
1 SL2(R) problems

1. Show that SL2(R) is homeomorphic to S1 × R
2.

Hint 1: SL2(R) acts on R
2 − 0 transitively with stabilizer of (1, 0) equal

to the set of upper triangular matrices with 1’s on the diagonal, which
is homeomorphic to R. This gives a “principal bundle”, i.e. a map
SL2(R) → R

2 − 0 whose point inverses are lines. Construct a section
R
2 − 0→ SL2(R) and then a homeomorphism to the product.

Hint 2: Same thing, but for the action of SL2(R) on the upper half plane,
with point inverses circles. Better yet (but uses more sophisticated math):
PSL2(R) = SL2(R)/± I can be identified with the unit tangent bundle
T1H

2 of the hyperbolic plane H
2, which in turn can be identified with

H
2 × S1

∞
, product with the circle at infinity. This shows that PSL2(R)

is homeomorphic to S1 × R
2, but SL2(R) is a double cover of PSL2(R).

2. We have seen that trace Tr(A) determines the conjugacy class of A ∈
SL2(R) provided |Tr(A)| > 2. Show that this conjugacy class, as a subset
of SL2(R), is a closed subset homeomorphic to S1 × R.

3. The set of parabolics is not closed and consists of four conjugacy classes
(two with trace 2 and two with trace −2), each homeomorphic to S1×R.

4. There are two conjugacy classes of elements of SL2(R) whose trace is a
given number in (−2, 2), each closed and homeomorphic to R

2. If A is
such a matrix, how can you tell (quickly) whether it is a clockwise or
a counterclockwise rotation? Hint: For a counterclockwise rotation, the
determinant of the matrix with columns v and Av is positive. Then try
v = e1 or v = e2.

5. (Harder) Consider an Anosov homeomorphism f : T 2 → T 2. Show that
the set of periodic points is dense. Can you estimate the number of fixed
points of fk, for large k? We will discuss these questions later in the
course.

2 Dynamics problems

6. Show that the definition of entropy does not depend on the choice of the
metric.

7. More generally, show that if there is a semiconjugacy from f : X → X
to g : Y → Y then h(f) ≥ h(g). This corresponds to the intuition that
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entropy measures dynamical complexity, and collapsing leads to simplifi-
cation. Hint for both 1 and 2: Uniform continuity.

8. Compute the entropy of the identity on X, of a rotation on S1, more
generally of an isometry. (Show it is 0. The intuition is that isometries
are dynamically very simple.)

9. Compute the entropy of a subshift of finite type.

10. (Harder) For an Anosov homeomorphism f of the torus with dilatation
λ prove that h(f) ≥ log λ.

Hint: For a small ǫ consider a set of points in the torus that’s arranged
roughly as a square grid with sidelengths ∼ ǫ/λk. There are ∼ λ2k/ǫ2

points and any two are distinguishable by f i for some i = −k, · · · , k. The
same proof works for pseudoAnosov homeomorphisms.

11. (Even harder) Given a real number λ > 1 construct a homeomorphism
f : X → X of a compact metric space with h(f) = log λ. Hint: First do
it for a dense set of Λ’s by taking “roots” of full shifts.

12. Entropy can be defined in the same way for a map f : X → X on a
compact metric space (not necessarily a homeomorphism). Show that
the map f : S1 → S1 given by f(z) = z2 has entropy log 2.

There is a standard way of converting maps to homeomorphisms. Let Σ
be the subspace of the infinite product S1×S1×· · · consisting of sequences
(x1, x2, · · · ) with f(xi) = xi−1 for i = 2, 3, · · · . This is called the inverse

limit of the sequence S1 ← S1 ← · · · and in this case this space is the
dyadic solenoid. The map f induces a homeomorphism F : Σ → Σ by
F (x1, x2, · · · ) = (x2, x3, · · · ). Show that the entropy of F is also log 2.

13. Work through the details of the claim from the class that the 1-sided shift
on 2 letters is semi-conjugate to the map z 7→ z2 on the unit circle in C,
and that the entropy of both maps is log 2.

3 Train track maps

14. Start with the automorphism of F3 (and the map on the rose) given by
a 7→ Ba, b 7→ AbCb, c 7→ Acc. First verify that this is not a train track
map. Then fold the initial quarter of b with the initial third of c (those
that map to A) to improve the situation. Call the edge obtained in this
way d, and call b and c the remaining parts of the old b and c. Show that
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the new map is given by a 7→ BDa, b 7→ dbCb, c 7→ dcdc, d 7→ A. Note
that this graph is not a rose. Also verify that the new map is still not a
train track map. Now change the map by a homotopy. The new map is
a 7→ BDa, b 7→ bCb, c 7→ cdc, d 7→ Ad. Why is this map homotopic to the
previous map? Now verify that this is a train track map by computing
the orbit structure on the directions. The PF number will be 2.7166 · · · .

15. The inverse of the automorphism in Problem 14 is a 7→ abacaba, b 7→
abacab, c 7→ abac. The corresponding map on the rose is a train track
map. Show that the dilatation is > 4. Thus automorphisms and their
inverses can have different growth rates, unlike (pseudo)-Anosov homeo-
morphisms.

16. Consider the automorphism of Fn given by a1 7→ a2 7→ a3 7→ · · · 7→ an 7→
a1a2. Prove that the associated map of the rose is a train track map
and denote its expansion factor (dilatation) by λn. Argue that for n ≥ 3
λn < 1 + 1

n
as follows. Assign lengths to edges by ℓ(ai) = (1 + 1

n
)i−1.

Then show that the map stretches lengths by ≤ 1 + 1

n
(and in the case

of an by < 1 + 1

n
). Why does that prove that λn < 1 + 1

n
? Similarly

estimate λn from below by 1 + c

n
for a suitable c > 0. Comment: It is

known that in every rank there is a smallest possible dilatation > 1 of
train track maps in that rank, but the exact value is not known. This is
a topic of current research.

17. (Harder) If G is a digraph with n vertices which is oriented-connected
and contains a vertex with at least two outgoing edges, prove that the
number of oriented paths of length nk is at least 2k. Deduce that the PF
eigenvalue is ≥ n

√
2 ≥ 1 + 1

2n
. Given that train tracks in rank n live on

graphs with at most 3n− 3 edges, deduce that there is a lower bound of
the form 1 + c

n
for some c > 0 for all dilatations in rank n that are > 1.

4 Train tracks on surfaces

18. The picture represents the genus 2 surface, where sides are identified in
the usual pattern abABcdCD starting at the bottom and going counter-
clockwise. The puncture is the vertex. The graph is a spine of the surface
and a certain homeomorphism induces the following map on the spine:

a 7→ xA, c 7→ cY cz, x 7→ ZCu, y 7→ uaXW, z 7→ w,w 7→ XW,u 7→ ua
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Show that this is a train track map, compute the (minimal) train track
structure, infinitesimal edges, and find the types of singularities the foli-
ations associated to this pseudo-Anosov homeomorphism have.
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