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Abstract

We give another proof of a theorem of Hatcher and Vogtmann stat-
ing that the sequence Aut(Fn) satisfies integral homological stability.
The paper is for the most part expository, and we also explain Quillen’s
method for proving homological stability.

1 Introduction

Let G1 ⊂ G2 ⊂ G3 ⊂ · · · be a sequence of groups. For example, Gn

could be any of the following: the permutation group Sn, or the signed
permutation group S±

n , braid group Bn, SLn(Z), Aut(Fn), and many other
groups, with all inclusions standard. The sequence satisfies homological
stability if for every r there is n(r) such that for n ≥ n(r) inclusion induced
Hr(Gn)→ Hr(Gn+1) is an isomorphism. All of the above sequences satisfy
homological stability.

Homological stability of Aut(Fn) over Q was proved by Hatcher and
Vogtmann by a very elegant argument [HV98a], as follows. First, they show
that Aut(Fn) acts properly on an r-connected simplicial complex SAn,r+1,
and second, that for n > 2r the quotient spaces Qn,r+1 = SAn,r+1/Aut(Fn)
and Qn+1,r+1 are canonically homeomorphic. Since

Hr(Aut(Fn);Q) = Hr(Qn,r+1;Q) = Hr(Qn+1,r+1;Q) = Hr(Aut(Fn+1;Q))

stability follows.
This is a very transparent reason for stability, and I am not aware of any

other example where stability can be proved in this way.

∗The author gratefully acknowledges the support by the National Science Foundation.
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Question 1. Can one prove rational homological stability for braid groups
or mapping class groups in the same way?

Integral stability of Aut(Fn) is more subtle. It was first established by
Hatcher and Vogtmann in [HV98a] by studying a spectral sequence associ-
ated to the action of Aut(Fn) on the complex of “split factorizations” of Fn.
Further, it is known, by the work of Hatcher, Vogtmann and Wahl, that
Aut(Fn) → Out(Fn) induces an isomorphism in Hr when n ≥ 2r + 4, see
[Hat95, HV98a, HV98b, HV04, HVW06]. The proof is based on Quillen’s
method and requires a rather delicate spectral sequence argument.

In this note we give a proof of integral stability in the same spirit
as Hatcher-Vogtmann’s proof of rational stability. We view the quotient
spaces Qn,r+1 as orbi spaces and observe that for n >> r and canoni-
cal identification Qn,r+1 = Qn+1,r+1 of underlying topological spaces, the
groups Γn,r+1(x),Γn+1,r+1(x) associated to a point x (i.e. stabilizers of cor-
responding points in SAn,r+1, SAn+1,r+1) themselves belong to a sequence
of finite groups satisfying homological stability. More precisely, Γn,r(x) =
Gr(x)×S±

n−2r where Gr(x) does not depend on n, and S±
i is the signed per-

mutation group on i symbols. Integral stability of Aut(Fn) easily follows.
We emphasize here that we will use spectral sequences only to prove ho-

mological stability for signed permutation groups. The rest of the argument
is geometric, in the spirit of Hatcher-Vogtmann [HV98a].

The price we must pay for conceptual transparency is that our stability
range is far from optimal. The argument seems to require n > 4r (while the
best known estimate is n ≥ 2r+2), although it is possible that this may be
improved with further effort.

We note that Galatius [Gal11] computed stable homology groups. For a
more systematic approach to homological stability of automorphism groups
see [Wah].

Outline. In Section 2 we recall Quillen’s method for proving stabil-
ity. We will only need the simple form where the group acts on a highly
connected space with one orbit of cells in a dimension range. We then
prove homological stability for permutation groups, following an argument
of Maazen, and we give a variant for signed permutation groups. The lat-
ter groups naturally appear as subgroups of Aut(Fn) that act as symmetry
groups of a rose. The final section elaborates on the outline given above.
Instead of working with orbi spaces X/G, we use the Borel construction and
consider X ×G EG = (X × EG)/G where G acts diagonally on X × EG.
This is technically more expedient, but the reader should keep the orbi space
picture in mind.
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2 Quillen’s method

Here we describe a method, due to Quillen (unpublished), to prove ho-
mological stability. For published accounts of Quillen’s method see e.g.
[Wag78, vdK80].

We will say that X is r-connected if H̃i(X) = 0 for i ≤ r.
Fix a sequenceG0 ⊂ G1 ⊂ G2 ⊂ · · · of groups. Suppose thatHi(Gs−1)→

Hi(Gs) is an isomorphism when the following hold:

• i = r − 1 and s ≥ n− 2, or

• i < r − 1 and s ≥ n+ i− r − 2.

Also assume that the group Gn acts on a ∆-complex X = X(n) of
dimension ≤ n− 1 with the following properties.

(i) Action is without inversions, i.e. any element that leaves a simplex
invariant fixes it pointwise.

(ii) X is r-connected.

(iii) in each dimension 0, 1, · · · , r there is one orbit of simplices.

(iv) There is a flag of simplices

σ0 < σ1 < · · · < σr

in X such that Stab(σi) = Gn−i−1 ⊂ Gn.

(v) If τ i1 and τ i2 are two i-simplices in X contained in ρi+1 as faces (i =
0, 1, · · · , r − 1) then there exists g ∈ G such that:

• g(τ1) = τ2, and

• g commutes with all elements of Stab(ρ).

Remark 2. In view of (iii) and (iv), we have that the stabilizer of every
i-simplex is a conjugate of Gn−i−1. Note that conjugation induces iden-
tity in the homology of a group. So we have a canonical isomorphism
H∗(Stab(τ

i)) ∼= H∗(Stab(σ
i)) = H∗(Gn−i−1) for any i-simplex τ (by choos-

ing any g ∈ G with g(τ) = σ and passing to the isomorphism in homology
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induced by conjugation g∗ : Stab(τ) → Stab(σ), h 7→ ghg−1; this isomor-
phism is independent of the choice of g).

Property (v) guarantees that stabilizer inclusions Stab(ρ) →֒ Stab(τj),
j = 1, 2, induce the same homomorphism H∗(Gn−i−2) → H∗(Gn−i−1) in
homology, after the identifications in the previous paragraph. This follows
by considering the diagram

Stab(ρ) Stab(τ1)

Stab(τ2)

g∗

which commutes (by the assumption that g∗ fixes Stab(ρ)) and passing to
homology. By (iv) this is the homomorphism induced by inclusionGn−i−2 →֒
Gn−i−1.

Proposition 3. Under the above assumptions Hr(Gn−1) → Hr(Gn) is an
isomorphism.

Proof. Consider the “equivariant homology spectral sequence”. This is the
spectral sequence associated to the filtration of Y = X ×Gn

EGn coming
from the skeleta of X: Yp = Xp ×Gn

EGn. Since X is r-connected we have
Hr(Y ) = Hr(Gn). The first page is

E1
p,q = Hp+q(Yp, Yp−1) = Hq(Stab(σ

p)) = Hq(Gn−p−1)

with equalities legal since identifications are up to inner automorphisms,
which induce identity in homology. When p is even the differential E1

p+1,q →

E1
p,q is 0 by (v) (a (p+ 1)-simplex has an even number of p-faces, stabilizer

inclusions are all standard, half come with positive and half with negative
sign). In particular, E1

0,q = Hq(Gn−1) survives to E2. Likewise, when p is

odd the differential E1
p+1,q → E1

p,q is the inclusion induced Hq(Gn−p−2) →
Hq(Gn−p−1). A portion of the first page is pictured below. The leftmost
column corresponds to p = 0 and the top row to q = r.

Hr(Gn−1)
0
← Hr(Gn−2) ← Hr(Gn−3)

Hr−1(Gn−1)
0
←

✞

✝

☎

✆
Hr−1(Gn−2)

∼=
←

✞

✝

☎

✆
Hr−1(Gn−3)

0
←

Hr−2(Gn−1)
0
← Hr−2(Gn−2)

∼=
←

✞

✝

☎

✆
Hr−2(Gn−3)

0
←

✞

✝

☎

✆
Hr−2(Gn−4)

∼=
← Hr−2(Gn−5)
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The circled terms are E1
p,r−p and E1

p,r−p+1 with p > 0 and q < r, and they

die thanks to our assumption that the differential d1 : E1
p+1,q → E1

p,q is an
isomorphism when p is odd and it involves at least one of the circled terms.
It now follows that the E2 page has E2

0,r = Hr(Gn−1) and all terms on the
diagonals p+q = r and p+q = r+1 with q < r vanish. Thus the same holds
for the E∞ page, and since the spectral sequence converges to Hp+q(Y ) we
have that Hr(Gn−1) = E∞

0,r → Hr(Y ) = Hr(Gn) is an isomorphism, thus
proving the Proposition.

2.1 Stability for (signed) permutation groups

Stability for symmetric groups was established by Nakaoka [Nak60, Nak61].
We will follow Maazen’s proof [Maa79]. See also [Ker05]. We start with a
couple of elementary lemmas.

Call a nonempty polyhedron X n-spherical if H̃i(X) = 0 for i 6= n.

Lemma 4. Let X be a polyhedron and Xi ⊂ X a finite collection of m
subpolyhedra covering X, and let n ≥ 0 be an integer. Suppose that for
every k = 1, 2, · · · ,m any k-fold intersection Xi1 ∩ · · · ∩Xik is (n− k + 1)-
spherical (empty for k ≥ n + 2) whenever i1 < i2 < · · · < ik. Then X is
n-spherical.

Proof. Induction on m. If m = 1 there is nothing to prove, and if m = 2
the statement follows from Mayer-Vietoris. Assume m > 2. Let Y = X2 ∪
X3 ∪ · · · ∪Xm. By induction Y is n-spherical and

X1 ∩ Y = (X1 ∩X2) ∪ (X1 ∩X3) ∪ · · · ∪ (X1 ∩Xm)

is (n− 1)-spherical (again by induction). Thus the claim follows.

Lemma 5. If X is n-spherical and F is a nonempty finite set then the join
X ∗ F is (n+ 1)-spherical.

Proof. By induction on the cardinality of F . If |F | = 1 then X ∗ F is
contractible. If |F | = 2 then X ∗ F is the suspension and H̃i+1(X ∗ F ) =
H̃i(X) so the claim follows. When |F | > 2 write X ∗ F as the union of
two sets whose intersection is X, with one set contractible and the other
(n + 1)-spherical by induction (join of X and the set F without one of the
points). Then use Mayer-Vietoris.

Proposition 6. The sequence of symmetric groups Sn satisfies homological
stability:

Hr(Sn−1)→ Hr(Sn)
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is an isomorphism for n > 2r.

Proof. We argue by induction on r, starting with the obvious r = 0. We
will apply Proposition 3 with Gn = Sn. Note that the fact that Hi(Ss−1)→
Hi(Ss) is an isomorphism when i = r − 1 and s ≥ n− 2, or when i < r − 1
and s ≥ n+ i− r−2 follows by induction (for the latter case the calculation
is s ≥ n+ i−r−2 > 2r+ i−r−2 = r+ i−2 ≥ 2i). Consider the ∆-complex
X = X(n) whose vertices are 1, 2, · · · , n and there is an (ordered) simplex
for every ordered subset of the vertex set. So e.g. there are n(n− 1) edges
etc.

Claim. X(n) is (n− 1)-spherical.
Proof of Claim. Let Xi be the union of (closed) simplices in X whose

first vertex is i. Thus Xi contains all simplices whose vertices don’t include
i (and it is the cone on this subcomplex). More generally, the k-fold in-
tersection of the Xi’s can be identified with the subcomplex (the “base”)
consisting of simplices that don’t involve k particular vertices, with k cones
attached to it. Since the base is a copy of X(n−k) it is (n−k−1)-spherical
by induction. It follows from Lemma 5 that k-fold intersections are (n− k)-
spherical. Now Lemma 4 implies that X = X(n) is (n− 1)-spherical.

The verification of (i)-(v) is left to the reader. Thus stability follows.

There is an identical proof for the signed permutation group S±
n (or the

hyperoctahedral group), i.e. the Coxeter group of type Bn. Recall that S
±
n

is the semi-direct product Sn ⋉ Zn
2 and it can be viewed as the group of

permutations π of the set {−n,−(n− 1), · · · ,−1, 1, · · · , n− 1, n} such that
π(−x) = −π(x) for all x.

Proposition 7 ([HW10]). The signed permutation groups satisfy homolog-
ical stability:

Hr(S
±
n−1)→ Hr(S

±
n )

is an isomorphism for n > 2r.

Proof. Now let X = X(n) be the ∆-complex with vertex set −n,−(n −
1), · · · ,−1, 1, 2, · · · , n and a simplex is an ordered subset with distinct ab-
solute values. The proof that X is (n− 1)-spherical is the same: take Xi to
consist of simplices that start with i or −i.

Remark 8. There is one more infinite sequence of Weyl groups, namely of
type Dn. This is the group of signed permutations with an even number of
negative signs, and it has index 2 in S±

n . One can prove homological stability
as above, by considering the action on the same complex as for S±

n (there
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are now two orbits of simplices in the top dimension). For a generalization
of this method to other sequences of Coxeter groups see [Hep].

3 Integral homological stability of Aut(Fn)

The following is well-known.

Proposition 9. Let f : X → Y be a map between spaces equipped with
filtrations

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xm = X

and
∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ · · · ⊂ Ym = Y

such that f(Xi) ⊂ Yi for all i. If f∗ : Hj(Xi, Xi−1) → Hj(Yi, Yi−1) is an
isomorphism for all i = 0, · · · ,m and j ≤ k + 1, then f∗ : Hj(X)→ Hj(Y )
is an isomorphism for j ≤ k.

Proof. This can be easily proved via spectral sequences, but we will give an
elementary proof. By induction on p = 1, 2, · · · ,m+ 1 we will prove that

f∗ : Hj(Xi, Xi−p)→ Hj(Yi, Yi−p)

is an isomorphism for p−1 ≤ i ≤ m and j ≤ k. For p = 1 this is a hypothesis.
For p > 1 we consider the long exact sequences of triples (Xi, Xi−1, Xi−p)
and (Yi, Yi−1, Yi−p), and the map between them induced by f .

Hj+1(Xi, Xi−1)→Hj(Xi−1, Xi−p)→Hj(Xi, Xi−p)→Hj(Xi, Xi−1)→Hj−1(Xi−1, Xi−p)
↓ ↓ ↓ ↓ ↓

Hj+1(Yi, Yi−1) → Hj(Yi−1, Yi−p) → Hj(Yi, Yi−p) → Hj(Yi, Yi−1) → Hj−1(Yi−1, Yi−p)

The inductive step now follows from the 5-lemma, and the Proposition from
the case p = m+ 1.

Proposition 10. Let (X ′, X) be a finite dimensional simplicial pair, G′ a
group and G < G′ a subgroup. Suppose that

(i) G′ acts on X ′ without inversions,

(ii) G < G′ leaves X invariant,

(iii) both X,X ′ are k-connected,

(iv) every G′-orbit intersects X,
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(v) if two simplices of X are in the same G′-orbit, then they are in the
same G-orbit,

(vi) for every simplex σ ∈ X the inclusion StabG(σ) →֒ StabG′(σ) induces
an isomorphism Hj(StabG(σ))→ Hj(StabG′(σ)) for j ≤ k − dimσ.

Then inclusion G →֒ G′ induces an isomorphism Hj(G)→ Hj(G
′) for j ≤ k.

Note that (iv) and (v) say that the induced map X/G → X ′/G′ is a
homeomorphism, and (vi) says that groups associated to the “same” point
in the orbi spaces X/G and X ′/G′ have the same homology in a range.

Proof. By (iii) we have Hj(G) = Hj(X ×G EG) and similarly for G′, so it
suffices to argue that the map

X ×G EG→ X ′ ×G′ EG′

induced by f is an isomorphism in Hj for j ≤ k. We will apply Proposition
9 to this map and the filtrations induced by the skeleta; thus (X×GEG)i =
Xi ×G EG and similarly for the target space. We have

Hj((X×GEG)i, (X×GEG)i−1) = Hj((X
i, Xi−1)×GEG) =

⊕

σi∈X/G

Hj−i(StabG(σ
i))

with the similar calculation for X ′. By (iv) and (v) both sums are over the
same set of i-simplices in X/G = X ′/G′, and by (vi) homology groups are
equal.

3.1 Review of the Degree Theorem

Here we review the Hatcher-Vogtmann Degree Theorem [HV98a]. For a
simpler proof of this theorem see [MZ14]. Let SAn denote the spine of
reduced Auter space in rank n. This is a simplicial complex whose vertices
are basepointed marked graphs (Γ, v0, φ) where:

• Γ is a finite connected graph (i.e. a 1-dimensional cell complex) with-
out separating edges,

• v0 ∈ Γ is a base vertex, it has valence > 1, and all other vertices have
valence > 2,

• φ : Fn → π1(Γ, v0) is an isomorphism (called a marking).
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Two triples (Γ, v0, φ) and (Γ′, v′0, φ
′) represent the same vertex of SAn if

there is a basepoint-preserving graph isomorphism I : Γ→ Γ′ with φ′ = I∗φ.
We write (Γ, v0, φ) > (Γ′, v′0, φ

′) if there is a forest (subgraph with con-
tractible components) F ⊂ Γ so that (Γ′, v′0, φ

′) is equivalent to the graph
obtained from Γ by collapsing all components of F , with the induced base
vertex and marking.

The simplicial complex SAn is the poset of this order relation, i.e. a
simplex is an ordered chain. It is contractible [CV86]. The group Aut(Fn)
acts on SAn by precomposing the marking and the action is proper without
inversions. The stabilizer of a vertex is equal to the symmetry group of the
underlying basepointed graph.

The degree of a basepointed graph (Γ, v0) is the sum

deg(Γ) =
∑

v 6=v0

|v| − 2

where |v| denotes the valence of v and the sum runs over all vertices of Γ
distinct from v0. Denote by SAn,k+1 the subcomplex of SAn spanned by
graphs with degree ≤ k + 1. This subcomplex is Aut(Fn)-invariant. Note
also that collapsing a forest cannot increase the degree.

Theorem 11 ([HV98a]). SAn,k+1 is k-connected.

Lemma 12 ([HV98a]). (a) If n > 2k+2 then every (Γ, v0) of degree ≤ k+1
has a loop at v0.

(b) If n−m+ 1 > 2k + 2 then every (Γ, v0) of degree ≤ k + 1 has m loops
at v0.

(c) If n > 4k then every (Γ, v0) of degree ≤ k + 1 has 2k − 1 loops at v0.

3.2 The stability theorem

Theorem 13. Hk(Aut(Fn))→ Hk(Aut(Fn+1)) is an isomorphism for n >
4k.

Proof. We will use Proposition 10. Let X = SAn,k+1, X
′ = SAn+1,k+1 with

the standard actions of G = Aut(Fn) and G′ = Aut(Fn+1). We define a
natural equivariant embedding X →֒ X ′ as follows. Write Fn+1 = Fn ∗〈t〉 so
that Aut(Fn) is identified with the subgroup of Aut(Fn+1) that preserves Fn

and t. A vertex of SAn,k+1 is a triple (Γ, v0, φ) and we map it to the vertex
of SAn+1,k+1 given by (Γ ∨ S1, v0, φ

′). The wedge here is at the basepoint
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v0, and φ′ : Fn ∗ 〈t〉 → π1(Γ
′, v0) = π1(Γ, v0) ∗ π1(S

1, v0) is φ on the first
factor and an isomorphism on the second, and we simply write φ′ = φ ∗ id
(there are two possible isomorphisms on the second factor, but either choice
defines the same point in SAn+1,k+1).

This map on the vertices extends to a simplicial equivariant embedding

SAn,k+1 →֒ SAn+1,k+1

The first three properties from Proposition 10 are clear. Property (iv) follows
from Lemma 12. E.g. start with a vertex (Γ′, v0, φ

′) ∈ SAn+1,k+1. Since
n+1 > 2k+2 the graph Γ′ has the form Γ′ = Γ∨S1, and after precomposing
the marking, φ′ has the form φ ∗ id, so the Aut(Fn+1)-orbit of every vertex
intersects SAn,k+1. A similar argument works for any simplex in SAn+1,k+1.
Say the simplex is obtained from (Γ′, v0, φ

′) by collapsing a sequence of
forests. We can again write Γ′ = Γ ∨ S1, change the marking, and observe
that all the forests are contained in Γ. Property (v) is easy.

Finally, we argue (vi). We start with a vertex (Γ, v0, φ) ∈ SAn,k+1.
Write Γ as Γ = Γ0 ∨ Rm where Rm denotes the wedge of m circles, and m
is maximal possible. According to Lemma 12, m ≥ 2k− 1. The key point is
that the symmetry group of (Γ, v0) is the direct product of symmetry groups
of (Γ0, v0) and (Rm, v0), and the latter one is the signed permutation group
S±
m. Thus we have

StabAut(Fn)(Γ, v0, φ)
∼= D × S±

m

and
StabAut(Fn+1)(Γ ∨ S1, v0, φ ∗ id) ∼= D × S±

m+1

where D is the symmetry group of (Γ0, v0). So we need to argue that

D × S±
m →֒ D × S±

m+1

induces an isomorphism in H≤k. This holds for S
±
m →֒ S±

m+1 by Proposition
7, and in general by the Künneth formula.

The argument for a simplex is similar.

Question 14. Can the stability range be improved using the same method?
E.g. investigate what happens when theta graphs are wedged at the basepoint,
as in [HV98a].
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