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0 Introduction

The group Out(F,) of outer automorphisms of a free group F,, of rank n
displays many features of mapping class groups and of arithmetic groups.
Both of these classes of groups are better understood than Out(FF,,) and they
remain to guide the research in Out([F,,).

More formally, the relationship is as follows. Every outer automorphism
® € Out(F,) induces an automorphism of the abelianization Z" of F,,, so
we have a homomorphism Out(F,) — GL,(Z), which is always surjective,
and it is also injective for n = 2. Thus Out(Fy) = GLo(Z) is very well
understood, but for n > 2 the group Out(F,,) still holds many mysteries, in
spite of the strides made in the last 30 years.

If S is a closed surface with finitely many punctures (distinguished
points) p; with Euler characteristic x(S—{p;}) < 0, the mapping class group
MCG(S,{pi}) is the group of components of the group of homeomorphisms
of S that fix the punctures. Equivalently, it is the group of such homeomor-
phisms modulo isotopy (equivalently, homotopy) fixing the punctures. By
passing to mp there is a homomorphism MCG(S,{p;}) — Out(mi1(S—{pi}))-
This homomorphism is always injective, and in the case of the empty set of
punctures it is also surjective (the Dehn-Nielsen-Baer theorem). Thus for
a nonempty set of punctures we get embeddings of mapping class groups
into a suitable Out(IF,,). In the case of the once punctured torus we have an
isomorphism, and again Out(F9) is well understood from this point of view.

Classically, Out(IF,,) has been studied for as long as mapping class groups,
with the works of Nielsen, Magnus, Whitehead and others. Nielsen [16]
worked out a finite presentation for Out(IF,,). Magnus [15] studied the kernel
of Out(F,) — GL,(Z) and proved it is finitely generated. It is still open
whether this group is finitely presented for n > 3 (it isn’t when n = 3 [13]



and it is trivial when n = 2). Whitehead [24, 25| introduced 3-manifold
techniques, studying 2-spheres in the n-fold connected sum of S' x $2’s,
and gave an algorithm to determine if two elements of IF,, are in the same
Aut(F,)-orbit.

To a topologist, studying free groups is intimately related to studying
graphs. Even though Dehn used this point of view very early on (he gave
the first proof that subgroups of free groups are free, unfortunately unpub-
lished), the work that followed was dominated by combinatorial group theory
and the topological point of view was all but forgotten. Always working with
a basis of a free group amounts to restricting oneself to graphs which are
roses (wedges of circles).

Stallings [19] reintroduced the graph point of view. He gave an algorithm
to construct [the core graph of] the covering space of a graph corresponding
to a finitely generated subgroup. The key element of this algorithm is the
concept of folding, i.e. identifying certain pairs of edges with a common
vertex. This operation will play an important role in these notes. Stallings
gave very short and elegant proofs of the results about free groups originally
proved by the methods of combinatorial group theory.

The watershed event in the study of Out(F,) was the introduction of
Outer space by Culler and Vogtmann [7]. This event is rightfully referred
to as the Big Bang, and it firmly placed topological and geometric methods
at the heart of the study of Out(F,). Outer space is a contractible space on
which Out(F,) acts properly discontinuously, and it plays the same role as
the symmetric space SL,(R)/SO,, in the study of SL,,(Z), or as Teichmiiller
space in the study of mapping class groups. Outer space is primarily a
polyhedron and its study involves PL methods, rather than more analytic
methods in the case of Teichmiiller space. Points in Outer space are graphs
equipped with extra structure (metric and marking).

These notes are primarily about the geometry of Outer space. There is
a natural metric on Outer space preserved by the action of Out(F,). It is
defined analogously to Thurston’s metric on Teichmiiller space [21] as the log
of the optimal Lipschitz constant of a map relating two points (i.e. graphs).
The metric is not symmetric, but it turns out that this feature is imposed
on us by the non-symmetric aspects of Out(F,,).

There are many exercises throughout the notes. Some are routine, but
some require substantial work and stating these exercises was more of an easy
alternative for me to writing another section with more details. RATING?

What notes don’t cover. Homology, improved train tracks and conse-
quences, structure of R-trees on the boundary, representations, rigidity.
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1 Lecture 1: Outer space and its topology

A graph is a cell complex of dimension < 1. The rose R, is the graph with
1 vertex and n edges.

1.0.1 Markings

A marking of a graph I' is a homotopy equivalence f : R, — ['. This
is a convenient way of specifying an identification between 7 (I") with the
free group F,, (thought of as being identified with 1 (R,,) once and for all)
with a (deliberate) ambiguity of composing with inner automorphisms (no
basepoints!). Two marked graphs f : R, — I and f' : R, — T are
equivalent if there is a homeomorphism ¢ : I' — T” such that ¢f ~ f’
(homotopic).

In practice one defines the inverse of a marking, i.e. a homotopy equiva-
lence I' = R,,. If the edges of R,, are oriented and labeled by a basis a, b, - - -
of F,, (thus identifying 71 (R,,) = F,), the inverse marking can be defined by
specifying a maximal tree T in I, orienting all edges in I' — 7', and labeling
them with a (possibly different) basis of F,,, expressed as words in a, b, - - -.
Such a choice defines a map I' = R,, by collapsing 1" to a point and sending
each edge to the edge path specified by the label.

Ezercise 1. Show that the two marked graphs pictured below are equivalent.
We follow the convention that capital letters represent inverses of lower case
letters. Unlabeled edges form a maximal tree.

Figure 1: Equivalent marked graphs

1.0.2 Metric

A metric on a finite graph is an assignment ¢ of positive numbers ¢(e), called
lengths, to the edges e of I'. The volume of a finite metric graph is the sum



of the lengths of the edges.

A metric on a graph allows one to view the graph as a geodesic metric
space, with each edge e having length ¢(e). This point of view lets us assign
lengths also to paths in the graph; in particular any closed immersed loop
has finite length (an immersion is a locally injective map, in this case from
the circle to the graph).

We will consider the triples (I', ¢, f) where I' is a finite graph with all
vertices of valence > 3, ¢ is a metric on I' with volume 1, and f: R, — I' is
a marking. Two such triples (T, ¢, f) and (I, ¢, f') are equivalent if there is
an isometry (i.e. a length-preserving homeomorphism) ¢ : I' — I'" such that

of = f'.
Definition 1.1. Outer space

is the set of equivalence classes of finite marked metric graphs with vertices
of valence > 3 and of volume 1.

We will usually omit equivalence class, ¢ and f from the notation, and
talk about points I' € A}, instead of [(T',?, f)] € A,.

1.0.3 Lengths of loops

Once 71(R;,) is identified with F,, we can view each nontrivial conjugacy
class in F,, as a loop in R,, up to homotopy. The homotopy class has a
unique immersed representative, up to parametrization. If « is a nontrivial
conjugacy class and (I', ¢, f) € &), define the length r(a) of a in I' as the
length of the immersed loop homotopic to f(a).

1.1 [,-trees

If T" is a marked metric graph, the universal cover Tisa (metric, simplicial)
tree, and the marking (i.e. the identification 7;(I") = F,,) induces an action
of F,, on I. The equivalence relation on marked metric graphs translates
to saying that two metric simplicial F,-trees S,T are equivalent if there
is an equivariant isometry S — T. Thus X}, can be alternatively defined
as the space of minimal metric simplicial free F,-trees with covolume 1,
up to equivariant isometry. The length of a conjugacy class becomes the
translation length in the tree.

The (Gromov) boundary of such a tree, viewed as a 0-hyperbolic graph,
is the Cantor set of its ends. If S, T € X, are two trees, any equivariant map



S — T will be a quasi-isometry and will induce a homeomorphism between
the Cantor sets of ends. In this way we may identify all these Cantor sets
(with the ambiguity of homeomorphisms induced by the action of F,, as
usual); this is the Cantor set of ends JF,, of F,,.

1.2 Topology and Action

X, can be naturally decomposed into open simplices. If I' is a graph and
f : R, — I' a marking, the set of possible metrics M (I') on I' is an open
simplex

{(61762?'” 7£E) | El > Oazﬁl — 1}

of dimension E—1 if E is the number of edges. If T' is a forest (i.e. a disjoint
union of trees) in I and IV = T'/T is obtained by collapsing all edges of T to
points, then M (I") can be identified with the open face of M(T') in which
the coordinates of edges in T' are 0. Then I is said to be obtained from T"
by collapsing a forest, and I is obtained from I by blowing up a forest. The
union X(T") of M (T") with all such open faces as T ranges over all forests in T’
is a simplex-with-missing-faces: it can be obtained from the closed simplex
{(l1, Lo, ,Lg) | £; >0, ¢; = 1} by deleting those open faces that assign
0 to edges that do not form a forest. For example, if I" is the theta-graph
with 2 vertices and 3 edges connecting them, X (I") is the 2-simplex minus
its vertices.

Ezercise 2. The smallest dimension of a 3(I") is n.
Ezercise 3. The largest dimension of a X(I") is 3n — 4.

Top dimensional simplices correspond to 3-valent graphs, codimension 1
simplices to graphs with one valence 4 vertex and all others valence 3, etc.

The second statement in the following exercise is one of the most dif-
ficult in the notes. It establishes that X, is a complex of simplices with
missing faces (i.e. simplices are determined by their vertices). This fact is
not necessary to define simplicial topology and can be omitted on the first
reading.

Ezercise 4. A face of X(T), if nonempty, is of the form X(I) for some
I obtained from T' by collapsing a forest. For any I',T” the intersection
Y(T) N X(IV) is a face of both (or empty).

Hint: The key is to argue that if I'1, I's have a common blowup, then they
have a minimal common blowup. This is clear if one restricts to blowups that
are all obtained from a fixed blowup I' by collapsing a forest. In general,
the trick is to view all blowups as sitting in a fixed ambient space. For



this purpose we use the point of view of trees. Let T € X, be a tree and
e an edge of T. Then e determines a partition of the Cantor set of ends
OF,, into two compact subsets. The collection of all edges of T" determines a
collection of partitions with the properties: 1. nesting: Any two sets in these
partitions are either nested or disjoint, 2. equivariance: the collection is IF,,-
equivariant, and 3. finiteness: if A C B are two sets in the partitions, there
are only finitely many C with A C C' C B. Conversely, given a collection of
partitions satisfying 1-3 one can build a tree. It will not be free in general, as
stabilizers of vertices may be nontrivial, and these trees represent missing
faces. (Aside: find an additional property that guarantees that the tree
is free.) Now collapsing a forest amounts to passing to a subcollection of
partitions. To find the minimal common blowup, just take the union of the
collections of partitions. See [9].

In this way X, becomes a complex of simplices-with-missing-faces. We
define the simplicial topology on X, just like on a simplicial complex: a
subset U C A, is open [closed] if and only if U N 3(I") is open [closed] in
X(T) for every I' € X,.

Ezercise 5. Reduced Outer space R, is the subspace of X}, consisting of those
graphs that do not have a separating edge. Show that R,, is an equivariant
deformation retract of Aj,.

FEzercise 6. Identify the link of a simplex X(I') with the join of spaces of
finite trees with marked points, one for each vertex of valence > 3.

Hint: A vertex of valence m gives the space T}, of finite metric trees
of volume 1 with m distinguished points (some of which may coincide) so
that every vertex either has valence > 3 or has at least one distinguished
point. Thus T3 = () and T} consists of 3 elements, corresponding to 3 ways of
blowing up a valence 4 vertex. It turns out that T}, is homotopy equivalent
to the wedge of spheres of dimension m — 4. This is a key ingredient in the
proof of a theorem of Vogtmann that links in A, are homotopy equivalent
to wedges of spheres of dimension 3n — 5. See [22].

Ezercise 7. There is a snnphmal complex X, and a subcomplex /'\,’ such
that A, is homeomorphic to X, — X, . The complex X, is made up of
simplices E( ) of possibly degenerate metrics on I' that ass1gn non-negative
numbers to the edges with volume 1. The subcomplex X,” consists of
marked graphs with degenerate metrics, i.e. those where some nontrivial
loop has length 0. X, is a flag complex, i.e. if vg,--- , v, are vertices such
that each pair v;,v; spans an edge for ¢ # j, then the collection spans a
simplex.

{hat}



FEzercise 8. Every X(I') is contained in only finitely many % (I"”). Conclude
that A}, is locally compact and metrizable.

1.2.1 Thick part and spine

For a fixed small € > 0 define the thick part X, (€) of X, as the set of I € A},
such that ¢p(a) > e for every nontrivial conjugacy class «. When € > 0 is
sufficiently small the intersection of X, (€) with every X(I') is a nonempty
convex set (e.g. taking e < ﬁ ensures that the barycenter of ¥(T") is in
Xn(€)).

For each simplex-with-missing-faces ¥(I") let S(I') be the union of sim-
plices in the barycentric subdivision of 3(T') that are contained in ¥(T').
Thus S(T') is the dual of the missing faces. The spine S,, C A, is the union

of S(I')’s for all T' € A,,.

Figure 2: Spine and thick part intersected with a simplex

1.2.2 Action of Out(F,,)

There is a natural right action of Out(F,) on X,, by precomposing the mark-
ing. An element ® € Out(FF,,) can be thought of as a homotopy equivalence
® : R, — R, and then the action is:

(T, 6, f)-®=(I,¢, fP)

The action is simplicial and it is compatible with the action on conjugacy
classes:

lro(a) = lp(®(a))

It is sometimes convenient to write ¢p(a) as a pairing (I', a) and then
the identity becomes



(I'd, o) = (I', Do)

Ezercise 9. Show that the point stabilizer Stab(I', ¢, f) is isomorphic to
the isometry group Isom(I',¢) of the underlying graph, with an isometry ¢
corresponding to the automorphism f~'¢f, where f~! : I' — R,, denotes
the inverse marking.

Ezxercise 10. Show that there are only finitely many orbits of X(I')s.

Proposition 1.2. The action of Out(F,) on X, is proper. The action on
the thick part and on the spine is cocompact.

Ezercise 11. (Combinatorial description of the spine.) Show that the fol-
lowing simplicial complex P, the poset of marked graphs is homeomorphic
to the spine S. The vertices of P are marked graphs (T, f) (with I having
no vertces of valence < 2) modulo equivalence (T, f) ~ (I, f') if there is a
homeomorphism ¢ : I' — IV with ¢f ~ f/. A k-simplex in P is induced by
a sequence of nontrivial forest collapses I'g — I'1 — -+ — I'y.

FEzxercise 12. dimS = 2n — 3.

Ezercise 13. There are equivariant deformation retractions from Outer space
X, to the thick part A),(e) (for small € > 0) and from X, (¢) to the spine S.

1.3 Rank 2 picture

Since Out(Fy) =2 GLo(Z) =2 MCG(T?, {p}), the symmetric space SLa(R)/SO4

and Teichmiiller space of (172, {p}) is hyperbolic plane H?, it is not surprising
that X is essentially also (a combinatorial version of) H2. More precisely,
the reduced Outer space in rank 2 is the filled in Farey graph pictured in
Figure 3.

Markings of three of the simplices are pictured in Figure 4. Observe that
there are two ways to blow up a rose Ry to a theta graph and this translates
into the fact that reduced Outer space is a surface.

To obtain the whole Outer space, we also need to attach simplices cor-
responding to graphs with seprating edges, see Figure 5. These simplices
have missing vertices and two of the sides, and are attached to the reduced
Outer space along the third side.

{finite stabilizers}



Figure 3: Reduced Outer space in rank 2. The circle and the vertices of the
triangles are not part of the space.

1.4 Contractibility

The central fact about Outer space is its contractibility, proved by Marc
Culler and Karen Vogtmann.

Theorem 1.3. [7] Outer space X, is contractible.

Of course, this means that the thick part and the spine are also con-
tractible.

Culler-Vogtmann use combinatorial Morse theory and argue that the
spine is contractible. They carefully order the set of roses in Xj,: 1,79, -
and argue that for each ¢ the union of stars of the first i roses is contractible.
The difficult step is showing that the intersection of the star of the ith rose
with the union of the previous stars is contractible.

An alternative proof, more in the spirit of these notes, was constructed
by Skora [18], building on the ideas of Steiner [20]. For each I' € &, they
construct a (folding) path from a point in the simplex containing the rose
with identity marking to R, and argue that the collection of these paths
varies continuously in I' (this is technically the hard step). These paths
then determine a deformation retraction from X, to a simplex with missing
faces. For more on folding paths see Lecture 2.

Neither Steiner’s nor Skora’s work was published; for details see [5].

Corollary 1.4. Out(F,) is finitely presented.

Proof. Recall that if a group acts freely and cocompactly on a simply con-
nected simplicial complex, then it is finitely presented. More generally, it is
finitely presented if it acts cocompactly on a simply connected complex with

{farey}
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Figure 4: 3 2-simplices with their marked graphs

finitely presented vertex stabilizers and finitely generated edge stabilizers.
The action on the spine has finite stabilizers. ]

Proposition 1.5. Out(F,) is virtually torsion-free.

Proof. We claim that the kernel of Out(F,,) — GL,(Z/3) is torsion-free.
Let 1 # ® € Out(F,) have finite order. By Exercise 48 (see also Exercise
49) @ is realized as a graph isomorphism ¢ : I' — I". We may collapse all
separating edges of I', so every edge is contained in an embedded circle. If ®
is in the kernel, then ¢ maps any circle to itself preserving orientation. But
for each circle C in I there is another circle C’ so that C' N C’ is nonempty,
connected, and # C. Thus ¢ is identity. O

Corollary 1.6. A torsion-free subgroup H of finite index has a compact
classifying space K(H, 1) of dimension 2n— 3, and the virtual cohomological
dimension of Out(Fy,) is 2n — 3.

To see that ved(Out(F,,)) > 2n—3 note that Out(F,,) contains an abelian
subgroup of rank 2n — 3. E.g. for n = 3 we can take the group of automor-
phisms of the form a +— a, b +— aPb, c — alca” for p,q,r € Z.

10
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Figure 5: Simplices corresponding to graphs with separating edges {separating}

FEzercise 14. Find a nontrivial element of finite order in the kernel of Out(F,,) —
GL,(Z/2). Show that every such element has order 2 and that therefore ev-
ery finite subgroup of the kernel is abelian (in fact, a direct sum of Z/2’s).
Can you find the largest such subgroup?

Ezercise 15. Can you find estimates on the size of the largest finite subgroup
of Out(F,)? For example, the stabilizer of a rose has order 2"n!. Can you
find a larger finite group? What about n = 2 and 37 What is the largest
symmetric group contained in Out(F,)?

1.5 The sphere complex

There is an alternative point of view on Outer space, introduced by Hatcher
[12], in the spirit of Whitehead [24, 25]. It is easiest to give Hatcher’s de-
scription the complex X, from Exercise 7. Let W be the connected sum of
n copies of S! x $2. A vertex of X, is an isotopy class of essential 2-spheres
(i.e. those that don’t bound a 3-ball). A collection of these span a simplex if
they can be realized disjointly (in their isotopy classes). Of course, a point
in such a simplex is specified by assigning barycentric coordinates (weights)
to the spheres, and taking the dual graph with lengths of edges equal to
these coordinates gives a correspondence between the sphere model and the
graph model of X,,. To argument that this construction describes the same
complex, as well as the relationship between the mapping class group of W
and Out(F,), uses some classical 3-manifold topology, particularly the work
of Laudenbach [14]. Hatcher also gives a proof that X, is contractible from
this point of view. He constructs surgery paths between two weighted col-
lections of spheres and argues continuity, as in the Steiner-Skora approach.
The main technical tool in Hatcher’s work is the notion of normal form of
one collection of disjoint spheres with respect to another, minimizing the

11



number of components of the intersection.

1.6 Other definitions of topology

The length function is the function
L:X, = (0,00)

that to I' assigns (o — ¢r(a)). We will see in Lecture 2 that this function
is injective, and if we identify X, with the image, the subspace topology in-
duces a topology on X, the length function topology. In exercises in Lecture
2 it is shown that this topology is equivalent to the simplicial topology, i.e.
L is an embedding.

In the same way, after projectivizing (passing to the quotient under
scaling), we have a map &,, — P((0,00)¢). This function is also injective and
the induced topology, the projective length function topology, is equivalent
to the simplicial topology (see Lecture 2).

There are two more topologies induced by the Lipscitz metric, and they
are both equivalent to the simplicial topology. See Lecture 2.

Finally, from the point of view of trees, there is the equivariant Gromov-
Hausdorff topology, see [17]. It is also equivalent to the simplicial topology.

1.7 Compactification

Proposition 1.7 ([6]). The image of &, in P([0,00)¢) = [0,00)¢ — {0} /R
has compact closure.

This can be proved as follows.

Ezercise 16. Fix f : C — (0,00) and a € C. The subset K, of P([0,00)¢)
consisting of g : C — (0,00) with g(a)/f(a) > g(B)/f(B) for all B has
compact closure.

It will follow from Lecture 2 that the image of A, is covered by finitely
many sets of the form Ky ,. See Exercise 24.

The compactification &, is the closure of &;,, C P(]0,00)¢). The group
Out(F,,) continues to act on the closure. The ideal points can be interpreted
as R-trees with an isometric action of IF,,, but these actions in general are
neither free nor simplicial, and in fact typically the set of branch points
is dense. It is beyond the scope of these lectures to discuss R-trees. For
an introduction, see e.g. [2]. We will restrict ourselves to a few examples
below. Formally, an R-tree is a geodesic metric space which is 0-hyperbolic,
or equivalently, the unique segment joining two distinct points is isometric
to a closed interval in R.

12
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Ezercise 17. The closure of each simplex-with-missing-faces ¥(I') is the
closed simplex of possibly degenerate metrics.

For example, the degenerate metric on Ry that assigns length 1 to one
edge and length 0 to the other can be interpreted as the quotient, as in Bass-
Serre theory, of an isometric action of F» on a simplicial tree corresponding
to the splitting Fo = Zx;.

For a more typical example, start with a foliation of R? by parallel lines
with irrational slope. The leaf space of this foliation is R. Fix a translation
invariant metric on the leaf space; this is a transverse measure on the foli-
ation. Consider the induced foliation of the torus 7' = R?/Z? and remove
a point p € T'. The fundamental group of T'— {p} is F and it acts on the
universal cover U preserving the preimage foliation. Then the leaf space L
of this foliation is an R-tree and F5 acts on it isometrically. The distance
between two leaves can be defined as the infimum of measures of PL paths
joining the two leaves; a straigh line segment in T'— {p} or its universal cover
has a natural measure given by the transverse measure, i.e. by taking the
length of the projection in /t_}ie_z/leaf space of the foliation of R?. There are

countably many leaves in T'— {p} with pairwise distance 0; they correspond
to lifts of rays starting at p and related by short paths going around p with
argument a multiple of 7. All these are identified to one point in L.

Alternatively, let A be a measured geodesic lamination on a hyperbolic
surface S with cusps. Then the leaf space of the universal cover is an R-tree
with an isometric action of 71(5), and this action represents an ideal point
in the boundary of Outer space of 71(.5).

We'll see later examples of more interesting R-trees, e.g. stable trees of
automorphisms.

Ezercise 18. Show that the image of £ : X, — [0,00)¢ does not have com-
pact closure. Are there divergent sequences in &, whose images by L con-
verge?

1.7.1 Compactification in rank 2

We now describe the compactification in rank 2. For more details see [8].
Since Out(Fy) = GLy(Z) and reduced Outer space is H? one might expect
that the compactified reduced Outer space is a closed disk. This is indeed
the case, however, the set of ideal points is not just a circle, but a circle with
countably many arcs attached to a dense set of points on the circle, with
arcs forming a null-sequence (i.e. the diameters go to 0). See Figure 6.
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Figure 6: The compactification of reduced Outer space in rank 2 is a 2-
disk with the set of ideal points forming a circle with infinitely many arcs
attached

Points on the circle where no arc is attached ( “irrational points”) are rep-
resented by R-trees dual to irrational slope foliations, as described above.
All conjugacy classes have nonzero translation length except for the powers
of the commutator [a,b] of the basis elements (the conjugacy class of the
commutator is preserved by every automorphism; there is no nontrivial con-
jugacy class preserved by every automorphism in higher rank, in fact, there
are individual automorphisms that don’t preserve any nontrivial conjugacy
class).

Figure 7 gives a fragment of the Farey triangulation and how it fits with
the arcs in the compactification. Consider the rose Ry with identity marking
and the automorphism ® that sends a — a, b +— ab. This automorphism
fixes a (missing) vertex obtained from Ry by collapsing a to a point. This
vertex is one endpoint of an arc in the compactification; the other endpoint
is attached to the circle.

Figure 7: A fragment of the triangulation and convergence to arcs.

Every point on the arc is represented by a simplicial tree, see Figure 8.

14
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When the arc labeled a degenerates to a point, the picture represents an
endpoint of the arc (a missing vertex). When it degenerates to the whole
circle, it represents the other endpoint, the one attached to the circle. This
simplicial tree is also the dual to a simple closed curve on a punctured torus.

a

Figure 8: The Bass-Serre quotient of the simplicial tree representing a point
in the interior of an arc. {arc}

Exercise 19. Let I'; be the rose labeled a and a~'b with both edges of length
% and let ® be the automorphism a — a, b +— ab.

e Show that Fz = Foq)z

e Show that the sequence I'; converges to the endpoint of an arc that’s
on the circle. Sketch a possible location of I'; in Figure 7.

e Modify the metric of each I'; so the sequence converges to an arbitrary
point on this arc.

Potential additional topics: explicit finite generating set via wh moves,
characterization of trees in the boundary.
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2 Lecture 2: Lipschitz metric, Train tracks

In this Lecture we introduce the Lipschitz metric on Outer space. The
definition dates back to the 1990’s when my former student Tad White
proved the key Lemma 2.3. At the time we didn’t have any applications for
this metric. It recaptured my own interest when I realized that one can give
a classification of automorphisms in the style of Bers using this metric. Bers
[?] proved the Thurston classification theorem for mapping classes using the
Teichmller metric on Teichmiiller space. This is the subject of Lecture 3.

Francaviglia and Martino were the first to study this metric sytemati-
cally. Much of the material in this section is in their paper [10].

2.1 Definitions

Let [(T', 4, f)], [(T7, ¢, f")] X, be two points in Outer space. A map ¢ : I' — I”
is a difference of markings map if ¢f ~ f’. We will only consider Lipschitz
maps and we denote by o(¢) the Lipschitz constant of ¢. When ¢ is homo-
toped rel vertices to a map ¢’ which has constant slope on each edge, then
o(¢') < o(¢). We define the distance:

AT, 1) = iI¢1)f logo(¢)

as ¢ : I' — I ranges over all difference of markings. Recall the Arzela-
Ascoli theorem, which says that any sequence of L-Lipschitz maps between
two compact metric spaces has a convergent subsequence. This theorem
implies that infimum above is realized. We will call a difference of markings
¢ : ' — I optimal if it has constant slope on each edge and minimizes the
Lipschitz constant (which is then the maximal slope).

2.2 Elementary facts

Proposition 2.1. e d(I'1,T'3) <d(I'1,T2) +d(T2,Ts).
e d(I',T') > 0 and equality implies T =T".
e d(IT'®,1TV®) =d(T,TV).

Proof. The first claim follows from the general fact that o(¢¢) < o(¢)o(¢).
For the second claim, let ¢ : ' — I be an optimal map. If d(I',T') < 0
then all slopes of ¢ are < 1. This implies that the volume of the image of
¢ is < 1, so ¢ is not surjective. But a homotopy equivalence between finite
graphs without vertices of valence 1 is always surjective.
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If d(T',T") = 0 then all slopes of ¢ must be equal to 1 and the images
of different edges can intersect only in finite sets. Thus ¢ is a quotient map
that identifies finitely many collections of finitely many points. The only
way for such a map to be a homotopy equivalence (or even for I and T" to
have the same rank) is for ¢ to be an isometry, so I' = T".

The third claim is an exercise. O

2.3 Example

To illustrate the definition, let us compute the distance in the following
example, see Figure 9.

OORG

A
B A

Figure 9: A is the rose with edge lengths % and B is the theta graph with

edge lengths %, bot in the same 2-simplex.

To compute d(A, B) consider the difference of markings map ¢ that
sends the vertex to the midpoint of the middle edge, the loop on the left
homeomorphically to the circle formed by the middle and the left edges,
and the loop on the right homeomorphically to the circle forrr21ed by the
middle and the right edge. The slope of ¢ on both edges is % = %,

2
d(A, B) < log3. We now claim that d(A4, B) = log 3. To see this, observe
that each of the two edges in A is a loop of length % and any difference
of markings map will map it to a loop homotopic to an immersed loop of
length % Thus the length of the image cannot be smaller than %, and so
the slope of any difference of markings map on either edge cannot be less
than %. More generally, we observe:

SO

Lemma 2.2. If a is any nontrivial conjugacy class then

(o)
Ir(a)

So for any « we obtain a lower bound to the distance. In our example, the
lower bound agrees with the upper bound provided by the explicit difference
of markings map. This determines the distance.

We will say that a conjugacy class is a witness if equality holds in the
statement of the Lemma.

log <d(T,T")
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In a similar way, one can compute that d(B, A) = log% by considering
the map B — A that collapses the middle edge, and the witness loop formed
by the other two edges.

Note in particular that d(A, B) # d(B, A).

Ezercise 20. Let A be as above, and let C. be the graph in the same 1-
simplex as A with lengths of edges € and 1 — €. Show that d(C¢, A) — oo as
e — 0, but d(A, C) stays bounded by log 2.

Thus the distance function is not even quasi-symmetric, i.e. % can
be arbitrarily large. However, a theorem of Handel-Mosher [11] states that
the restriction of d to any thick part &), (¢) is quasi-symmetric. More gen-
erally, by [1], there is a “potential function” ¥ : X,, — [0,00) which is

Out(Fy,)-invariant and such that
d(I'",T) < Kd(I',T") + M(¥(T") — ¥(I"))
for universal constants K, M > 0. By the continuity of ¥ the second term

is bounded on any thick part.

Ezercise 21. Optimal maps between two graphs are not unique. Show that
the set of optimal maps A — B in the example above forms a closed interval.
Show that in general the set of optimal maps is naturally a compact convex
polytope.

2.4 Tension graph, train track structure

Here is the crucial fact. It is analogous to Teichmiiller’s theorem for Riemann
surfaces. It states that witnesses always exist.

Lemma 2.3. Suppose d(I',T") = log\. Then there is a conjugacy class
a € C such that
r (o)

Ir(a)

Note that for any « inequality < holds. So the lemma says that we can
define the distance alternatively as

=

fr/(a)
d(I',T") = logma
([, I) = log max (@)

The equality between the min and the max is an instance of the maz-flow
min-cut principle.
The proof introduces the key idea of train tracks.

18

{white}



Proof. Fix a difference of markings map ¢ : I' — IV with o(¢) = \. By
A = Ay denote the union of edges of I' on which the slope of f is A. This
subgraph of I' is called the tension graph for ¢, and it may have vertices of
valence 1 or 2. Now let v be a vertex of A. A direction at v in A is a germ
of geodesic paths [0,¢] — A sending 0 to v. Alternatively, it is an oriented
edge of A with initial vertex at v. Denote the set of these directions by
T,(A). Its cardinality is the valence of v in A and this set plays the role of
the unit tangent space at v. Now ¢ induces a map (kind of a derivative)

phi* : TU(A) — T¢(v) (F/)

since it sends a geodesic v : [0,¢] — A to a geodesic ¢y : [0,¢] — T
(parametrized with speed ). Here ¢(v) may not be a vertex, in which case
Ty ()(I") naturally has two directions. Thus we have an equivalence relation
on T,(A):

di ~dy <= ¢u(d1) = ds(d2)

A train track structure on a graph A is simply a collection of equivalence
relations on the sets T, (A) for all vertices v. Thus the tension graph is
naturally equipped with a tran track structure.

It is customary to draw equivalent directions as tangent to each other.
The equivalence classes are gates. An immersed path in A (thought of as a
train route) is legal if whenever it passes through a vertex, the entering and
the exiting gates are distinct. Otherwise, a path is illegal. Similarly, a turn
(i.e. a pair of distinct directions) is illegal if the directions are equivalent;
otherwise the turn is legal. More informally, legal paths do not make 180°
turns.

Figure 10 shows the tension graphs with their train track structures from
the examples in section 2.3. The tension graph of ¢ : A — B is all of A and
the vertex has two gates. For the map B — A the tension graph is a circle
formed by two edges and all turns are legal.

OO O

A B

Figure 10: Tension graphs with their train track structures from examples
in 2.3.

Now we make the following two observations:
e if the immersed loop a|I" representing conjugacy class « in I" is con-

tained in A and is legal, then brr(@) A,
lr(a)
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e if every vertex of A has at least two gates, then A contains a legal
loop; in fact this loop can be chosen to cross every oriented edge at
most once.

The first of these claims is an exercise in definitions: f has slope A on
each edge of a|I' and consecutive edges are mapped without backtracking
by definition of legality. For the second claim, keep extending a legal path
until the same oriented edge repeats.

Of course, in general A may have vertices with one gate. To finish the
proof we will show that ¢ may be perturbed so that every vertex has at least
two gates.

Claim: Suppose v is a vertex of Ay with only one gate. Then ¢ may be
perturbed to ¢’ : T' = 1" so that o(¢') = X and Ay € Ay.

Repeating this operation will eventually produce a perturbation of ¢
whose tension graph has at least two gates at every vertex (note that the
set of edges where the slope is A cannot become empty by the assumption
that d(T',T") = log ).

Proof of Claim. The homotopy ¢; from ¢ to ¢’ will be stationary on all
vertices except for v, and it will move ¢(v) slightly in the direction ¢.(d),
where d € T,(A). All maps ¢; are linear on edges. Thus the slope is
unaffected on edges not incident to v, it decreases on edges in A incident to
v, and it may increase on edges outside A incident to v. The perturbation is
small so that even the increased slope on such edges is < A\. Thus Ay C Ay
but Ay does not contain v and edges incident to it. O

FEzercise 22. [10] Show that in any graph with a train track structure with at {candidates}
least two gates at every vertex, there is a legal loop that is either embedded,

or it forms a “figure 8” crossing each edge once, or it forms a “dumbbell”,

crossing edges in the two loops once and edges in the connecting arc twice.

See Figure 11.

() & &<

Figure 11: Possible forms of candidates. Train track structure is suggested
by the pictures. {p:candidates}

We say that an immersed loop in a graph I' is a candidate if it has a form
as in Exercise 22. Thus there is always a candidate which is a witness and
there is a simple algorithm to compute distances d(I',T") in Outer space.
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Simply look at the ratio of lengths in IV and in I" of all candidate loops in
I' and take the log of the largest such ratio.

Exercise 23. Let R be the rose in X3 with all edges of length % and with
inverse marking given by a,b,c, and let I' be another such rose but with
inverse marking given by acA, bacB, a. Find all candidates in each that are
witnesses for the distance to the other.

Ezercise 24. Show that the image of X,, — P([0, 00)°) is covered by finitely
many sets of the form K, (see Exercise 16). This finishes the proof that
the closure of the image is compact.

Ezxercise 25. Consider the automorphism ® of F,, = (a,b,c,d) given by
a —b—c— d— ADCB (capital letters are inverses of the lowercase
letters).

(a) Let R be the rose with the identity marking (so the edges correspond
to a,b, c,d) and with all lengths %. Compute d(R, RD).

(b) Find the graph I in the same simplex as R (i.e. the same marking, but
edge lengths can be arbitrary) so that d(I', '®) is minimal.

(¢) Can you find a graph I'” in a small neighborhood of T" so that d(I”, TV®) <
d(T, T®)?

Exercise 26. If T',T" are distinct points in X,, show that there are conjugacy
classes «, 8 such that ¢p(a) > () and ¢p(B) < ¢p(8). Deduce that
the length function :X,, — (0,00)¢ and the projectivized length function
X, — (0,00)¢ are injective.

Ezercise 27. For a marked graph I' let K1 be the finite set of candidates for
I' and for all marked graphs obtained from I' by collapsing a forest. Show
that lengths of elements of Kt determine each point of 3(T').

The following two properies of the Lipschitz metric point out similarities
with the £*° metric.

Ezxercise 28. In each simplex straight lines are geodesics (not necessarily
parametrized with unit speed).

Hint: Let I'1,I'9, I's be three points along a straight line with I'y between
the other two. Argue that any witness for 'y — I's is also a witness for
Fl — FQ and for FQ — Fg.

Ezercise 29. Show that geodesics are not unique in general. Specifically, in
rank 2, show that there are geodesics contained in a 2-simplex with endpoints
on one edge, but with the geodesic intersecting the interior.
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Ezercise 30. The distance function d : X, x &,, — [0, 00) is continuous.

Hint: It suffices to prove continuity on each simplex. But on a simplex
the distance is determined by lengths of finitely many conjugacy classes, see
Exercise 27.

One can define a topology on X}, using the distance function. For I' € X},
and R > 0 define the forward open ball

BL(T,R)={I"€ X, | d(I',T') < R}
and the backward open ball
B, (' R)={I"€ X, | d(I'",T") < R}

In a similar way define closed balls, replacing the strict inequality with <.
The collection of all forward [backward] open balls defines a topology on X,
(but even that is not obvious due to asymmetry of the metric). Exercises
below outline a proof that both of these topologies are equivalent to the
length function topology, first on a simplex, and then in Section 2.5 on all
of A,,.

Ezercise 31. Show that for every A € 3(T") and any R > 0 the intersection
of 3(I") with a closed forward [backward] ball centered at A is a polytope,
i.e. it is the intersection of finitely many halfspaces, and its interior (with
respect to the standard topology on the simplex) is the intersection with the
corresponding open ball.

Ezercise 32. Show in addition that intersections of ¥(I") with closed back-
ward balls are compact, while the intersectons with closed forward balls may
not be compact.

Ezercise 33. Show that on each ¥(I') open forward [backward] balls define
the standard topology.

Hint: Each open ball is open in the standard topology. Use Exercise 28
and continuity of the metric to argue that balls of small radius are contained
in prechosen neighborhoods of the center.

2.5 Folding paths

A folding path is determined by an optimal map ¢ : I' — IV such that the
tension graph Ay is all of I and every vertex has at least two gates. It is a
geodesic path T'; from I' to IV and for each t < t' it comes with an optimal
map [’y — 'y so that the tension graph is all I'; and these maps compose
correctly for t < ¢ < t”. To define an initial segment of this path choose
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a small € > 0 and for ¢ € [0, ¢] define I'; by identifying segments of length
t issuing from any vertex in equivalent directions. Then rescale to make
volume equal to 1.

For example, for the map ¢ : A — B considered in section 2.3 time t
graph before rescaling would have one edge of length 2¢ and two edges of
length 1 — 2t¢.

There are naturally induced maps I'y — B so at ¢ = € one can repeat
the procedure to continue the path.

It is not clear a prior: that this defines a path globally. If ¢ is simplicial
with respect to some subdivisions of I' and I and the lengths of all edges
in each subdivision are equal, the procedure amounts to Stallings’ folding,
identifying to edges whenever they share a vertex and map to the same edge
(but here we do it continuously resulting in a path in Aj,.

A very elegant definition of folding paths is due to Skora [18]. It is most
conveniently described in terms of the universal cover gzg : T — I". Consider
the graph of é:

Gr(9) = {(u,v) € T x I | §(u) = v}

and define the vertical t-neighborhood of the graph Gr(¢):
Ne={(u,v) € I x I | d(é(u),v < t}

where d refers to the path metric on IV. Restrict the foliation of T x I”
by {u} x I’, w € T' to N, and define T'; as the quotient space where all
components of leaves are collapsed. Then I'; is a tree and its quotient by
the action of I, is the desired graph I'y (which needs to be rescaled). For
t =0 we have I'y = T" and for ¢ large I'; = T".

To get a feel for this definition, consider the “tent map” ¢ : [-1,1] —
[0,A] for A > 0, which has slope A on [—1,0] and slope —X on [0,1]. The
graph of this map is pictured in Figure 12 (with the target thought of as R).

The metric on I'; comes from pro jecting to the first coordinate and maps
Iy — I'y for t < t' from inclusion Ny < Ny.

To see that a folding path is alwas a geodesic take any legal loop in I’
and observe that its image in I'y is legal for I'; — I'y for any ¢’ > t and that
it is a witness for that map (the slope of the map on each edge is the ratio
of lengths of the loop at I'y and I'y.

Ezample 2.4. Let T be the rose in Xy with identity marking, and with
l(a) = X2 and £(b) = A7! where A > 0 satisfies A=t + A72 = 1 (see
Example 3.5). Let ¢ : I' — I'® be the optimal map for ® given by a — b,
b — ab suggested by @, so ¢ has slope A on both edges and A = I'. The
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Figure 12: Construction of folding paths following Skora.

folding path fromI" to '@ amounts to identifying the terminal portion of the
edge b around the edge a in the direction of A (note that {A, B} is the only
illegal turn).

Proposition 2.5. [10] d is a geodesic metric.

Proof. Choose an optimal map ¢ : I' — I"". If A, =T (and all vertices have
> 2 gates) the folding path is a geodesic from I' to I". If Ay # I start by
scaling Ay up and the edges in the complement up until the tension graph
A increases. If there are any vertices with one gate, adjust ¢. Continue
until A = T" and then follow with a folding path. See also [10] and [4] for
further discussion. O

Ezercise 34. What is the geodesic constructed in this proof in the case I' = B
and IV = A in the example in Section 2.37
Ezercise 35. Find geodesics from R to I and from I' to R in Exercise 23.

Ezercise 36. Can every folding path be extended forward? Can it be ex-
tended backward?

Ezercise 37. Can a folding path intersect some X(T') in a disconnected set?

The following three exercises finish the proof that the two metric topolo-
gies are equivalent to the length function topology.

Ezercise 38. Show that for every I' € A, there is € > 0 so that B_,(T',¢)
intersects only finitely many simplices. Hint: This is a consequence of local
finiteness and Proposition 2.5.

Ezercise 39. Show that for any I" for a sufficiently large R the ball B_, (T, ¢)
intersects infinitely many simplices.

Ezxercise 40. Show that every B, (I', R) intersects only finitely many sim-
plices for any R > 0. Thus closed backward balls are compact.
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Exercise 41. Prove the equivalence of forward metric and length function
topologies. Hint: That (metric)—(length) is continuous is easy. For the
converse use previous exercises (for which finiteness of candidates is the
key).

Ezercise 42. Show that the backward metric defines the topology on X,
equivalent to the length function topology.

Ezercise 43. Length function topology is equivalent to the projectivized
length function topology. Hint: The key is to show that if ['; are outside a
neighborhood of T', say outside the forward e-ball B_, (T, €), then I';’s cannot
converge to I' in the projective space. Let A; be the point on a geodesic
from I" to ['; at distance € from I'. If € is small the e-sphere intersects only
finitely many simplices and after a subsequence there is a candidate « for I"
that realizes the distance to I'; and there is a candidate 8 for graphs in the
sphere with ¢r(8) > la, (/). Show that this implies that

r,(8) /tr(B)
fr(a) / {r(a)

finitely many length functions don’t suffice (L 3).

< exp(—e)
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