$1 S L_{2}(\mathbb{R})$ problems

1. Show that $S L_{2}(\mathbb{R})$ is homeomorphic to $S^{1} \times \mathbb{R}^{2}$.

Hint $1: S L_{2}(\mathbb{R})$ acts on $\mathbb{R}^{2}-0$ transitively with stabilizer of $(1,0)$ equal to the set of upper triangular matrices with 1's on the diagonal, which is homeomorphic to \mathbb{R}. This gives a "principal bundle", i.e. a map $S L_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}-0$ whose point inverses are lines. Construct a section $\mathbb{R}^{2}-0 \rightarrow S L_{2}(\mathbb{R})$ and then a homeomorphism to the product.
Hint 2: Same thing, but for the action of $S L_{2}(\mathbb{R})$ on the upper half plane, with point inverses circles. Better yet (but uses more sophisticated math): $P S L_{2}(\mathbb{R})=S L_{2}(\mathbb{R}) / \pm I$ can be identified with the unit tangent bundle $T_{1} \mathbb{H}^{2}$ of the hyperbolic plane \mathbb{H}^{2}, which in turn can be identified with $\mathbb{H}^{2} \times S_{\infty}^{1}$, product with the circle at infinity. This shows that $P S L_{2}(\mathbb{R})$ is homeomorphic to $S^{1} \times \mathbb{R}^{2}$, but $S L_{2}(\mathbb{R})$ is a double cover of $P S L_{2}(\mathbb{R})$.
2. We have seen that trace $\operatorname{Tr}(A)$ determines the conjugacy class of $A \in$ $S L_{2}(\mathbb{R})$ provided $|\operatorname{Tr}(A)|>2$. Show that this conjugacy class, as a subset of $S L_{2}(\mathbb{R})$, is a closed subset homeomorphic to $S^{1} \times \mathbb{R}$.
3. The set of parabolics is not closed and consists of four conjugacy classes (two with trace 2 and two with trace -2), each homeomorphic to $S^{1} \times \mathbb{R}$.
4. There are two conjugacy classes of elements of $S L_{2}(\mathbb{R})$ whose trace is a given number in $(-2,2)$, each closed and homeomorphic to \mathbb{R}^{2}. If A is such a matrix, how can you tell (quickly) whether it is a clockwise or a counterclockwise rotation? Hint: For a counterclockwise rotation, the determinant of the matrix with columns v and $A v$ is positive. Then try $v=e_{1}$ or $v=e_{2}$.
5. (Harder) Consider an Anosov homeomorphism $f: T^{2} \rightarrow T^{2}$. Show that the set of periodic points is dense. Can you estimate the number of fixed points of f^{k}, for large k ? We will discuss these questions later in the course.

2 Dynamics problems

6. Show that the definition of entropy does not depend on the choice of the metric.
7. More generally, show that if there is a semiconjugacy from $f: X \rightarrow X$ to $g: Y \rightarrow Y$ then $h(f) \geq h(g)$. This corresponds to the intuition that
entropy measures dynamical complexity, and collapsing leads to simplification. Hint for both 1 and 2: Uniform continuity.
8. Compute the entropy of the identity on X, of a rotation on S^{1}, more generally of an isometry. (Show it is 0 . The intuition is that isometries are dynamically very simple.)
9. Compute the entropy of a subshift of finite type.
10. (Harder) For an Anosov homeomorphism f of the torus with dilatation λ prove that $h(f) \geq \log \lambda$.
Hint: For a small ϵ consider a set of points in the torus that's arranged roughly as a square grid with sidelengths $\sim \epsilon / \lambda^{k}$. There are $\sim \lambda^{2 k} / \epsilon^{2}$ points and any two are distinguishable by f^{i} for some $i=-k, \cdots, k$. The same proof works for pseudoAnosov homeomorphisms.
11. (Even harder) Given a real number $\lambda>1$ construct a homeomorphism $f: X \rightarrow X$ of a compact metric space with $h(f)=\log \lambda$. Hint: First do it for a dense set of Λ 's by taking "roots" of full shifts.
12. Entropy can be defined in the same way for a map $f: X \rightarrow X$ on a compact metric space (not necessarily a homeomorphism). Show that the map $f: S^{1} \rightarrow S^{1}$ given by $f(z)=z^{2}$ has entropy $\log 2$.

There is a standard way of converting maps to homeomorphisms. Let Σ be the subspace of the infinite product $S^{1} \times S^{1} \times \cdots$ consisting of sequences $\left(x_{1}, x_{2}, \cdots\right)$ with $f\left(x_{i}\right)=x_{i-1}$ for $i=2,3, \cdots$. This is called the inverse limit of the sequence $S^{1} \leftarrow S^{1} \leftarrow \cdots$ and in this case this space is the dyadic solenoid. The map f induces a homeomorphism $F: \Sigma \rightarrow \Sigma$ by $F\left(x_{1}, x_{2}, \cdots\right)=\left(x_{2}, x_{3}, \cdots\right)$. Show that the entropy of F is also $\log 2$.
13. Work through the details of the claim from the class that the 1 -sided shift on 2 letters is semi-conjugate to the map $z \mapsto z^{2}$ on the unit circle in \mathbb{C}, and that the entropy of both maps is $\log 2$.

3 Train track maps

14. Start with the automorphism of F_{3} (and the map on the rose) given by $a \mapsto B a, b \mapsto A b C b, c \mapsto A c c$. First verify that this is not a train track map. Then fold the initial quarter of b with the initial third of c (those that map to A) to improve the situation. Call the edge obtained in this way d, and call b and c the remaining parts of the old b and c. Show that
the new map is given by $a \mapsto B D a, b \mapsto d b C b, c \mapsto d c d c, d \mapsto A$. Note that this graph is not a rose. Also verify that the new map is still not a train track map. Now change the map by a homotopy. The new map is $a \mapsto B D a, b \mapsto b C b, c \mapsto c d c, d \mapsto A d$. Why is this map homotopic to the previous map? Now verify that this is a train track map by computing the orbit structure on the directions. The PF number will be $2.7166 \cdots$.
15. The inverse of the automorphism in Problem 14 is $a \mapsto a b a c a b a, b \mapsto$ $a b a c a b, c \mapsto a b a c$. The corresponding map on the rose is a train track map. Show that the dilatation is >4. Thus automorphisms and their inverses can have different growth rates, unlike (pseudo)-Anosov homeomorphisms.
16. Consider the automorphism of F_{n} given by $a_{1} \mapsto a_{2} \mapsto a_{3} \mapsto \cdots \mapsto a_{n} \mapsto$ $a_{1} a_{2}$. Prove that the associated map of the rose is a train track map and denote its expansion factor (dilatation) by λ_{n}. Argue that for $n \geq 3$ $\lambda_{n}<1+\frac{1}{n}$ as follows. Assign lengths to edges by $\ell\left(a_{i}\right)=\left(1+\frac{1}{n}\right)^{i-1}$. Then show that the map stretches lengths by $\leq 1+\frac{1}{n}$ (and in the case of a_{n} by $<1+\frac{1}{n}$). Why does that prove that $\lambda_{n}<1+\frac{1}{n}$? Similarly estimate λ_{n} from below by $1+\frac{c}{n}$ for a suitable $c>0$. Comment: It is known that in every rank there is a smallest possible dilatation >1 of train track maps in that rank, but the exact value is not known. This is a topic of current research.
17. (Harder) If G is a digraph with n vertices which is oriented-connected and contains a vertex with at least two outgoing edges, prove that the number of oriented paths of length $n k$ is at least 2^{k}. Deduce that the PF eigenvalue is $\geq \sqrt[n]{2} \geq 1+\frac{1}{2 n}$. Given that train tracks in rank n live on graphs with at most $3 n-3$ edges, deduce that there is a lower bound of the form $1+\frac{c}{n}$ for some $c>0$ for all dilatations in rank n that are >1.

4 Train tracks on surfaces

18. The picture represents the genus 2 surface, where sides are identified in the usual pattern $a b A B c d C D$ starting at the bottom and going counterclockwise. The puncture is the vertex. The graph is a spine of the surface and a certain homeomorphism induces the following map on the spine:

$$
a \mapsto x A, c \mapsto c Y c z, x \mapsto Z C u, y \mapsto u a X W, z \mapsto w, w \mapsto X W, u \mapsto u a
$$

Show that this is a train track map, compute the (minimal) train track structure, infinitesimal edges, and find the types of singularities the foliations associated to this pseudo-Anosov homeomorphism have.

