## 1 $SL_2(\mathbb{R})$ problems

1. Show that  $SL_2(\mathbb{R})$  is homeomorphic to  $S^1 \times \mathbb{R}^2$ .

Hint 1:  $SL_2(\mathbb{R})$  acts on  $\mathbb{R}^2 - 0$  transitively with stabilizer of (1,0) equal to the set of upper triangular matrices with 1's on the diagonal, which is homeomorphic to  $\mathbb{R}$ . This gives a "principal bundle", i.e. a map  $SL_2(\mathbb{R}) \to \mathbb{R}^2 - 0$  whose point inverses are lines. Construct a section  $\mathbb{R}^2 - 0 \to SL_2(\mathbb{R})$  and then a homeomorphism to the product.

Hint 2: Same thing, but for the action of  $SL_2(\mathbb{R})$  on the upper half plane, with point inverses circles. Better yet (but uses more sophisticated math):  $PSL_2(\mathbb{R}) = SL_2(\mathbb{R})/\pm I$  can be identified with the unit tangent bundle  $T_1\mathbb{H}^2$  of the hyperbolic plane  $\mathbb{H}^2$ , which in turn can be identified with  $\mathbb{H}^2 \times S^1_{\infty}$ , product with the circle at infinity. This shows that  $PSL_2(\mathbb{R})$ is homeomorphic to  $S^1 \times \mathbb{R}^2$ , but  $SL_2(\mathbb{R})$  is a double cover of  $PSL_2(\mathbb{R})$ .

- 2. We have seen that trace Tr(A) determines the conjugacy class of  $A \in SL_2(\mathbb{R})$  provided |Tr(A)| > 2. Show that this conjugacy class, as a subset of  $SL_2(\mathbb{R})$ , is a closed subset homeomorphic to  $S^1 \times \mathbb{R}$ .
- 3. The set of parabolics is not closed and consists of four conjugacy classes (two with trace 2 and two with trace -2), each homeomorphic to  $S^1 \times \mathbb{R}$ .
- 4. There are two conjugacy classes of elements of  $SL_2(\mathbb{R})$  whose trace is a given number in (-2, 2), each closed and homeomorphic to  $\mathbb{R}^2$ . If A is such a matrix, how can you tell (quickly) whether it is a clockwise or a counterclockwise rotation? Hint: For a counterclockwise rotation, the determinant of the matrix with columns v and Av is positive. Then try  $v = e_1$  or  $v = e_2$ .
- 5. (Harder) Consider an Anosov homeomorphism  $f: T^2 \to T^2$ . Show that the set of periodic points is dense. Can you estimate the number of fixed points of  $f^k$ , for large k? We will discuss these questions later in the course.

## 2 Dynamics problems

- 6. Show that the definition of entropy does not depend on the choice of the metric.
- 7. More generally, show that if there is a semiconjugacy from  $f: X \to X$  to  $g: Y \to Y$  then  $h(f) \ge h(g)$ . This corresponds to the intuition that

entropy measures dynamical complexity, and collapsing leads to simplification. Hint for both 1 and 2: Uniform continuity.

- 8. Compute the entropy of the identity on X, of a rotation on  $S^1$ , more generally of an isometry. (Show it is 0. The intuition is that isometries are dynamically very simple.)
- 9. Compute the entropy of a subshift of finite type.
- 10. (Harder) For an Anosov homeomorphism f of the torus with dilatation  $\lambda$  prove that  $h(f) \geq \log \lambda$ .

Hint: For a small  $\epsilon$  consider a set of points in the torus that's arranged roughly as a square grid with sidelengths  $\sim \epsilon/\lambda^k$ . There are  $\sim \lambda^{2k}/\epsilon^2$ points and any two are distinguishable by  $f^i$  for some  $i = -k, \dots, k$ . The same proof works for pseudoAnosov homeomorphisms.

- 11. (Even harder) Given a real number  $\lambda > 1$  construct a homeomorphism  $f: X \to X$  of a compact metric space with  $h(f) = \log \lambda$ . Hint: First do it for a dense set of  $\Lambda$ 's by taking "roots" of full shifts.
- 12. Entropy can be defined in the same way for a map  $f : X \to X$  on a compact metric space (not necessarily a homeomorphism). Show that the map  $f : S^1 \to S^1$  given by  $f(z) = z^2$  has entropy log 2.

There is a standard way of converting maps to homeomorphisms. Let  $\Sigma$  be the subspace of the infinite product  $S^1 \times S^1 \times \cdots$  consisting of sequences  $(x_1, x_2, \cdots)$  with  $f(x_i) = x_{i-1}$  for  $i = 2, 3, \cdots$ . This is called the *inverse limit* of the sequence  $S^1 \leftarrow S^1 \leftarrow \cdots$  and in this case this space is the *dyadic solenoid*. The map f induces a homeomorphism  $F : \Sigma \to \Sigma$  by  $F(x_1, x_2, \cdots) = (x_2, x_3, \cdots)$ . Show that the entropy of F is also log 2.

13. Work through the details of the claim from the class that the 1-sided shift on 2 letters is semi-conjugate to the map  $z \mapsto z^2$  on the unit circle in  $\mathbb{C}$ , and that the entropy of both maps is log 2.

## 3 Train track maps

14. Start with the automorphism of  $F_3$  (and the map on the rose) given by  $a \mapsto Ba, b \mapsto AbCb, c \mapsto Acc$ . First verify that this is not a train track map. Then fold the initial quarter of b with the initial third of c (those that map to A) to improve the situation. Call the edge obtained in this way d, and call b and c the remaining parts of the old b and c. Show that

the new map is given by  $a \mapsto BDa$ ,  $b \mapsto dbCb$ ,  $c \mapsto dcdc$ ,  $d \mapsto A$ . Note that this graph is not a rose. Also verify that the new map is still not a train track map. Now change the map by a homotopy. The new map is  $a \mapsto BDa$ ,  $b \mapsto bCb$ ,  $c \mapsto cdc$ ,  $d \mapsto Ad$ . Why is this map homotopic to the previous map? Now verify that this is a train track map by computing the orbit structure on the directions. The PF number will be 2.7166....

- 15. The inverse of the automorphism in Problem 14 is  $a \mapsto abacaba, b \mapsto abacab, c \mapsto abac$ . The corresponding map on the rose is a train track map. Show that the dilatation is > 4. Thus automorphisms and their inverses can have different growth rates, unlike (pseudo)-Anosov homeomorphisms.
- 16. Consider the automorphism of  $F_n$  given by  $a_1 \mapsto a_2 \mapsto a_3 \mapsto \cdots \mapsto a_n \mapsto a_1 a_2$ . Prove that the associated map of the rose is a train track map and denote its expansion factor (dilatation) by  $\lambda_n$ . Argue that for  $n \ge 3$   $\lambda_n < 1 + \frac{1}{n}$  as follows. Assign lengths to edges by  $\ell(a_i) = (1 + \frac{1}{n})^{i-1}$ . Then show that the map stretches lengths by  $\le 1 + \frac{1}{n}$  (and in the case of  $a_n$  by  $< 1 + \frac{1}{n}$ ). Why does that prove that  $\lambda_n < 1 + \frac{1}{n}$ ? Similarly estimate  $\lambda_n$  from below by  $1 + \frac{c}{n}$  for a suitable c > 0. Comment: It is known that in every rank there is a smallest possible dilatation > 1 of train track maps in that rank, but the exact value is not known. This is a topic of current research.
- 17. (Harder) If G is a digraph with n vertices which is oriented-connected and contains a vertex with at least two outgoing edges, prove that the number of oriented paths of length nk is at least  $2^k$ . Deduce that the PF eigenvalue is  $\geq \sqrt[n]{2} \geq 1 + \frac{1}{2n}$ . Given that train tracks in rank n live on graphs with at most 3n - 3 edges, deduce that there is a lower bound of the form  $1 + \frac{c}{n}$  for some c > 0 for all dilatations in rank n that are > 1.

## 4 Train tracks on surfaces

18. The picture represents the genus 2 surface, where sides are identified in the usual pattern abABcdCD starting at the bottom and going counterclockwise. The puncture is the vertex. The graph is a spine of the surface and a certain homeomorphism induces the following map on the spine:

$$a \mapsto xA, c \mapsto cYcz, x \mapsto ZCu, y \mapsto uaXW, z \mapsto w, w \mapsto XW, u \mapsto uaXW, z \mapsto w, w \mapsto XW, u \mapsto uaXW, z \mapsto w, w \mapsto XW, u \mapsto uaXW, u \mapsto uaXW$$
, u \mapsto uaXW, u h uuXW, uuXW, u h uuXW, u h uuXW, u h uuXW, uuX

Show that this is a train track map, compute the (minimal) train track structure, infinitesimal edges, and find the types of singularities the foliations associated to this pseudo-Anosov homeomorphism have.

