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PL Morse theory∗

Mladen Bestvina†

Every mathematician has a secret weapon.
Mine is Morse theory.
–Raoul Bott

Abstract. Morse theory is an extremely versatile tool, useful in a
variety of situations and parts of topology and geometry. In these intro-
ductory lectures we will cover the foundations and discuss some typical
applications. We will start by reviewing smooth Morse theory, then giv-
ing the PL counterpart. The rest of the sections consist of applications.
The proofs are fairly detailed in the beginning but get sketchier as we go
along. The reader is invited to find new applications.
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1. Quick review: Smooth Morse theory

An excellent reference is Milnor’s beautiful book [8].
Let f : M → R be a smooth function defined on a manifold M . A point p ∈M

is critical if dfp = 0. In local coordinates, p is critical if all partial derivatives vanish
at p. A critical point p is non-degenerate if the Hessian, i.e. the matrix of second
partials at p, has nonzero determinant.

Lemma 1.1 [Morse Lemma]. Let p be a non-degenerate critical point. In
suitable local coordinates around p = 0 the function f has the form

f(x1, · · · , xn) = (const) − x2
1 − x2

2 − · · · − x2
λ + x2

λ+1 + · · · + x2
n.

The number λ = 0, 1, · · · , n is the index of f at p and it is independent of the
choice of the suitable local coordinates (and can be defined independently of local
coordinates in terms of the signature of the Hessian – which can itself be defined in
a coordinate-free fashion).
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A consequence of the Morse Lemma is that each non-degenerate critical point
has a neighborhood in which there are no other critical points.

A function f : M → R is Morse if all of its critical points are non-degenerate.
One usually imposes other reasonable restrictions on f such as

• The image of f is bounded below.

• f is proper, i.e. sets f−1([a, b]) are compact.

• Distinct critical points map to distinct points.

The knowledge of where the critical points are and their indices provides infor-
mation about the manifold.

Theorem 1.2. Let f : M → [0,∞) be a proper Morse function. Then M is
homotopy equivalent to a cell complex with the set of cells in 1-1 correspondence with
critical points of f , the dimension of the cell equals the index of the corresponding
critical point.

There is an even more precise description that recovers – in principle – M up
to diffeomorphism and not only up to homotopy.

An n-dimensional λ-handle is the ball Dλ × Dn−λ. The attaching region is
∂Dλ ×Dn−λ. A λ-handle is thought of as a thickening of a λ-cell and the attaching
region is a thickening of the boundary of the cell.

Theorem 1.3. Let f : M → [0,∞) be a proper Morse function. Then M can
be obtained (from the empty set) by successively attaching handles. Each handle is
attached to the boundary of the union of the previous handles along its attaching
region. The handles are in 1-1 correspondence with the critical points of f , the
index of a handle equals the index of the corresponding critical point.

There are also relative versions. The theorems are proved by considering the
relationship between Nt = f−1[a, t] and Nt+s = f−1[a, t + s] for s > 0. If the
closure of the difference Nt+s −Nt contain no critical points then one shows that
Nt is diffeomorphic to Nt+s. This is done by considering the gradient flow (tapered
within Nt) and flowing Nt onto Nt+s. If this closure contain one critical point and
it has index λ and maps to (t, t+s), then Nt+s is diffeomorphic to Nt with a handle
of index λ attached.

Another useful thing to remember is that when f is replaced by −f , critical
points of index λ become critical of index n−λ. This can be used to prove Poincaré
duality.

Below we picture the obligatory example of the height function on the torus.
There are four critical points, one of index 0 (the minimum), one of index 2 (the
maximum) and two of index 1 (saddle points).
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2. PL Morse theory

We want to develop a similar theory that applies to (nice) cell complexes instead
of manifolds (see [1]). The applications we have in mind involve cube complexes
and simplicial complexes. A natural class that includes both is the class of affine
polytope complexes.

Definition 2.1. An APC is a cell complex X where each cell e is equipped with
a characteristic function χe : Ce → X with the following properties.

1. Each Ce is a convex polyhedral cell in some R
m (fixed m for all cells).

2. χe is an embedding for all e.

3. The restriction of χe to any face of Ce agrees with the characteristic function
of another cell precomposed with an affine homeomorphism of R

m.

Replacing χe by precomposing it with an affine homeomorphism of R
m doesn’t

change anything of substance and we consider APC’s related in this way as identical.
For example, finite dimensional simplicial complexes are APC’s with each Ce

a regular simplex (of appropriate dimension) in R
m. Similarly, finite dimensional

cube complexes are APC’s.
One could easily allow infinite dimensional APC’s by not insisting on all Ce’s

being contained in R
m for a fixed m, but to allow m to depend on Ce. Then in (3)

we include the smaller Euclidean space in the larger in the standard way.
Definition 2.2. Let X be an APC and f : X → R a function. We say that f

is a Morse function provided

1. (affine) For every cell e the composition fχe : Ce → R is the restriction of
an affine function R

m → R.

2. (no horizontal cells) If f | e is constant then dim e = 0.

3. The image f(X(0)) of the 0-skeleton is a discrete subset of R.

We can always position Ce in R
m (by precomposing with an affine homeomor-

phism) so that fχe is the restriction of the height function.
Examples 2.3. Let X be (the geometric realization of) a simplicial complex

and f : X → R a function. Condition (1) amounts to requiring that

f
(∑

tivi

)
=

∑
tif(vi)

for any point in a simplex with vertices vi and barycentric coordinates ti.
Another important class of examples is that of cube complexes. We will see

some applications later in the notes.
The next proposition claims that vertices are the only critical points.
Proposition 2.4. Let J = [a, b] ⊂ R be a closed interval such that (a, b] is

disjoint from f(X(0)). Then f−1(J) deformation retracts to f−1(a).
Proof. Define Ai = f−1(a) ∪ (f−1(J) ∩X(i)). Thus

f−1(a) = A−1 ⊂ A0 ⊂ · · · ⊂ Am = f−1(J)
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and it suffices to argue that Ai+1 deformation retracts to Ai. Consider an (i + 1)-
cell e and identify it with Ce ⊂ R

m via χe. Arrange things so that f is a height
function on e. Then e∩f−1(J) is a convex polytope. There are two horizontal faces,
the bottom face that maps to a and the top face that maps to b (conceivably the
bottom face degenerates to a vertex in the event that e contains a vertex that maps
to a). Radial deformation from a point just above the top face gives a deformation
retraction of e ∩ f−1(J) to its boundary minus the top face. Putting together all
these deformation retractions over all (i + 1)-cells yields a deformation retraction
of Ai+1 to Ai. ✷
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To understand the change in homotopy type at each vertex we introduce the
notion of a descending link.

Definition 2.5. Fix a vertex v ∈ X. A cell e of X with v ∈ e is descending if
f |e attains its maximum at v. The descending link at v, Lk↓(v,X), is the link of v
in the union of all descending cells.

Similarly, replacing “maximum” by “minimum”, we have the notion of ascend-
ing cells and the ascending link Lk↑(v,X).

Examples 2.6. In both examples below the Morse function is the height func-
tion and we consider the central vertex v.

In the first example, both Lk↓(v,X) and Lk↑(v,X) are isomorphic to an arc trian-
gulated with 3 vertices, since two of the triangles are descending, two are ascending,
and two are neither. In the second example, Lk↓(v,X) consists of two points, and
Lk↑(v,X) of three.

Proposition 2.7. Suppose that J = [a, b] is a closed interval and that f−1(J)
contains one vertex v and f(v) = b. Then the pair (f−1(J), f−1(a)) is homotopy
equivalent rel f−1(a) to (Q, f−1(a)) where Q is f−1(a) with the cone on Lk↓(v,X)
attached.
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Proof. For each descending cell e  v let Se = e ∩ f−1[a, b]. Note that Se is
the cone on Lk↓(v, e) = Lk(v, e) with v the cone point and the base contained in
f−1(a). Define A−1 as the union of f−1(a) and all Se’s over all descending cells
e. Thus A−1 is f−1(a) with the cone on Lk↓(v,X) attached. Now define Ai as
A−1 ∪ (f−1(J) ∩X(i)). Thus

A−1 ⊂ A0 ⊂ A1 ⊂ · · · ⊂ Am = f−1(J)

and Ai+1 deformation retracts to Ai as before. ✷

A similar statement holds when there is more than one vertex in f−1(b); the
cones on the descending links are attached in a pairwise disjoint fashion. In the
example below, the complex X is a disk with the structure of a square complex with
four 2-cells, f−1(J) is the region between the two horizontal lines; it deformation
retracts to the subset indicated in black – the union of the lower horizontal line and
the cones on the descending links for the three vertices in the upper horizontal line.

Analogously, if all vertices in f−1(J) are contained in f−1(a) then f−1(J) de-
formation retracts to f−1(b) with cones on the ascending links of vertices in f−1(a)
attached. We will use these versions of Proposition 2.7 without further explanation.

3. Paths in a rectangle

Consider a p × q rectangular grid, such as the one pictured below. By A and B
denote the lower left and upper right corners respectively.

A

B

We want to organize the set of geodesic paths in the grid from A to B into
a simplicial complex. A geodesic path is one that crosses precisely p + q edges,
equivalently, it always travels east and north. To that end, define a simplicial
complex Xp,q as follows. Its vertices are the vertices in the grid except for A and
B. A collection of vertices spans a simplex iff there is a geodesic from A to B that
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passes through all of them. Thus the maximal simplices of Xp,q correspond to the
geodesic paths from A to B.

For example, X1,1 has two points, while X1,2 is an arc with four vertices. Like-
wise, X0,q is empty if q = 1 and is a (q − 2)-simplex if q > 1.

We now claim that if p > 1 or q > 1 then Xp,q is contractible.
The natural Morse function F assigns to a vertex (of Xp,q, which is a vertex

of the grid) its distance to A (positioned at the origin): (x, y) �→ x + y, and then
it is extended to all simplices in the affine fashion. There are no horizontal edges
(distinct vertices along a geodesic path have different distances from A). If v is a
vertex with coordinates (z, w) then

Lk↓(v,Xp,q) ∼= Xz,w

which is contractible, by induction, if z > 1 or w > 1. The picture is now clear:
the minimum of F is 1 and is attained at the vertices (1, 0) and (0, 1). At the
next height 2, the vertex (1, 1) has the descending link S0, and it connects the two
vertices at height 1. The other two vertices at height 2 are (0, 2) and (2, 0) and
they, as well as all vertices at height > 2, have contractible descending links, so our
space is contractible.

4. Configuration spaces

Let Y denote the tripod, pictured below, and let Xn be the configuration space of
n distinct unmarked points in Y , that is,

Xn = {(y1, · · · , yn) ∈ Y n|yi �= yj for i �= j}/Sn

where the symmetric group Sn acts by permuting the coordinates.

There is a natural function defined on Xn. Let h : Y → R be the height function
on Y (as it is drawn in the plane) and define

H : Xn → R

by
H(y1, · · · , yn) = h(y1) + · · · + h(yn)

A technical issue here is that Xn is not a cell complex, and if we equip Xn with a cell
complex structure the image of the set of vertices will not be discrete. To overcome
this problem, we will construct PL approximations to Xn. Fix a triangulation T
of Y and define XT

n as the subset of Xn consisting of equivalence classes of tuples
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(y1, · · · , yn) such that for i �= j the open simplices containing yi and yj have disjoint
closures. Then XT

n is naturally a cube complex and the restriction of H is a Morse
function. The descending links are contractible except at the vertices of the form
as pictured below. If there is at least one yi on each arm then the descending
link consists of two points (corresponding to moving the lowest points on the arms
to the center point), and if there are no points on the arms then the descending
link is empty. In all other cases the descending link is contractible. Assuming the
triangulation T is fine enough, we now see that XT

n is homotopy equivalent to the
wedge of circles. E.g. for n = 1 the space is contractible, for n = 2 is homotopy
equivalent to a circle, for n = 3 to the wedge of three circles etc. Moreover, this
doesn’t depend on the triangulation (as long as it is fine enough), and in fact
Xn has that same homotopy type (this requires an argument, e.g. show that Xn

deformation retracts to XT
n ).

For more information about configuration spaces on graphs, see [5] (Morse theory
used in that paper has slightly different flavor from the one here).

5. The Solomon-Tits theorem

Let K be a field.

5.1. The Tits building for SLn(K)

The Tits spherical building X for SLn(K) is a simplicial complex with a vertex for
each vector subspace of Kn of dimension d = 1, 2, · · · , n−1 and a simplex for every
flag, i.e. a chain of subspaces.

Theorem 5.1 [Solomon-Tits]. X has the homotopy type of the wedge of
spheres of dimension n− 2.

Proof. Induction on n starting with n = 2 when X = P 1K, a discrete set.
Now suppose n > 2. Fix a line / in Kn. Define

f : X0 → {0, 1} × {1, 2, · · · , n− 1}

by
f(P ) = (a, dimP )

where a = 0 if / ⊂ P and a = 1 if / �⊂ P . The target is ordered lexicographically.
We could extend this to a function X → R (after embedding Im(f) ⊂ R preserving
the order) but we won’t bother. The absolute minimum is (0, 1) realized (only) on
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/. Adjacent vertices map to distinct points. The descending links are as follows.
Let f(P ) = (a, dimP ).

If a = 0 and P �= / then Lk↓(P ) is the complex of proper subspaces of P that
contain /; in particular this is a cone with cone point /.

If a = 1 and dimP < n− 1 then Lk↓(P ) contains two kinds of vertices: proper
subspaces of P as well as proper subspaces of Kn that contain span(P ∪ /). This is
also a cone with cone point span(P ∪ /).

If a = 1 and dimP = n − 1 then Lk↓(P ) consists of proper subspaces of P ,
which is the Tits building for SLn−1(K).

Theorem now follows. ✷

Exercise 1. If K is a finite field compute the number of spheres in the wedge.

5.2. The Tits building for Sp2n(K)

NowX is the flag complex of nontrivial isotropic subspaces in K2n =< a1, b1, · · · , an, bn >
equipped with the symplectic form ω so that ω(ai, aj) = ω(bi, bj) = 0 and ω(ai, bj) =
δij .

Theorem 5.2. X is homotopy equivalent to the wedge of (n− 1)-spheres.
Proof. Fix a line / and define

f : X0 → {0, 1, 2} × {−(n− 1),−(n− 2), · · · ,−1, 1, 2, · · · , n− 1}
by

f(P ) =




(0, dimP ) if P ⊇ /

(1, dimP ) if P �⊇ /, P ⊆ /⊥

(2,− dimP ) if P �⊆ /⊥

Note that in the first case P ⊆ /⊥ and in the last case P ∩ /⊥ has codimension 1 in
P . The descending links Lk↓(P ) are as follows:

• ∅ if P = /,

• cone with cone point / if P �= / and P ⊃ /,

• cone with cone point span(P ∪ /) if P is as in case 2,

• cone with cone point P ∩ /⊥ if P is as in case 3 but dimP > 1,

• full link, if P is a line that intersects /⊥ trivially.

In the last case a vertex in Lk(P ) has the form span(P ∪Q) where Q is a unique
isotropic subspace of span(P ∪ /)⊥ ∼= K2n−2, so inductively Lk(P ) is homotopy
equivalent to the wedge of (n− 2)-spheres. ✷

6. Finiteness properties of groups

An Eilenberg-MacLane space K(Γ, 1) associated with a discrete group Γ is a cell
complex X with π1(X) = Γ and with contractible universal cover. Any two
K(Γ, 1)’s are homotopy equivalent, so e.g. (co)homology groups are invariants of
Γ. The basic questions one asks in this theory (see [3]) are the following:
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• (Finiteness properties of Γ) Can one choose a K(Γ, 1) with finite k-skeleton?
If so, Γ is said to be of type Fk. E.g. F1 is “finitely generated” and F2 is
“finitely presented”. Can one choose it to be a finite complex? (This is type
F .)

• (Geometric dimension) What is the smallest dimension of a K(Γ, 1)? This
number is very closely related to the cohomological dimension of Γ. It is
known that cd(Γ) ≤ gd(Γ) with equality in all cases except possibly for cd = 2
and gd = 3.

• (Bieri-Eckmann duality) If X is a finite K(Γ, 1), is compactly supported co-
homology H∗

c (X ; Z) concentrated in one dimension? Is it free abelian? If so,
a more general version of Poincaré duality holds for Γ, called Bieri-Eckmann
duality.

These questions can be attacked using Morse theory. For example, to investigate
finiteness properties of Γ, one would do the following:

• find a “nice” K(Γ, 1),

• find a nice Morse function f : K(Γ, 1) → R,

• compute the descending links and hope that only finitely many fail to be
(k − 1)-connected.

Example 6.1. Consider the homomorphism f : F2(a, b) → Z given by f(a) =
f(b) = 1 (generator of Z). We will prove using Morse theory that H = Ker(f) is
free of infinite rank.

Let T be the Cayley graph of F2 (i.e. the universal cover of the wedge of two
circles). It is a 4-valent tree whose vertices are labeled by elements of F2. We then
have f : T (0) = F2 → Z ⊂ R and we observe that f sends the endpoints of each
edge to adjacent integers. Thus there is a natural extension of f to F : T → R that
sends every edge by an affine homeomorphism to a closed interval of length 1. It is
useful to think of F as the height function. Every deck transformation α : T → T
shifts the heights of all points by the same amount equal to f(α). More formally,

F (α(x)) = f(α) + F (x)

(when x is a vertex this just states that f is a homomorphism). In particular, H is
the subgroup of the deck group consisting of level-preserving transformations.

For every vertex v ∈ T there are 4 edges containing it. Two of them are de-
scending and two are ascending. So both the descending and the ascending link at
v consist of two points.

Now let X = T/H . Then X is a K(H, 1) and we study its homotopy type by
analyzing a Morse function on X . The function F : T → R descends to Φ : X → R.
The ascending and descending links are 0-spheres. Also, Φ : X(0) → Z is a bijection.
The situation is pictured below.
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Of course, T doesn’t want to be pictured in Euclidean plane with F correspond-
ing to the height function, so pictured is only a very small part of T . We have much
easier time drawing X , which is a chain of Z circles, but note that for the Morse
argument we only need to know “local information”, i.e.

• that for each integer n the set Φ−1(n) consists of exactly one vertex (which
follows from the fact that F−1(n) is a single H-orbit of vertices, and

• that the descending and the ascending links of vertices in X consist of two
points (which follows from the corresponding fact for F ).

(it is the task of Morse theory to tell us about the topology of X ; this example is
so simple that we understand X without much of anything).

We now deduce from Proposition 2.7 (by starting with Φ−1(0) = {v0} and
inductively understanding Φ−1[−n, n]) that X is homotopy equivalent to the wedge
of circles with the set of circles naturally corresponding to Z − {0} and thus H =
π1(X) is free of infinite rank.

Can we find a basis of H by looking at Φ?
Consider Xn = Φ−1[−n, n]. Thus π1(Xn) = π1(Xn−1) ∗ F2 and to find a basis

for F2 we need two loops αn and α−n in Xn based at v0. The loop αn will visit vn

once and otherwise it will stay in Φ−1[−n, n), and in fact near vn it will traverse
the two descending cells at vn. Such a loop can be constructed by finding a path in
T that rises monotonically from the base vertex at height 0 to a vertex at height n,
then descending back to height 0, using both descending edges at the highest point.
For example anb−n will do.

The discussion for α−n is similar. We find a path that descends from the base
vertex to height −n and rises back up to level 0, e.g. a−nbn.

Thus a basis for H is {anb−n|n = ±1,±2, · · · }.
Example 6.2. Now take f : F2(a, b) × F2(x, y) → Z, f(a) = f(b) = f(x) =

f(y) = 1, and H = Ker(f). For K(F2, 1) we take the wedge of two circles, and we
put

K(F2 × F2) = K(F2, 1) ×K(F2, 1)

so that it is the union of four tori that are glued to each other in a cyclic fashion,
alternately along meridian and longitude.
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For K(H, 1) we take the infinite cyclic cover of K(F2 × F2, 1). More precisely,
let

F : K(F2 × F2, 1) → S1

be the map that is “addition” S1 × S1 → S1 on each of the four tori (so it induces
f in fundamental groups). Then we have the commutative diagram

K(H, 1) F̃−→ R

↓ ↓
K(F2 × F2, 1) F−→ S1

Each torus in K(F2 × F2, 1) lifts to a cylinder in K(H, 1), which is therefore
the union of four cylinders glued in a cyclic fashion along lines that represent lifts
alternately of meridians and longitudes.

Now we need a Morse function on K(F2×F2, 1), and we have a natural one, namely
F̃ .



160 M.Bestvina

At each vertex v of K(H, 1) both the descending and the ascending links are
circles triangulated with four vertices (each cylinder contributes an arc).

The set F̃−1(0) is the wedge of four circles representing

ax−1, ay−1, by−1, bx−1.

Homotopically, K(H, 1) is obtained from this graph by attaching infinitely many
2-cells. We deduce that H is generated by the four elements listed above and H2(H)
is not finitely generated. It follows that H is not finitely presented.

Example 6.3. Let f : Fn
2 → Z send all 2n generators to 1, and let H = Ker(f).

Then X = T n/H has the homotopy type of a finite complex with infinitely many
n-cells attached. The ascending and descending links are (n−1)-spheres. For n = 3
this is the Stallings’ example of a finitely presented group whose H3 is not finitely
generated [10]. For n > 3 these examples were first considered by Bieri [2].

Example 6.4. The above examples can be generalized further, to the situation
where the descending and ascending links are copies of an arbitrary (finite) flag
complex L (i.e. one with the property that if a collection of vertices is pairwise
joined by edges then the collection bounds a simplex.1 Note that the barycentric
subdivision of any simplicial complex is a flag complex, so there is no restriction on
the homeomorphism type. The example is built in the following way. Let GL be the
right-angled Artin group modelled on L, i.e. the group with a generator for each
vertex of L, and the relations that two generators commute if the corresponding
vertices are joined by an edge. Let f : GL → Z map each generator to 1, and let
HL = Ker(f). When L is the n-fold join of a pair of points, HL is the group from
Example 6.3. What happens for different choices of L is discussed in [1]. The key
is that there is a natural K(GL, 1), which is a torus complex (one torus for every
simplex of L), and it can be used in the same way as the product of graphs was used
in Example 6.2. Likewise, the infinite cyclic cover K(HL, 1) of K(GL, 1) admits a
Morse function K(HL, 1) → R with descending and ascending links copies of L. For
example, note that when L is contractible, the group HL has type F since K(HL, 1)
is homotopy equivalent to the quotient of a level set of the Morse function.

The following exercises may require looking up some definitions.
Exercise 2. Let Tn be the regular (n + 1)-valent tree and let hn : Tn → R be

a Busemann function corresponding to some end of Tn. The Diestel-Lieder graph
D(m,n) is defined as

D(m,n) = {(x, y) ∈ Tm × Tn | hm(x) + hn(y) = 0}.
For example, D(2, 2) is essentially the Cayley graph of the Lamplighter group

L = Z2 � Z := ⊕i∈ZZ2 � Z

where Z acts by shifting the summands (this is called the wreath product).
Prove that D(m,n) is a connected graph. With a bit more work, show that if

m,n ≥ 2 then D(m,n) has large loops, i.e. there are arbitrarily large loops that
are not compositions of loops that tighten to loops shorter than the original. The

1Warren Dicks summarized the condition succinctly as “every non-simplex contains a non-
edge”.
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Cayley graph of a finitely generated group has this property if and only if the group
is not finitely presented.

Exercise 3. Prove that the asymptotic cone of the 3-dimensional solvable Lie
group Sol is not simply connected. Hint: Sol is a horosphere in H

2 × H
2, so its

asymptotic cone is a horosphere in the product of two R-trees.

7. Finite subgroups

Consider the following question. Suppose G is a group that acts properly and
cocompactly (and simplicially) on a contractible simplicial complex X . Are there
only finitely many conjugacy classes of finite subgroups in G?

7.1. Positive answers

It suffices to argue that every finite subgroup fixes a point – by simpliciality there
must then be a invariant simplex, and by cocompactness there are only finitely
many orbits of simplices, so every finite subgroup could be conjugated into one of
finitely many simplex stabilizers.

A geometric situation where one can find fixed points is that of non-positive
curvature. Suppose X is equipped with a CAT (0) metric and G acts by isometries.
Let Q < G be a finite subgroup and choose a Q-orbit. There is a unique smallest
closed metric ball that contains this orbit and its center is therefore fixed by Q.

Another situation where fixed points always exist is that of p-groups. Suppose
Q < G is a finite p-group for some prime p. Then by Smith theory Q fixes a point
of X .

7.2. Negative answers

Until recently there were no examples known. The following construction is due to
Leary-Nucinkis [7].

Let L be a finite flag complex and Q a finite group acting on L simplicially and
without global fixed points. Let GL and HL be the groups from Example 6.4. Note
that Q acts on both GL and HL so we may form G̃L := GL �Q and H̃L := HL �Q.
There is a homomorphism G̃L → Z whose kernel is HL. The group G̃L acts on the
universal cover X of the complex K(GL, 1) considered in Example 6.4. Each vertex
of X is fixed by a copy of Q which is contained in H̃L. There is only one G̃L-orbit
of vertices, so all these copies of Q are conjugate in G̃L. However, the action of H̃L

is height preserving, so two such copies of Q are conjugate if and only if the fixed
vertices have the same height (by the condition that there are no global fixed points
in L it follows that a copy of Q fixes a unique vertex). We conclude that there are
infinitely many H̃L-conjugacy classes of subgroups isomorphic to Q. In the orbifold
language, one can see the argument as follows: The quotient X/H̃L is an “orbifold
K(H̃L, 1)” and there are infinitely many vertices whose label is a copy of Q. Since
the edges have labels smaller than Q, it follows that the labels of different vertices
are non-conjugate.



162 M.Bestvina

For example, we could take Q = Z2 and L the 3-fold join of a pair of points.
Then the group H̃L is finitely presented and contains infinitely many non-conjugate
elements of order 2.

To get examples as in our Question, we need to take L to be contractible. For
example, A5 acts on a finite contractible 3-complex without global fixed points [4],
leading to a counterexample with Q = A5. Likewise, Q = Z30 × Z30 can be made
to work as well [9].

In fact, a bit more general construction (that allows L to be an infinite complex,
but with a cocompact action of Z) shows that there are examples of this sort
whenever Q is not a p-group. See [6].
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