTVINA, OUTER SPACE

A metric on a graph allows one to view the graph as a geodesic metric space,
with each edge e having length ℓ(e). This point of view lets us assign lengths also
to paths in the graph; in particular any closed immersed loop has finite length (an
immersion is a locally injective map, in this case from the circle to the graph).

We will consider the triples (Γ, ℓ, f) where Γ is a finite graph with all vertices
of valence ≥ 3, ℓ is a metric on Γ with volume 1, and f : Rn → Γ is a marking.
Two such triples (Γ, ℓ, f) and (Γ′, ℓ′, f ′) are equivalent if there is an isometry (i.e.
a length-preserving homeomorphism) φ : Γ → Γ′ such that φf ≃ f ′.

Definition 1.2. Outer space

Xn = {(Γ, ℓ, f)}/ ∼

is the set of equivalence classes of finite marked metric graphs with vertices of
valence ≥ 3 and of volume 1.

We will usually omit equivalence class, ℓ and f from the notation, and talk
about points Γ ∈ Xn instead of [(Γ, ℓ, f)] ∈ Xn.

1.3. Lengths of loops

Once π1(Rn) is identified with Fn we can view each nontrivial conjugacy class in
Fn as a loop in Rn, up to homotopy. The homotopy class has a unique immersed
representative, up to parametrization. If α is a nontrivial conjugacy class and
(Γ, ℓ, f) ∈ Xn, define the length ℓΓ(α) of α in Γ as the length of the immersed loop
α|Γ in Γ homotopic to f(α).

1.4. Fn-trees

If Γ is a marked metric graph, the universal cover Γ̃ is a (metric, simplicial) tree, and

the marking (i.e. the identification π1(Γ) = Fn) induces an action of Fn on Γ̃. The
equivalence relation on marked metric graphs translates to saying that two metric
simplicial Fn-trees S, T are equivalent if there is an equivariant isometry S → T .
Thus Xn can be alternatively defined as the space of minimal metric simplicial free
Fn-trees with covolume 1, up to equivariant isometry. The length of a conjugacy
class becomes the translation length in the tree.

1.5. Topology and Action

Xn can be naturally decomposed into open simplices. If Γ is a graph and f : Rn → Γ

a marking, the set of possible metrics
◦
Σ(Γ) on Γ is an open simplex

{(ℓ1, ℓ2, · · · , ℓE) | ℓi > 0,
∑

ℓi = 1}

of dimension E − 1 if E is the number of edges. If T is a forest (i.e. a disjoint
union of trees) in Γ and Γ′ = Γ/T is obtained by collapsing all edges of T to points,

then
◦
Σ(Γ′) can be identified with the open face of

◦
Σ(Γ) in which the coordinates of

edges in T are 0. Then Γ′ is said to be obtained from Γ by collapsing a forest, and

Γ is obtained from Γ′ by blowing up a forest. The union Σ(Γ) of
◦
Σ(Γ) with all such

open faces as T ranges over all forests in Γ is a simplex-with-missing-faces: it can
be obtained from the closed simplex Σ∗(Γ) = {(ℓ1, ℓ2, · · · , ℓE) | ℓi ≥ 0,

∑
ℓi = 1}

by deleting those open faces that assign 0 to a set of edges whose union contains a
loop. For example, if Γ is the theta-graph with 2 vertices and 3 edges connecting
them, Σ(Γ) is the 2-simplex minus its vertices.
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Exercise 1.3. The smallest dimension of a Σ(Γ) is n− 1.

Exercise 1.4. The largest dimension of a Σ(Γ) is 3n− 4.

Top dimensional simplices correspond to 3-valent graphs, codimension 1 sim-
plices to graphs with one valence 4 vertex and all others valence 3, etc.

In this way Xn becomes a complex of simplices-with-missing-faces. We define
the simplicial topology on Xn just like on a simplicial complex: a subset U ⊂ Xn is
open [closed] if and only if U ∩ Σ(Γ) is open [closed] in Σ(Γ) for every Γ ∈ Xn.

One can also put the missing faces in and get a simplicial complex X ∗
n , called the

simplicial completion of Xn. This complex is isomorphic to the splitting complex
or equivalently to the complex of spheres, see Lecture 4. The fact that X ∗

n is a
simplicial complex (e.g. simplices are determined by their vertices) is nontrivial.

Exercise 1.5. Show that every Σ(Γ) is contained in only finitely many Σ(Γ′).
Conclude that Xn is locally compact and metrizable.

Another way to define a topology on Xn is via length functions. Let C be the
set of all nontrivial conjugacy classes in Fn. The length function is the function

L : Xn → (0,∞)C

to the space of functions C → (0,∞) with the product topology that to Γ assigns
(α 7→ ℓΓ(α)). This function is injective (this is the Rigidity of the Length Spectrum,
see Exercise 2.8), and if we identify Xn with the image, the subspace topology
induces a topology on Xn, the length function topology. This topology is equivalent
to the simplicial topology, i.e. L is an embedding, see [22]. See also [17].

1.6. Thick part and spine

For a fixed small ǫ > 0 define the thick part Xn(ǫ) of Xn as the set of Γ ∈ Xn such
that ℓΓ(α) ≥ ǫ for every nontrivial conjugacy class α. When ǫ > 0 is sufficiently
small the intersection of Xn(ǫ) with every Σ(Γ) is a nonempty convex set (e.g.
taking ǫ ≤ 1

3n−3 ensures that the barycenter of Σ(Γ) is in Xn(ǫ)).

For each simplex-with-missing-faces Σ(Γ) let S(Γ) be the union of simplices in
the barycentric subdivision of the closed simplex Σ∗(Γ) that are contained in Σ(Γ).
Thus S(Γ) is the dual of the missing faces. The spine Kn ⊂ Xn is the union of
S(Γ)’s for all Γ ∈ Xn.
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Figure 1.2. Spine and thick part intersected with a simplex
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1.7. Action of Out(Fn)

There is a natural right action of Out(Fn) on Xn by precomposing the marking. An
element Φ ∈ Out(Fn) can be thought of as a homotopy equivalence Φ : Rn → Rn

and then the action is:

[(Γ, ℓ, f)] · Φ = [(Γ, ℓ, fΦ)]

Exercise 1.6. Show that the action is well-defined, i.e. does not depend on the
representative in the conjugacy class.

Note that in terms of inverse markings, the action amounts to postcomposing
with inverse automorphism. The action is simplicial and it is compatible with the
action on conjugacy classes:

ℓΓΦ(α) = ℓΓ(Φ(α))

It is sometimes convenient to write ℓΓ(α) as a pairing 〈Γ, α〉 and then the
identity becomes

〈ΓΦ, α〉 = 〈Γ,Φ(α)〉

Exercise 1.7. Show that the point stabilizer Stab(Γ, ℓ, f) is isomorphic to the isom-
etry group Isom(Γ, ℓ) of the underlying graph, with an isometry φ corresponding
to the automorphism f−1φf , where f−1 : Γ → Rn denotes the inverse marking.

Exercise 1.8. Show that there are only finitely many orbits of Σ(Γ)’s.

Exercise 1.9. Show that the action leaves the spine and the thick part invariant.

Proposition 1.10. The action of Out(Fn) on Xn is proper. The action on the
thick part and on the spine is cocompact.

Exercise 1.11. (Combinatorial description of the spine.) Show that the following
simplicial complex Pn, the poset of marked graphs is homeomorphic to the spine
Kn. The vertices of Pn are marked graphs (Γ, f) (with Γ having no vertices of
valence ≤ 2) modulo equivalence (Γ, f) ∼ (Γ′, f ′) if there is a homeomorphism
φ : Γ → Γ′ with φf ≃ f ′. A k-simplex in Pn is induced by a sequence of nontrivial
forest collapses Γ0 → Γ1 → · · · → Γk.

Exercise 1.12. dimKn = 2n− 3.

Exercise 1.13. There are equivariant deformation retractions from Outer space
Xn to the thick part Xn(ǫ) (for small ǫ > 0) and from Xn(ǫ) to the spine Kn.

Reduced Outer space Rn is the subspace of Xn consisting of those graphs that
do not have a separating edge.

Exercise 1.14. Show that Rn is an equivariant deformation retract of Xn.

1.8. Rank 2 picture

Recall that the comparison map Out(Fn) → GLn(Z) is an isomorphism when n = 2
and that the (full) mapping class group of a punctured torus is Out(Fn). Since the
symmetric space SL2(R)/SO2 and Teichmüller space of (T 2, {p}) is the hyperbolic
plane H2, it is not surprising that X2 is essentially also (a combinatorial version of)
H2. More precisely, the reduced Outer space in rank 2 is the filled in Farey graph
minus the vertices pictured in Figure 1.3.
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Figure 1.3. Reduced Outer space in rank 2. The circle and the
vertices of the triangles are not part of the space.

Markings of three of the simplices are pictured in Figure 1.4. Observe that
there are two ways to blow up a rose R2 to a theta graph and this translates into
the fact that reduced Outer space is a surface.

ba

aB

b

ba

ba

b

aB

b

aB

Figure 1.4. 3 2-simplices with their marked graphs

To obtain the whole Outer space, we also need to attach simplices corresponding
to graphs with separating edges, see Figure 1.5. These simplices have missing
vertices and are missing two of the sides. They are attached to the reduced Outer
space along the third side.

Exercise 1.15. Find an automorphism of F2 that takes the bottom triangle in
Figure 1.4 to the upper right triangle.
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Figure 1.5. Simplices corresponding to graphs with separating edges

Exercise 1.16. What does the automorphism a 7→ a, b 7→ ab do to the reduced
Outer space? It fixes a missing vertex and ...

Exercise 1.17. Show that neither Outer space nor reduced Outer space is a man-
ifold when n ≥ 3. Hint: Find a graph in Xn with one vertex of valence 4, the other
vertices of valence 3, and all three blowups having no separating edges.

1.9. Contractibility

The central fact about Outer space is its contractibility, proved by Marc Culler and
Karen Vogtmann.

Theorem 1.18. [18] Outer space Xn is contractible.

Of course, this means that the thick part and the spine are also contractible.
Culler-Vogtmann use combinatorial Morse theory and argue that the spine is

contractible. They carefully order the set of roses in Xn: r1, r2, · · · and argue that
for each i the union of stars of the first i roses is contractible. The difficult step
is showing that the intersection of the star of the ith rose with the union of the
previous stars is contractible.

An alternative proof, more in the spirit of these notes, was constructed by Skora
[33], building on the ideas of Steiner. For each Γ ∈ Xn they construct a (folding)
path to Γ from a point in the simplex containing the rose with identity marking and
argue that the collection of these paths varies continuously in Γ (this is technically
the hard step). These paths then determine a deformation retraction from Xn to a
simplex with missing faces. For more on folding paths see Lecture 2.

Neither Steiner’s nor Skora’s work was published; for details see [15] or [22].

1.10. Group theoretic consequences

Corollary 1.19. Out(Fn) is finitely presented.

Proof. Recall that if a group acts freely and cocompactly on a simply con-
nected simplicial complex, then it is finitely presented. More generally, it is finitely
presented if it acts cocompactly on a simply connected complex with finitely pre-
sented vertex stabilizers and finitely generated edge stabilizers (see [14]). The
action on the spine has finite stabilizers. �

Proposition 1.20. Out(Fn) is virtually torsion-free.

In the proof we will use the fact that every finite subgroup of Out(Fn) fixes a
point of Xn. This is called the (Nielsen) realization theorem, see [39, 16, 29]. For
a recent, more intrinsic, proof see [28].
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Proof. We claim that the kernel of Out(Fn) → GLn(Z/3) is torsion-free. Let
1 6= Φ ∈ Out(Fn) have finite order. By Nielsen realization, Φ is realized as a graph
isomorphism φ : Γ → Γ. We may without loss collapse all separating edges of Γ, so
every edge is contained in an embedded circle. If Φ is in the kernel, then φ maps
any circle to itself preserving orientation. But for each circle C in Γ there is another
circle C ′ (because n ≥ 2 without loss) so that C ∩ C ′ is nonempty, connected, and
6= C. Thus φ is identity. �

Corollary 1.21. A torsion-free subgroup H of finite index has a compact classifying
space K(H, 1) of dimension 2n − 3, and the virtual cohomological dimension of
Out(Fn) is 2n− 3.

To see that vcd(Out(Fn)) ≥ 2n − 3 note that Out(Fn) contains an abelian
subgroup of rank 2n− 3. E.g. for n = 3 we can take the group of automorphisms
of the form a 7→ a, b 7→ apb, c 7→ aqcar for p, q, r ∈ Z.

Exercise 1.22. Show that this group is indeed isomorphic to Z2n−3.

The next statement does not use contractibility of Xn, only Nielsen realization
plus the fact that the action on the spine is cocompact.

Corollary 1.23. Out(Fn) has finitely many conjugacy classes of finite subgroups.

Exercise∗ 1.24. Find a nontrivial element of finite order in the kernel ofOut(Fn) →
GLn(Z/2). Show that every such element has order 2 and that therefore every finite
subgroup of the kernel is abelian (in fact, a direct sum of Z/2’s). Can you find the
largest such subgroup?

Exercise∗ 1.25. Can you find estimates on the size of the largest finite subgroup
of Out(Fn)? For example, the stabilizer of a rose has order 2nn!. Can you find a
larger finite group? What about n = 2 and 3? For the answer see [38].





LECTURE 2

Lipschitz metric, Train tracks

In this lecture we introduce the Lipschitz metric on Outer space. The definition,
motivated by Thurston’s metric on Teichmüller space [36], dates back to the 1990’s
when my former student Tad White proved the key Lemma 2.4. At the time we
didn’t have any applications for this metric. It recaptured my own interest when
I realized that one can give a classification of automorphisms in the style of Bers
using this metric. Bers [4] proved the Thurston classification theorem for mapping
classes using the Teichmüller metric on Teichmüller space. This is the subject of
Lecture 3.

Francaviglia and Martino were the first to study this metric systematically.
Much of the material in this section is in their paper [21].

2.1. Definitions

Let [(Γ, ℓ, f)], [(Γ′, ℓ′, f ′)] ∈ Xn be two points in Outer space. A continuous map
φ : Γ → Γ′ is a difference of markings map if φf ≃ f ′. We will only consider
Lipschitz maps and we denote by σ(φ) the Lipschitz constant of φ. When φ is
homotoped rel vertices to a map φ′ which has constant slope on each edge, then
σ(φ′) ≤ σ(φ). We define the distance:

d(Γ,Γ′) = inf
φ

log σ(φ)

as φ : Γ → Γ′ ranges over all difference of markings. Recall the Arzela-Ascoli
theorem, which says that any sequence of L-Lipschitz maps between two compact
metric spaces has a convergent subsequence. This theorem implies that the infimum
above is realized. We will call a difference of markings φ : Γ → Γ′ optimal if it has
constant slope on each edge and minimizes the Lipschitz constant (which is then
the maximal slope).

2.2. Elementary facts

Proposition 2.1.

• d(Γ1,Γ3) ≤ d(Γ1,Γ2) + d(Γ2,Γ3).
• d(Γ,Γ′) ≥ 0 and equality implies Γ = Γ′.
• d(ΓΦ,Γ′Φ) = d(Γ,Γ′).

Proof. The first claim follows from the general fact that σ(ψφ) ≤ σ(ψ)σ(φ).
For the second claim, let φ : Γ → Γ′ be an optimal map. If d(Γ,Γ′) < 0 then all
slopes of φ are < 1. This implies that the volume of the image of φ is < 1, so φ is
not surjective. But a homotopy equivalence between finite graphs without vertices
of valence 1 is always surjective.

If d(Γ,Γ′) = 0 then all slopes of φ must be equal to 1 and the images of
different edges can intersect only in finite sets. Thus φ is a quotient map that

13



14 MLADEN BESTVINA, OUTER SPACE

identifies finitely many collections of finitely many points. The only way for such a
map to be a homotopy equivalence (or even for Γ and Γ′ to have the same rank) is
for φ to be an isometry, so Γ = Γ′.

The third claim is an exercise. �

2.3. Example

To illustrate the definition, let us compute the distance in the following example,
see Figure 2.1.

����

��
��
��
��

BA

B

A

Figure 2.1. A is the rose with edge lengths 1
2 and B is the theta

graph with edge lengths 1
3 , both in the same 2-simplex.

To compute d(A,B) consider the difference of markings map φ that sends
the vertex of A to the midpoint of the middle edge of B, the loop on the left
homeomorphically to the circle formed by the middle and the left edges, and the
loop on the right homeomorphically to the circle formed by the middle and the right

edge. The slope of φ on both edges is
( 2

3
)

( 1

2
)
= 4

3 , so d(A,B) ≤ log 4
3 . We now claim

that d(A,B) = log 4
3 . To see this, observe that each of the two edges in A is a loop

of length 1
2 and any difference of markings map will map it to a loop homotopic

to an immersed loop of length 2
3 . Thus the length of the image cannot be smaller

than 2
3 , and so the slope of any difference of markings map on either edge cannot

be less than 4
3 . More generally, we observe:

Lemma 2.2. If α is any nontrivial conjugacy class then

log
ℓΓ′(α)

ℓΓ(α)
≤ d(Γ,Γ′)

So for any α we obtain a lower bound on the distance. In our example, the
lower bound agrees with the upper bound provided by the explicit difference of
markings map. This determines the distance.

We will say that a conjugacy class α is a witness if equality holds in the state-
ment of the Lemma.

In a similar way, one can compute that d(B,A) = log 3
2 by considering the map

B → A that collapses the middle edge, and the witness loop formed by the other
two edges.

Note in particular that d(A,B) 6= d(B,A).

Exercise 2.3. Let A be as above and let Cǫ be the graph in the same 1-simplex
as A with lengths of edges ǫ and 1 − ǫ. Show that d(Cǫ, A) → ∞ as ǫ → 0, but
d(A,Cǫ) stays bounded by log 2.

Thus the distance function is not even quasi-symmetric, i.e. d(X,Y )
d(Y,X) can be arbi-

trarily large. However, a theorem of Handel-Mosher [25] states that the restriction
of d to any thick part Xn(ǫ) is quasi-symmetric. See also [2] for a different proof.
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2.4. Tension graph, train track structure

Here is the crucial fact. It is analogous to Teichmüller’s theorem for Riemann
surfaces. It states that witnesses always exist.

Lemma 2.4. Suppose d(Γ,Γ′) = log λ. Then there is a conjugacy class α ∈ C such
that

ℓΓ′(α)

ℓΓ(α)
= λ

Note that for any α inequality ≤ holds. So the lemma says that we can define
the distance alternatively as

d(Γ,Γ′) = logmax
α

ℓΓ′(α)

ℓΓ(α)

The equality between the min and the max is an instance of the max-flow min-cut
principle.

The proof of Lemma 2.4 introduces the key idea of train tracks.

Proof. Fix a difference of markings map φ : Γ → Γ′ with σ(φ) = λ. By
∆ = ∆φ denote the union of those edges of Γ on which the slope of f is λ. This
subgraph of Γ is called the tension graph for φ, and some of its vertices may have
valence 1 or 2. Now let v be a vertex of ∆. A direction at v in ∆ is a germ of
geodesic paths [0, ǫ] → ∆ sending 0 to v. Alternatively, it is an oriented edge of ∆
with initial vertex at v. Denote the set of these directions by Tv(∆). Its cardinality
is the valence of v in ∆ and this set plays the role of the unit tangent space at v.
Now φ induces a map (kind of a derivative)

φ∗ : Tv(∆) → Tφ(v)(Γ
′)

since for small ǫ it sends a geodesic γ : [0, ǫ] → ∆ to a geodesic φγ : [0, ǫ] → Γ′

(parametrized with speed λ). Here φ(v) may not be a vertex, in which case Tφ(v)(Γ
′)

naturally has two directions. Thus we have an equivalence relation on Tv(∆):

d1 ∼ d2 ⇐⇒ φ∗(d1) = φ∗(d2)

A train track structure on a graph ∆ is simply a collection of equivalence relations
on the sets Tv(∆) for all vertices v. Thus the tension graph is naturally equipped
with a train track structure. The definition is motivated by Thurston’s train tracks
on surfaces.

It is customary to draw equivalent directions as tangent to each other. The
equivalence classes are gates. An immersed path in ∆ (thought of as a train route)
is legal if whenever it passes through a vertex, the entering and the exiting gates
are distinct. Otherwise, a path is illegal. Similarly, a turn (i.e. an unoriented pair
of distinct directions) is illegal if the directions are equivalent; otherwise the turn
is legal. More informally, legal paths do not make 180◦ turns.

Figure 2.2 shows the tension graphs with their train track structures from the
examples in Section 2.3. The tension graph of φ : A→ B is all of A and the vertex
has two gates. For the map B → A the tension graph is a circle formed by two
edges and all turns are legal.

Now we make the following two observations:

• if the immersed loop α|Γ representing a conjugacy class α in Γ is contained

in ∆ and is legal, then ℓ
Γ′ (α)
ℓΓ(α)

= λ, i.e. α is a witness,
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BA

Figure 2.2. Tension graphs with their train track structures from
examples in 2.3.

• if every vertex of ∆ has at least two gates, then ∆ contains a legal loop;
in fact this loop can be chosen to cross every oriented edge at most once.

The first of these claims is an exercise in definitions: f has slope λ on each edge
of α|Γ and consecutive edges are mapped without backtracking by definition of
legality. For the second claim, keep extending a legal path until the same oriented
edge repeats.

Of course, in general ∆ may have vertices with only one gate. To finish the
proof we will show that φ may be perturbed so that every vertex has at least two
gates.

Claim: Suppose v is a vertex of ∆φ with only one gate. Then φ may be perturbed
to φ′ : Γ → Γ′ so that σ(φ′) = λ and ∆φ′ ( ∆φ.

Repeating this operation will eventually produce a perturbation of φ whose
tension graph has at least two gates at every vertex (note that the set of edges
where the slope is λ cannot become empty by the assumption that d(Γ,Γ′) = log λ).

Proof of Claim. The homotopy φt from φ to φ′ will be stationary on all vertices
except for v, and it will move φ(v) slightly in the direction φ∗(d), where d ∈ Tv(∆).
All maps φt are linear on edges. Thus the slope is unaffected on edges not incident
to v, it decreases on edges in ∆ incident to v, and it may increase on edges outside
∆ incident to v. The perturbation is small so that even the increased slope on such
edges is < λ. Thus ∆φ′ ⊂ ∆φ but ∆φ′ does not contain v and edges incident to
it. �

Exercise 2.5. [21] Show that in any graph with a train track structure with at
least two gates at every vertex, there is a legal loop that is either embedded, or it
forms a “figure 8” crossing each edge once, or it forms a “dumbbell”, crossing edges
in the two loops once and edges in the connecting arc twice. See Figure 2.3.

Figure 2.3. Possible forms of candidates. Train track structure
is suggested by the pictures.

We say that an immersed loop in a graph Γ (without any train track structure)
is a candidate if it has a form as in Exercise 2.5. Thus, given Γ,Γ′ there is always
a candidate in Γ which is a witness for d(Γ,Γ′). Thus there is a simple algorithm
to compute distances d(Γ,Γ′) in Outer space. Simply look at the ratio of lengths
in Γ′ and in Γ of all candidate loops in Γ and take the log of the largest such ratio.

Exercise 2.6. Let R3 be the rose in X3 with all edges of length 1
3 and with inverse

marking given by a, b, c, and let Γ be another such rose but with inverse marking



LECTURE 2. LIPSCHITZ METRIC, TRAIN TRACKS 17

given by abA, bacB, a. Find all candidates in each that are witnesses for the distance
to the other.

Exercise 2.7. Consider the automorphism Φ of F4 = 〈a, b, c, d〉 given by a→ b→
c→ d→ ADCB (capital letters are inverses of the lowercase letters).

(a) Let R be the rose with the identity marking (so the edges correspond to a, b, c, d)
and with all lengths 1

4 . Compute d(R,RΦ).
(b) Find the graph Γ in the same simplex as R (i.e. the same marking, but edge

lengths can be arbitrary) so that d(Γ,ΓΦ) is minimal.
(c) Can you find a graph Γ′ in a small neighborhood of Γ so that d(Γ′,Γ′Φ) <

d(Γ,ΓΦ)?

Exercise 2.8. If Γ,Γ′ are distinct points in Xn show that there are conjugacy
classes α, β such that ℓΓ(α) > ℓ′Γ(α) and ℓΓ(β) < ℓ′Γ(β). Deduce that the length
function L : Xn → (0,∞)C and the projectivized length function Xn → P(0,∞)C

are injective. This is called the length spectrum rigidity.

Exercise 2.9. For a marked graph Γ let KΓ be the finite set of candidates for Γ
and for all marked graphs obtained from Γ by collapsing a forest. Show that lengths
of elements of KΓ determine each point of Σ(Γ).

But, surprisingly, there is no finite collection of conjugacy classes whose lengths
define an injection of Xn into RN , see [34].

The following two properies of the Lipschitz metric point out similarities with
the ℓ∞ metric.

Exercise 2.10. Show that in each simplex straight lines are geodesics (not neces-
sarily parametrized with unit speed).

Hint: Let Γ1,Γ2,Γ3 be three points along a straight line with Γ2 between the
other two. Argue that any witness for Γ1 → Γ3 is also a witness for Γ1 → Γ2 and
for Γ2 → Γ3.

Exercise 2.11. Show that geodesics are not unique in general. Specifically, in rank
2, show that there are geodesics contained in a 2-simplex with endpoints on one
edge, but with the geodesic intersecting the interior.

Exercise 2.12. Show that the distance function d : Xn×Xn → [0,∞) is continuous.
Hint: It suffices to prove continuity on Σ(Γ)×Xn for every simplex Σ(Γ). Now

use a variant of Exercise 2.9.

2.5. Folding paths

A folding path is determined by an optimal map φ : Γ → Γ′ such that the tension
graph ∆φ is all of Γ and every vertex has at least two gates. It is a geodesic path
Γt from Γ to Γ′ and for each t < t′ it comes with an optimal map Γt → Γt′ so
that the tension graph is all Γt and these maps compose correctly for t < t′ < t′′.
To define an initial segment of this path choose ǫ > 0 smaller than half the length
of the shortest edge, and for t ∈ [0, ǫ] define Γt by identifying segments of length
t issuing from any vertex in equivalent directions. Then rescale to make volume
equal to 1.

For example, for the map φ : A→ B considered in Section 2.3, the time t graph
before rescaling would have one edge of length 2t and two edges of length 1− 2t.

There are naturally induced maps Γt → B so at t = ǫ one can repeat the
procedure to continue the path.
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It is not clear a priori that this defines a path globally. If φ is simplicial
with respect to some subdivisions of Γ and Γ′ and the lengths of all edges in each
subdivision are equal, the procedure amounts to Stallings’ folding, identifying two
edges whenever they share a vertex and map to the same edge (but here we do it
continuously resulting in a path in Xn).

A very elegant definition of folding paths is due to Skora [33]. It is most

conveniently described in terms of the universal cover φ̃ : Γ̃ → Γ̃′. Consider the
graph of φ̃:

Gr(φ̃) = {(u, v) ∈ Γ̃× Γ̃′ | φ̃(u) = v}

and define the vertical t-neighborhood of the graph Gr(φ̃):

Nt = {(u, v) ∈ Γ̃× Γ̃′ | d(φ̃(u), v) ≤ t}

where d refers to the path metric on Γ̃′. Restrict the horizontal foliation of Γ̃× Γ̃′

by Γ̃× {v}, v ∈ Γ̃′ to Nt and define Γ̃t as the quotient space where all components

of leaves are collapsed. Then Γ̃t is a tree and its quotient by the action of Fn is the
desired graph Γt (which needs to be rescaled). For t = 0 we have Γt = Γ and for t
large Γt = Γ′.

To get a feel for this definition, consider the “tent map” φ : [−1, 1] → [0, λ] for
λ > 0, which has slope λ on [−1, 0] and slope −λ on [0, 1]. The graph of this map
is pictured in Figure 2.4 (with the target thought of as R).

Figure 2.4. Construction of folding paths following Skora.

The metric on Γ̃t comes from projecting to the first coordinate and maps Γt →
Γt′ for t < t′ from inclusion Nt →֒ Nt′ .

To see that a folding path is always a geodesic take any legal loop in Γ and
observe that its image in Γt is legal for Γt → Γt′ for any t′ > t and that it is a
witness for that map (the slope of the map on each edge is the ratio of lengths of
the loop at Γt′ and Γt).

Example 2.13. Let Γ be the rose in X2 with identity marking, and with ℓ(a) = λ−2

and ℓ(b) = λ−1 where λ > 0 satisfies λ−1 + λ−2 = 1 (see Example 3.6). Let
φ : Γ → ΓΦ be the optimal map for Φ given by a 7→ b, b 7→ ab suggested by Φ, so φ
has slope λ on both edges and ∆ = Γ. The folding path from Γ to ΓΦ amounts to
identifying the terminal portion of the edge b around the edge a in the direction of
A (note that {A,B} is the only illegal turn).

Proposition 2.14. [21] d is a geodesic metric.
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Proof. Choose an optimal map φ : Γ → Γ′. If ∆φ = Γ (and all vertices have
≥ 2 gates) the folding path is a geodesic from Γ to Γ′. If ∆φ 6= Γ start by scaling
∆φ up and the edges in the complement up until the tension graph ∆ increases.
If there are any vertices with one gate, adjust φ. Continue until ∆ = Γ and then
follow with a folding path. See also [21] and [7] for further discussion. �

Exercise 2.15. What is the geodesic constructed in this proof in the case Γ = B
and Γ′ = A in the example in Section 2.3?

Exercise 2.16. Find geodesics from R to Γ and from Γ to R in Exercise 2.6.

Exercise∗∗ 2.17. Can a folding path intersect some Σ(Γ) in a disconnected set?





LECTURE 3

Classification of automorphisms

Recall the classification of isometries of hyperbolic space.

Definition 3.1. Let Φ ∈ Out(Fn). The displacement function of Φ is the function

D = DΦ : Xn → [0,∞)

given by D(Γ) = d(Γ,ΓΦ).
We denote τ(Φ) = infDΦ, the translation length of Φ.

Definition 3.2. Φ is

• hyperbolic if infD > 0 and minimum is realized,
• elliptic if infD = 0 and minimum is realized (equivalently, Φ fixes a point

of Xn),
• parabolic if the minimum of D is not realized.

We now describe the quality of each of these classes, following Bers’ approach
to Thurston’s classification of mapping classes [4].

3.1. Elliptic automorphisms

Example 3.3. Let Φ : F2 → F2 be given by a 7→ b, b 7→ a. Then Φ is elliptic as it
fixes the rose with identity marking and edge lengths 1

2 .

The following is an immediate consequence of the fact that point stabilizers are
finite.

Proposition 3.4. Every elliptic automorphism has finite order.

The converse also holds, namely every automorphism of finite order is elliptic,
by Nielsen Realization.

Exercise 3.5. Show that the automorphism Φ defined by a 7→ b, b 7→ Ab is elliptic
and find a fixed point. Hint: First find the fixed points of Φ3.

3.2. Hyperbolic automorphisms

Example 3.6. Let Φ be given by a 7→ b, b 7→ ab. Let φ : Γ → Γ be the map
suggested by Φ on the rose Γ. Now assign lengths so that φ has the same slope on
both edges, say λ. Temporarily assigning 1 to a we see from φ(a) = b that b must
have length λ. Then from φ(b) = ab we get the equation λ2 = 1 + λ, whose only

positive root is the golden ratio λ = 1+
√
5

2 . Now we must rescale to get volume 1,

i.e. we must set ℓ(a) = 1
1+λ

= λ−2 and ℓ(b) = λ
1+λ

= λ−1.
Now consider the train track structure on Γ induced by φ. There are 3 gates:

{a}, {b} and {A,B}. Observe that φ sends legal paths to legal paths. To prove this
observation, one only needs to check:

• the image of each edge is a legal path, and

21
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• legal turns are mapped to legal turns (equivalently, f induces an injective
map on the set of gates at every vertex).

Both of these are easy to check: ab is a legal path and the map on gates is {a} 7→ {b},
{b} 7→ {a}, {A,B} 7→ {A,B}.

In particular, for any m = 1, 2, · · · the map φm : Γ → Γ is optimal with the
same train track structure. We now see that d(Γ,ΓΦm) = m log λ. This implies
τ(Φ) = log λ and so Φ is hyperbolic.

Exercise 3.7. Prove the assertion in the last sentence.
Hint: The triangle inequality. If d(Γ′,Γ′Φ) < log λ one can get from Γ to ΓΦm

via Γ′,Γ′Φ, · · · ,Γ′Φm,ΓΦm. For large m this is a contradiction.

Exercise 3.8. Suppose φ : Γ → Γ is any map between graphs that sends vertices
to vertices and edges to nontrivial immersed paths. Let e1, · · · , ek be the list of
all 1-cells in Γ (ignore orientations). Form the transition matrix M : it’s a k × k
matrix whose ij-entry is the number of times f(ej) crosses ei with either orientation.
For example, the transition matrix both for Example 3.6 and for Example 3.5 is
M = ( 0 1

1 1 ). Assume that some positive power of M has all entries positive. The
classical theorem of Perron-Frobenius says that the largest in norm eigenvalue λ
of M is > 1, its eigenspace is 1-dimensional and spanned by a vector with all
coordinates positive. Show that there is a metric on Γ such that φ has slope λ on
every edge.

Definition 3.9. Let φ : Γ → Γ be an optimal map. We say that φ is a train track
map if ∆φ = Γ, every vertex has at least two gates, and φ maps legal paths to legal
paths. The slope λ on each edge is the dilatation of φ.

The arguments of Example 3.6 prove:

Proposition 3.10. If Φ admits a train track representative φ : Γ → Γ then
d(Γ,ΓΦ) = τ(Φ). Thus Φ is hyperbolic unless the dilatation is 1, and then Φ is
elliptic.

More generally, if φ : Γ → Γ is an optimal map representing Φ such that
φ(∆φ) ⊂ ∆φ and so that φ : ∆φ → ∆φ is a train track map, then Φ is hyperbolic.

Example 3.11. Let Φ ∈ Out(F3) be given by a 7→ b, b 7→ ab, c 7→ ca. Then Φ
is hyperbolic with τ(Φ) = log λ with λ the golden ratio just like in Example 3.6.
For Γ take the rose with the metric on a, b a scaled down version of the metric in
Example 3.6 and let the length of c be close to 1. Then the map Γ → Γ suggested
by Φ is a train track map.

Theorem 3.12. Every hyperbolic automorphism can be represented by an optimal
map φ : Γ → Γ so that ∆φ is an invariant subgraph and φ : ∆φ → ∆φ is a train
track map.

Note that ∆φ may be a proper subgraph of Γ. For a proof see [6]. One can
also arrange that φ sends vertices to vertices, but then the train track structure on
∆φ has to be modified by declaring d1 ∼ d2 provided there exists k > 0 such that
φk∗(d1) = φk∗(d2).

Example 3.13. The following example was obtained by entering a random (sur-
face) automorphism into Peter Brinkmann’s program XTrain available on the web
at



LECTURE 3. CLASSIFICATION OF AUTOMORPHISMS 23

http://math.sci.ccny.cuny.edu/pages?name=XTrain. Capital letters denote in-
verses of lower case letters. With notation as in Figure 3.1, the map is a 7→ Da, b 7→
CAdaCCAdaCCAda, c 7→ cADacADaccADaccADac, d 7→ ddabccA. The program
also tells us that the dilatation λ is a root of the polynomial x4−10x3+10x2−10x+1
and is approximately 9.012144.

a

b

c

d

Figure 3.1. A more typical train track map.

Train track structure can be computed by looking at the “derivative” map. By
a we denote the direction where a begins, and by A where a ends: a 7→ D 7→ a,
b 7→ C 7→ C, c 7→ c, d 7→ d, B 7→ A 7→ A. Two directions at a vertex form an illegal
turn if they eventually map to the same direction, so A ∼ B and b ∼ C. This is
indicated in the diagram. As an exercise, compute the lengths of edges.

Example 3.14. Here is another example, this time it does not come from a surface
automorphism. The map is given by a 7→ c, b 7→ bcAdEaCb, c 7→ cAeDa, d 7→
BcAeAd, e 7→ BcAe.

a

e

d c b

Figure 3.2. Another train track map. The only nontrivial gate is {d, e}.

When Φ is hyperbolic and Γ achieves the minimum of DΦ, choose a geodesic
path from Γ to ΓΦ and take the union of all Φm-translates of the path, m ∈ Z.
This is a geodesic line and Φ acts on it by translation by τ(Φ). Such a line is an
axis of Φ.

Exercise 3.15. Let φ : Γ → Γ be a train track map with dilatation λ. Show that for
every conjugacy class α the sequence ℓΓ(Φ

k(α))/λk, k = 1, 2, · · · is non-increasing,
and it is constant if α|Γ is legal.

The limiting values in the exercise are translation lengths of an Fn-action on
an R-tree, called the stable tree of Φ.

3.3. Parabolic automorphisms

Example 3.16. Let Φ be given by a 7→ a, b 7→ ab. Then τ(Φ) = 0 as can be seen
by taking ℓ(a) = ǫ, ℓ(b) = 1− ǫ with ǫ→ 0. But Φ has infinite order, so it must be
parabolic.
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Definition 3.17. An automorphism Φ ∈ Out(Fn) is reducible if it can be repre-
sented as φ : Γ → Γ so that for some subgraph Γ′ ( Γ we have φ(Γ′) ⊆ Γ′, and Γ′

is not a forest (i.e. a disjoint union of trees).
Otherwise we say that Φ is irreducible. An automorphism is fully irreducible if

every nonzero power is irreducible.

Examples 3.3,3.11,3.16 are all reducible (for 3.3 consider the dumbbell graph).
Example 3.6 is irreducible and so is Example 3.13, but this is more difficult to

prove.

Theorem 3.18. Every parabolic automorphism is reducible.

Proof. Fix a sequence Γi ∈ Xn such that DΦ(Γi) → τ(Φ). The key claim is:
The sequence Γi leaves every thick part Xn(ǫ).
The claim implies the theorem by the following argument that goes back to

Bers. For large i the graph Γi will contain very small loops. Of course there can
be several scales of smallness (e.g. ǫ and ǫ2) but we are guaranteed to have an
arbitrarily large ratio between two consecutive scales. More precisely, for ǫ > 0
define Γi(ǫ) to be the union of all essential loops (not necessarily immersed) of
length < ǫ. By construction Φ is represented as φ : Γi → Γi with Lipschitz constant
uniformly bounded by some K. Thus f(Γi(ǫ)) ⊂ Γi(Kǫ), and “large ratio between
two consecutive scales” means that Γi(Kǫ) deformation retracts to Γi(ǫ). Thus
φ can be homotoped so that the core subgraph of Γi(ǫ) is invariant. Formally,
one finds such a large ratio between consecutive scales by considering a long finite
sequence of subgraphs such as Γi(1) ⊃ Γi(1/K) ⊃ Γi(1/K

2) ⊃ · · · . They have no
contractible components and are nonempty for large i, and in a sufficiently long
chain of nonempty subgraphs two consecutive ones will have the same core (i.e.
minimal deformation retract).

It remains to prove the claim. The idea is that if the claim fails, we could
find a graph in Xn where DΦ achieves the minimum. Conceptually, the simplest
argument is to translate the claim to a statement about the quotient Xn/Out(Fn).
For clarity, let’s pretend that Xn is a complete Riemannian manifold with Out(Fn)
acting as a deck group by isometries, so that Xn/Out(Fn) is also a complete Rie-
mannian manifold. The statement that Φ is parabolic amounts to saying that a
loop representing Φ in π1(Xn/Out(Fn)) cannot be homotoped to a loop of length
τ(Φ). Projecting a geodesic path from Γi to ΓiΦ gives a loop in Xn/Out(Fn) based
at the image [Γi] of Γi. If all Γi stay in some thick part Xn(ǫ) then after passing
to a subsequence we may assume that [Γi] → [Γ]. We also note that the projected
loops αi stay in some larger compact set, since the distance from a graph with a
tiny loop back to the thick part is very large. Thus by Arzela-Ascoli after a further
subsequence we have a limiting loop α at [Γ] of length τ(Φ). Now for large i the
loops α and αi are homotopic, so they all represent the conjugacy class of Φ. The
length of α is τ(Φ), contradiction.

There are some technical issues coming from the non-symmetry of the metric
on Xn and from the non-freeness of the action. For a less conceptual, but more
elementary proof, following Bers, see [6]. �

If τ(Φ) > 0 and Φ is parabolic, there is an “axis at infinity”.
Putting the above discussion together, we obtain the following theorem, origi-

nally proved by different methods.
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Theorem 3.19 ([10]). Every irreducible automorphism is represented by a train
track map.

3.4. Reducible automorphisms

Every automorphism of Fn has a representative φ : Γ → Γ called a relative train
track map. It is built from train track maps like an upper triangular block matrix.
More precisely,

• there is a filtration

Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γk = Γ

into invariant subgraphs (i.e. φ(Γi) ⊂ Γi), and
• for every i and every edge e in Γi−Γi−1 the paths φm(e) for m = 1, 2, · · ·

can backtrack only within Γi−1.

Here we take Γ−1 = ∅. Therefore φ : Γ0 → Γ0 is a train track map. We also
assume that the filtration is maximal. The transition matrix is upper triangular,
and there are two kinds of strata Γi − Γi−1:

• polynomially growing (PG): φ induces a cyclic permutation of the edges
in Γi − Γi−1, and

• exponentially growing (EG): the transition matrix restricted to Γi −Γi−1

grows exponentially and is irreducible (for every entry some power is
nonzero in that entry).

Example 3.11 has two strata, the lower is (EG) and the upper is (PG).
Relative train track maps are useful because cancellation under iterations is

controlled. There are various improvements that control cancellation even further;
they go under the generic name of “improved relative train tracks”, see [10, 8, 12,
20]. Some of the improvement require first passing to a suitable positive power of
the automorphism, but this is usually harmless in applications. The following is a
partial list of results proved using the improved relative train track technology:

• [10] For every automorphism f : Fn → Fn the rank of the fixed subgroup
Fix(f) = {x ∈ Fn | f(x) = x} has rank ≤ n.

• [5, 8, 9, 3] Tits Alternative: If H is any subgroup of Out(Fn) then either
H contains F2 or H is virtually abelian.

• [19] The abstract commensurator of Out(Fn) is Out(Fn).
• [12] The mapping torus of any automorphism of Fn satisfies quadratic
isoperimetric inequality.

• [24] If H is any finitely generated subgroup of Out(Fn) then either H
contains a fully irreducible automorphism, or a finite index subgroup of
H fixes a nontrivial free factor of Fn.

3.5. Growth

If Φ ∈ Out(Fn) and γ is a nontrivial conjugacy class, we can define the growth rate
of γ with respect to Φ:

τ(Φ, γ) = lim sup
m→∞

log
ℓΓ(Φ

m(γ))

m

for a fixed Γ ∈ Xn. If we decide on some other Γ′ instead, the ratio of lengths with
respect the two is uniformly bounded, so τ(Φ, γ) is independent of the choice of
Γ. In fact, as a consequence of the theory, one may replace lim sup by lim in the
definition.
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If Φ is hyperbolic and we choose φ : Γ → Γ to be as in Theorem 3.12 and if γ is a
legal loop in ∆φ, then ℓΓ(Φ

m(γ)) = ℓΓ(γ)λ
m for m > 0, so τ(Φ, γ) = log λ = τ(Φ).

Exercise 3.20. Take the automorphism Φ with a 7→ b, b 7→ ab, c 7→ d, d 7→ cad.

Show that τ(Φ) = log λ for λ = 1+
√
5

2 and that ℓΓ(Φ
m(c)) ∼ mλm. Deduce that Φ

is parabolic.

A (weak) Perron number is a positive real number which is an algebraic integer
and it is greater (or equal) than the norm of any of its Galois conjugates.

Theorem 3.21. For any Φ ∈ Out(Fn) there are finitely many weak Perron numbers
λ1, · · · , λk > 1 so that for any γ

τ(Φ, γ) = log λi

for some i or τ(Φ, γ) = 0. Moreover, τ(Φ) = max log λi (or 0 if the collection of
λi is empty).

The numbers λi are the growth rates of the block of the transition matrix
corresponding to the strata Γi − Γi−1.

It was shown by Thurston [35] that for every weak Perron number λ > 1 there
is an automorphism Φ represented by a train track map φ : Γ → Γ with dilatation
λ.

For a more detailed information about growth, see [30].

3.6. Pathologies

For those familiar with mapping class groups, the following facts will seem like
pathologies.

• τ(Φ) may be different from τ(Φ−1).
• Φ may be hyperbolic and Φ−1 parabolic.
• If τ(Φ) = 0 then Φ grows polynomially, but not necessarily linearly.
• If τ(Φ) = log λ, λ may not be an algebraic unit (but can be any weak

Perron number).

All of these facts are obstructions to an automorphism being realizable as a
homeomorphism of a surface.
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Hyperbolic features

To what extent is Xn negatively curved? It is not completely clear what we
mean by this, since the metric is not symmetric. But even if we could make sense of
the question, Xn could not be negatively curved, since it contains “flats” for n ≥ 4.
Consider the commuting automorphisms of F4, Φ: a 7→ b, b 7→ ab, c 7→ c, d 7→ d, Ψ:
a 7→ a, b 7→ b, c 7→ d, d 7→ cd. Then there are constants C1, C2 > 0 so that for the
rose R with identity marking and edge lengths 1/4 and for k, l ∈ Z we have

C1(|k|+ |l|) ≤ d(R,RΦkΨl) ≤ C2(|k|+ |l|)

i.e. we have a quasi-isometric embedding of a flat.

Exercise 4.1. Prove the inequalities.

The first negatively curved phenomenon was observed by Yael Algom-Kfir, by
analogy with Minsky’s theorem [32]. First note that in hyperbolic space Hn every
geodesic is strongly contracting: there is a universal constant C so that if B is any
metric ball in Hn disjoint from a geodesic line ℓ then the image of B under the
nearest point projection to ℓ has diameter ≤ C. Also note that this property fails
in Euclidean space, so we can view it as an indicator of negative curvature.

Theorem 4.2 ([1]). Let Φ be a fully irreducible automorphism. Then any orbit
{ΓΦk} of Φ is strongly contracting: there is a constant C = C(Φ,Γ) so that if

B→(∆, R) = {Ω ∈ Xn | d(∆,Ω) ≤ R}

is a ball disjoint from the orbit then the nearest point projection of the ball to the
orbit has diameter ≤ C.

For ∆ ∈ Xn the function k 7→ d(∆,ΓΦk) is proper and the minset is the nearest
point projection of ∆.

To motivate what happens next, let’s look at mapping class groups. If S is
a compact surface, define the curve complex of S to be the simplicial complex
C(S) whose vertices are isotopy classes of essential simple closed curves (a curve is
essential if it is not homotopic into the boundary or to a point), and a collection of
vertices spans a simplex if the corresponding isotopy classes can be represented by
pairwise disjoint curves. If S is a hyperbolic surface with totally geodesic boundary,
we can work with simple closed geodesics – they are automatically disjoint if they
can be isotoped to be disjoint.

In the case of the torus, or the torus with one boundary component, the curve
complex is a discrete set since non-isotopic essential simple closed curves always
intersect. In these cases one modifies the definition of the curve complex and puts
an edge between two vertices if they can be isotoped so that they intersect in one
point. The resulting graph is the classical Farey graph, pictured below (cf picture
of reduced Outer space in Lecture 1).
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Figure 4.1. Farey graph.
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Figure 4.2. Farey graph in upper half plane.

Theorem 4.3 ([31]). The curve complex is hyperbolic.

The statement means that the 1-skeleton is δ-hyperbolic for some δ, with re-
spect to the geodesic metric where every edge has length 1.

Teichmüller space, like Outer space, is not hyperbolic. It has a coarse map to
the curve complex, and this map “kills flats”, so that the curve complex captures
hyperbolic aspects of Teichmüller space.

Going back to Outer space, there are two analogs of the curve complex.

4.1. Complex of free factors Fn

This complex was defined by Hatcher and Vogtmann in [27]. The definition is
analogous to the Bruhat-Tits building for SLn(Z), which is a the simplicial com-
plex whose vertices are proper vector subspaces of Qn and simplices are chains of
subspaces.
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Recall that a subgroup A < Fn is a free factor if there is a subgroup B < Fn

such that Fn = A ∗B. The vertices of Fn are conjugacy classes of proper (i.e. not
1 nor Fn) free factors, and a simplex is induced by a chain A0 < A1 < · · · < Ak.
Again in rank 2 the complex is a discrete set, so we modify the definition and put
an edge between the conjugacy classes of 〈a〉 and 〈b〉 provided a and b form a basis
of F2. Since the conjugacy class of a rank 1 free factor in F2 corresponds exactly to
a simple closed curve in a punctured torus, the graph Fn is also the Farey graph.

Theorem 4.4. [7] Fn is hyperbolic.

4.2. The complex Sn of free factorizations

This complex was introduced by Hatcher in [26] in the form of a complex of spheres.
The easiest way to define it is as the simplicial completion X ∗

n of Xn (see Lecture
1). Thus a vertex of Sn is a 1-edge free splitting of Fn, i.e. a minimal simplicial
Fn-tree with trivial edge stabilizers, 1 orbit of edges, and no global fixed points. It
is convenient to draw the quotient space of such a tree and label vertices by their
stabilizers, as in Bass-Serre theory. Thus a vertex looks like a picture below.

A B
A

Figure 4.3. 1-edge splittings A ∗B and A∗1 of Fn.

Such graphs arise when a marked graph is equipped with a degenerate metric.
Similarly, an edge of Sn is a 2-edge splitting, and the endpoints of this edge are
1-edge splittings obtained by collapsing one of two orbits of edges.

Theorem 4.5 ([23]). Sn is hyperbolic.

4.3. Coarse projections

Recall that when we discuss distance in Fn or Sn we consider points in the 1-
skeleton only. We will view the distance function on all of Fn or Sn as being
defined only “coarsely”, i.e. with a bounded ambiguity. If x, y ∈ Fn we set d(x, y)
to be the diameter of the union of the 1-skeleta of the simplices containing x and y
respectively, and similarly for Sn.

There are coarse Lipschitz projection maps Xn → Sn → Fn. The word “coarse”
means that the image of a point is a uniformly bounded set, and “Lipschitz” means
that there are constants A,B > 0 so that if two points are at distance ≤ d then the
union of their images has diameter ≤ Ad+B.

To define π : Xn → S
(0)
n , for Γ ∈ Xn let π(Γ) be the set of vertices of the

smallest simplex containing Γ. Similarly, ρ : S
(0)
n → Fn

(0) is defined to be the set
of stabilizers of the vertices of the given splitting, viewed as an Fn-tree.

Here are some facts.

• Both π : Xn → S0
n and ρ : S

(1)
n → Fn are coarse Lipschitz maps and both

are coarsely onto (i.e. there is R > 0 such that every R-ball in the target
intersects the image).

• Both π and ρ have unbounded point inverses, even when π is restricted
to the spine.



30 MLADEN BESTVINA, OUTER SPACE

• A fully irreducible automorphism Φ ∈ Out(Fn) acts as a hyperbolic isom-
etry on both Fn and Sn.

• An automorphism which is not fully irreducible acts with bounded orbits
on Fn, but may be hyperbolic on Sn.

4.4. Idea of the proof of hyperbolicity

Let Y be a connected graph with edge lengths 1. How does one go about proving
that Y is hyperbolic. The definition requires checking that geodesic triangles are
uniformly thin, but in practice it is hard to decide if a given path is a geodesic.
The following outline applies to all three complexes mentioned above: the curve
complex, the complex of free factors, and the free factorization complex.

The strategy is to work with “natural” paths. Suppose one is given a collection
of paths P in Y , each joining a pair of vertices, and assume the following:

• The collection P is transitive, meaning that every pair of vertices in Y is
connected by a path in P,

• Each path in P is a reparametrized quasigeodesic, i.e. there are constants
L,A so that for every path α : [a, b] → Y in P there is a homeomorphism
τ : [a′, b′] → [a, b] such that ατ : [a′, b′] → Y is an (L,A)-quasi-geodesic.

• There is some δ ≥ 0 so that every triangle formed by three paths in P is
δ-thin.

The following is a variant of hyperbolicity criteria in [31] and [11].

Proposition 4.6. Suppose Y admits a collection of paths P as above. Then Y is
hyperbolic.

Proof. It suffices to prove that any loop in Y of length ℓ bounds a disk of area
≤ Cℓ log ℓ (see [13]). Of course, Y s a graph and has no 2-cells, but one imagines
attaching disks to all loops in Y of length bounded by some fixed constant and then
the area of a loop is the least number of these attached disks a null-homotopy of
the loop crosses, counted with multiplicity. For simplicity, assume that ℓ = 3 · 2n

for some n > 0 so that we may think of the loop as a polygon with 3 ·2n sides. Such
a polygon can be triangulated so that combinatorially it is the n-neighborhood of
a fixed triangle in the Farey graph (the 1-neighborhood of a triangle consists of 4
triangles). For each diagonal in this triangulation choose a path in P connecting the
same pair of points. Thus we have a map from the Farey-triangulated polygon to
Y that takes outer edges to edges in Y and all other edges to paths in P. The area
of a thin triangle is bounded by a linear function of its diameter. The diameter
of the central triangle and of the triangles adjacent to it is bounded by 2n, but
subsequent layers have diameters bounded by 2n−1, 2n−2, · · · and each subsequent
layer has twice as many triangles as the previous layer. Adding these numbers we
get ∼ n · 2n which is about ℓ · log ℓ. �

It remains to define the collection P and check the above properties. For both
Fn and Sn the collection of paths is defined by projecting folding paths in Xn using
the coarse projection map. The first bullet is easy to verify. In practice, the second
bullet is verified by constructing a coarse Lipschitz retraction from Y to the image
of a given path in P. Both the second and the third bullets require hard work.
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39. Bruno Zimmermann, Über Homöomorphismen n-dimensionaler Henkelkörper und endliche

Erweiterungen von Schottky-Gruppen, Comment. Math. Helv. 56 (1981), no. 3, 474–486.
MR 639363 (83f:57025)


