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Abstract

Every lattice Γ in a connected semi-simple Lie group G acts properly
discontinuously by isometries on the contractible manifold G/K (K a max-
imal compact subgroup of G). We prove that if Γ acts on a contractible
manifold W and if either

1) the action is properly discontinuous, or
2) W is equipped with a complete Riemannian metric, the action is by

isometries and with unbounded orbits, G is simple with finite center and
rank > 1,

then dim W ≥ dim G/K.

1 Introduction

Let G be a connected semi-simple Lie group and K a maximal compact sub-
group of G. It is a theorem of Malcev [Mal45] and Iwasawa [Iwa49] that the
homogeneous space G/K (even without the assumption of semi-simplicity) is
a contractible manifold (see [Hoc65, Theorem XV.3.1] and also [Mos55] for the
case when G has finitely many components). When G has finite center, G/K
is a symmetric space of noncompact type. Every lattice Γ ⊂ G acts properly
discontinuously on G/K. The main theorem of this paper is:

Theorem 1.1. If Γ acts properly discontinuously (by homeomorphisms) on a
contractible manifold W , then dimW ≥ dimG/K.

By contrast, Γ often acts properly discontinuously on a contractible complex
of smaller dimension than that of G/K. The minimal dimension of such a
complex, for torsion-free Γ, is the cohomological dimension cdΓ of Γ (with the
possible exception of the case cdΓ = 2, but such examples are unlikely to occur
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among lattices in connected Lie groups) and it has been computed in the case
of arithmetic lattices by Borel and Serre [BS73] – the difference dimG/K−cdΓ
is equal to the

�
-rank of Γ. In many specific cases such complexes were found

by Ash [Ash77].
Theorem 1.1 answers a question of Shmuel Weinberger and Kevin Whyte.

The bulk of the proof is dedicated to the special case when G is a real linear
algebraic group and Γ is an arithmetic lattice in G. The reduction to this
case is presented in Section 3. Next, we present the proof for the case when
Γ = SLn( � ) ⊂ G = SLn( � ), focusing on n = 3. This case contains most of
the ideas needed in general and has the advantage that the proof does not use
the jargon of algebraic groups. The general proof in the arithmetic case is in
Section 10 and there are more examples preceding and following this section.
The discussion of what happens when the assumption of proper discontinuity
is replaced by the assumption that the action is isometric is in Section 4.

The method of proof is based on [BKK]. For m ≥ 0 an m-obstructor complex
is one that does not embed into � m for homological reasons. For the precise
definition, see [BKK]. We will only need the fact that the join

Sa ∗ Sk1
+ ∗ Sk2

+ ∗ · · · ∗ Skr
+

is an m-obstructor complex for

m = a + k1 + k2 + · · ·+ kr + 2r − 1

and that

Sk1
+ ∗ Sk2

+ ∗ · · · ∗ Skr
+

is an n-obstructor complex for

n = k1 + k2 + · · ·+ kr + 2r − 2

where Sk
+ denotes the k-sphere with an extra point added, and each sphere Sk

is triangulated as the join of 0-spheres. The above fact then follows from the
Join Lemma of [BKK].

When L is a finite simplicial complex define the (open) cone on L as

cone(L) = L× [0,∞)/L × {0}.

If X is a proper metric space, a map H : cone(L) → X is proper expanding if it
is proper and whenever σ and τ are disjoint simplices of L then

d(H(σ × [t,∞)),H(τ × [t,∞))) →∞ (1)
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as t → ∞. We also say that the cones on σ and τ diverge (under H) if (1)
holds.

When Γ is any discrete group of type F∞ (i.e. there is an Eilenberg-MacLane
complex K(Γ, 1) with finitely many cells in each dimension), we write

“L ⊂ ∂Γ”

if there is an isometric, properly discontinuous, cocompact action of Γ on a
proper metric space X and a proper expanding map cone(L) → X. When Γ
is a lattice in G, for X we will frequently use a bounded neighborhood of a
Γ-orbit in G or G/K (equipped with G-invariant Riemannian metrics). The
formal definition of the concept “L ⊂ ∂Γ” in [BKK] is more complicated and
applies to any finitely generated group, but all groups we consider in this paper
will be of type F∞ and for such groups the definition given above is equivalent
to the general definition (see [BKK, Remark 11]).

The obstructor dimension obdimΓ of Γ is defined in [BKK] to be m+2 where
m is the largest integer such that “L ⊂ ∂Γ” for some m-obstructor complex L.
Passing to subgroups of finite index and quotients by finite normal subgroups
does not change obdim.

The main theorem of [BKK] is:

Theorem 1.2. [BKK] If obdimΓ = m + 2 then Γ cannot act properly discon-
tinuously on a contractible manifold of dimension < m + 2.

The theorem we actually prove in this paper is:

Theorem 1.3. obdimΓ = dimG/K.

Example 1.4. If Γ is a uniform lattice in G and if G has finite center, then Γ
acts cocompactly on the symmetric space G/K which is a contractible manifold
of dimension say m + 2 with a complete Riemannian metric of nonpositive
curvature (see e.g. [Hel78, Theorem V.3.1]). Thus the exponential map gives a
proper expanding map � m+2 = cone(Sm+1) → G/K (where Sm+1 is viewed as
the unit tangent space at a point of G/K). Thus “Sm+1 ⊂ ∂Γ” and obdimΓ =
dimG/K, proving the theorem in this case. The same argument works for
groups of the form G×A where G is as above and A is connected abelian.

Theorem 1.1 follows from Theorem 1.3 and Theorem 1.2. It is clear from
Theorem 1.2 that obdimΓ ≤ dimG/K. To prove the reverse inequality we have
to construct an m-obstructor complex L with “L ⊂ ∂Γ” and m = dimG/K−2.

We would like to thank Dragan Miličić for his help with the theory of Lie
groups and algebraic groups and to Misha Kapovich and Bruce Kleiner for
several useful conversations.
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2 A fibration lemma

A discrete version of the following lemma is in [BKK]. The proof, although it
closely parallels the discrete version, is more transparent.

Lemma 2.1. Let G be a connected Lie group and H ⊂ G a closed subgroup
such that the homogeneous space Q = G/H is contractible. The metric on G
is chosen to be invariant under left translations, on Q so that the quotient map
π : G → Q is a Lipschitz map, and on H it is the subspace metric. Suppose that
H and Q admit proper expanding maps of cones on finite complexes KH ,KQ

respectively. Then G admits a proper expanding map of the cone on the join
KH ∗KQ. Moreover, it can be arranged that the image of this map is contained
in the π-preimage of the image of cone(KQ).

Proof. The quotient map π : G → Q is a fibration, and since Q is contractible
there is a continuous section s : Q → G. Let α : cone(KH) → H and β :
cone(KQ) → Q be the given maps. Define

f : cone(KH ∗KQ) = cone(KH)× cone(KQ) → G

by
f(x, y) = α(x) · sβ(y).

We have the commutative diagram

cone(KH )
α−→ H

↓ ↓
cone(KH)× cone(KQ)

f−→ G
↓ ↓ π

cone(KQ)
β−→ Q

Claim. f is a proper map.
Indeed, let (xi, yi) be a sequence in cone(KH) × cone(KQ) leaving every

compact set. If the sequence πf(xi, yi) = β(yi) ∈ Q leaves every compact set,
the same is true for f(xi, yi) ∈ G. Otherwise, after passing to a subsequence,
we may assume that the sequence πf(xi, yi) = β(yi) ∈ Q stays in a compact
set D ⊂ Q. Then sβ(yi) stays in the compact set s(D). Since β is a proper
map, the sequence yi ∈ cone(KQ) stays in a compact set, and thus the sequence
xi ∈ cone(KH) leaves every compact set. Since α is a proper map, we see that
the sequence f(xi, yi) = α(xi) · sβ(yi) leaves every compact set.

Claim. If σ = σH ∗ σQ and τ = τH ∗ τQ are disjoint simplices of KH ∗KQ,
then f |cone(σ) and f |cone(τ) diverge.
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Indeed, let (xi, yi) and (x′i, y
′
i) be sequences in cone(σH) × cone(σQ) and

cone(τH)× cone(τQ) respectively, leaving every compact set. Since π is a Lip-
schitz map, if one of two sequences πf(xi, yi) = β(yi) and πf(x′i, y

′
i) = β(y′i)

leaves every compact set in Q, then dQ(β(yi), β(y′i)) → ∞ (since β|cone(σQ)
and β|cone(τQ) diverge) and consequently dG(f(xi, yi), f(x′i, y

′
i)) → ∞. Now

assume that both sequences β(yi) and β(y′i) are contained in a fixed compact
set D ⊂ Q. Then we have

dG(f(xi, yi), f(x′i, y
′
i)) = dG(α(xi) · sβ(yi), α(x′i) · sβ(y′i)) =

dG(1, sβ(yi)
−1α(xi)

−1α(x′i)sβ(y′i))

Since sβ(yi) and sβ(y′i) stay in a compact set and

dH(1, α(xi)
−1α(x′i)) = dH(α(xi), α(x′i)) →∞

it follows that
dG(1, α(xi)

−1α(x′i)) →∞
and

dG(1, sβ(yi)
−1α(xi)

−1α(x′i)sβ(y′i)) →∞.

Remark 1. Another reasonable choice of a metric on H would be an H-invariant
Riemannian metric. Say two proper metrics d1 and d2 on a space X are equiv-
alent if there is a homeomorphism ϕ : [0,∞) → [0,∞) such that d2(x, y) ≤
ϕ(d1(x, y)) and d1(x, y) ≤ ϕ(d2(x, y)) for all x, y ∈ X. Any proper expanding
map cone(L) → X with respect to d1 is also proper expanding with respect to
d2. For example, any two Riemannian G-invariant metrics on G or on G/K
are equivalent. Various choices of metrics on H as indicated above are all
equivalent.

The following consequence can be viewed as the analog of Theorem 1.1 in
the context of nilpotent groups. Of course, the first three statements are well
known (see [Rag72]).

Corollary 2.2. Let Γ be a lattice in a simply connected nilpotent Lie group N .
Then

• Γ is cocompact in N ,

• N is diffeomorphic to Euclidean space of dimension m + 2, say,

• N contains no nontrivial compact subgroups, and
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• “Sm+1 ⊂ ∂Γ” and hence obdimΓ = dimN .

Proof. Let Z be the center of N . By [Rag72, Proposition 2.17] the intersection
Z ∩ Γ is a lattice in Z. All claims now follow by induction on dimN from the
exact sequence

1 → Z → N → N/Z → 1

and Lemma 2.1.

Example 2.3. Let Nn be the group of real upper-triangular matrices with 1’s on
the diagonal, let Nn( � ) be the lattice in Nn consisting of matrices with integral
entries, and let m + 2 = 1 + 2 + · · · + (n − 1) denote the number of matrix
positions above the diagonal. Then

“Sm+1 = ∗m+2
i=1 S0 ⊂ ∂Nn( � )”.

Specifically, if we regard the cone on Sm+1 as � m+2 with a coordinate for every
position above the diagonal, and we regard the cone on a simplex of Sm+1

as the set of matrices in Hn where the entries in the specified positions have
specified signs and the other entries above the diagonal are 0, then this map
cone(Sm+1) → Hn is proper and expanding.

Another application of Lemma 2.1 is to semi-simple groups with infinite

center, e.g.
�

SL2( � ).

Corollary 2.4. Suppose G is a connected semi-simple Lie group with infinite
center Z, and let Γ ⊂ G be a lattice such that Γ ∩ Z has finite index in Z so
that Γ/(Γ∩Z) is a lattice in G/Z. Then obdimΓ ≥ obdim(Γ/Γ∩Z)+rank(Z).

Proof. Let K be a maximal compact subgroup in G/Z. Now apply Lemma 2.1
to the preimage H ⊂ G of K in G.

3 Reduction to arithmetic lattices

We will review the terminology and basic facts about algebraic and arithmetic
groups in Section 10. The bulk of the paper is dedicated to the proof of the
following theorem:

Theorem 3.1. Let G ⊂ GLn(
�
) be a semi-simple linear algebraic group defined

over
�

and let Γ � = G∩GLn( � )⊂ G � be the standard arithmetic lattice in the
group of real points. Then obdimΓ � = dimG � /K.

In this section we deduce Theorem 1.3 from Theorem 3.1. We first prove
another special case.
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Theorem 3.2. Let G be a semi-simple real algebraic group and Γ a lattice in
G. Then obdimΓ � = dimG � /K.

Proof. We can assume that the component of the identity of G � has no compact
factors. Further, using the Product Lemma [BKK], we may assume that Γ is
an irreducible lattice in G � . If the real rank of G is > 1 then the celebrated
theorem of Margulis [Zim84, Theorem 6.1.2] says that Γ is an arithmetic lattice
(with respect to some

�
-structure on G) and the theorem follows from Theorem

3.1. Now suppose that the real rank of G is 1. Then the symmetric space
G/K is real, complex, or quaternionic hyperbolic space or the Cayley plane
(see [Hel78, Chapter X]). If Γ is a uniform lattice acting cocompactly on G/K,
then the statement follows from Example 1.4, so we may assume that Γ is
a nonuniform lattice. If G/K is the real hyperbolic space

� m+2 let P be a
maximal parabolic subgroup of Γ. Then P is commensurable to � m+1 and there
is a proper expanding map of the cone on Sm into a horosphere stabilized by
P . Adding a ray that diverges from this horosphere but stays within a bounded
distance from a Γ-orbit produces a proper expanding map from the cone on Sm

+

and shows that obdim(Γ) = m + 2. If G/K is the complex hyperbolic space of
complex dimension d = m+2

2 , then a maximal parabolic subgroup P of Γ is a
lattice in the Heisenberg group N that is a central extension 1 → � → N →

�
d−1 → 1. By Corollary 2.2 there is a proper expanding map of the cone on

Sm into a horosphere stabilized by P . The argument now follows as in the real
case. If G/K is quaternionic hyperbolic space or the Cayley plane, then Γ is an
arithmetic lattice [GS92] and the claim again follows from Theorem 3.1.

Proof of Theorem 1.3. First suppose that the center Z of G is finite. If neces-
sary, replace G by G/Z so that the center is trivial. Then G has the structure
of (the identity component of) a linear real algebraic group (see e.g. [Zim84,
Proposition 3.1.6]) and the proof is reduced to Theorem 3.2.

Now suppose that the center Z of G is infinite. Again we may assume that
G has no compact factors. Then by [Rag72, 5.17] ZΓ is a discrete subgroup
of G, so [Rag72, 1.13] (with H = Z) implies that Γ ∩ Z has finite index in Z.
It now follows from Corollary 2.4 and the centerless case applied to the lattice
Γ/(Z ∩ Γ) ⊂ G/Z that

obdimΓ ≥ rankZ + obdimΓ/(Z ∩ Γ) = rankZ + dim(G/Z)/C

where C is a maximal compact subgroup of G/Z. It remains to show that

dimG/K = rankZ + dim(G/Z)/C.

After passing to finite covers, we may assume that C = T × C ′ where T is a
torus and C ′ is a simply connected compact group (see e.g. [Kna96, Theorem
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4.29]). The preimage of C in G decomposes as � m ×T ′×C ′ where T ′ is a torus
and m = rankZ. Then K can be identified with T ′ × C ′, so we have

dimG/K = dimG− dimK = dim(G/Z) − (dimC ′ + dimT ′) =

dim(G/Z)− dimC + m = dim(G/Z)− dimC + rankZ

4 Isometric Actions

We need the following fact from the theory of Lie groups.

Lemma 4.1. If H is a connected noncompact Lie group, then there is a rep-
resentation ρ : H → GLN ( � ) such that the closure of the image ρ(H) is non-
compact.

Proof. Assume that the adjoint representation has precompact image. Then
the Lie algebra

�
of H admits an ad-invariant inner product and hence breaks

up as the direct sum of simple and abelian Lie algebras. The simple summands
have compact type, so the integral subgroup C ⊂ H corresponding to the sum
of all simple summands is compact, as well as normal in H. The quotient H/C
is a noncompact connected abelian group and it therefore maps onto � .

Note that the group GLN ( � ) above can be replaced by PGLN+1(
�
) since

there is a proper map GLN ( � ) → PGLN+1(
�
).

Theorem 4.2. Suppose that M is a contractible manifold equipped with a com-
plete Riemannian metric. Let G be a connected simple Lie group of rank > 1
with finite center and let Γ be a lattice in G. If dimM < dimG/K then every
isometric action of Γ on M has a bounded orbit. In particular, if the metric on
M is CAT(0), then every isometric action of Γ on M has a global fixed point.

Proof. The isometry group Isom(M) of M is a Lie group. Let ϕ : Γ →
Isom(M) be the given action, and denote by H the closure of ϕ(Γ). Then
H is also a Lie group. If H has infinitely many components, then the Margulis-
Kazhdan theorem [Zim84, Theorem 8.1.2] implies that ϕ : Γ → Isom(M) has
finite kernel and the image of ϕ is closed. It follows that the action of Γ on M is
properly discontinuous, contradicting the assumption dimM < dimG/K and
Theorem 1.1. Now suppose that H has only finitely many components. After
passing to a subgroup of Γ of finite index, we may assume that H is connected. If
H is compact, then the H-orbits, and hence Γ-orbits, are bounded. Thus assume
that H is noncompact. Then H admits a representation ρ : H → PGLN+1(

�
)
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whose image has noncompact closure (see Lemma 4.1). We can arrange in ad-
dition that ρ is trivial on the finite central subgroup ϕ(Γ∩Z(G)) (by applying
Lemma 4.1 to H/ϕ(Γ ∩ Z(G))). By the Margulis’ super-rigidity [Zim84, The-
orem 5.1.2] (applied to an algebraic � -group that has G/Z(G) as the identity
component [Zim84, Proposition 3.1.6] and to the lattice Γ/(Γ ∩ Z(G))) there
is a continuous extension ρ̃ : G → PGLN+1(

�
). The kernel Ker(ρ̃) 6= G is

a normal subgroup of G and is therefore contained in the center. It follows
from [Got48] (see also [Hel78, Exercise II.D.4]) that ρ̃(G) is a closed subgroup
of PGLN+1(

�
), thus the image of ϕ is closed and discrete and H cannot be

connected, contradiction. The last sentence follows from the Cartan fixed point
theorem [BH99, Corollary II.2.8].

If G has rank 1, one can say the following. When G/K is real or complex
hyperbolic space there exist lattices with positive first Betti number, and they
of course act isometrically on � with unbounded orbits. In the real case this
is a result of Millson [Mil76] and the complex case a result of Kazhdan (see
[BW80, Corollary VIII 5.9]). The cases of quaternionic hyperbolic space or
the Cayley plane are open. By Property T, lattices in these cases have trivial
first Betti number. One possible scenario would be to have infinite quotients of
smaller cohomological dimension that act discretely on a contractible manifold
of smaller dimension.

Question: Do lattices in Sp(n, 1) have infinite quotients of strictly smaller
(virtual or rational) cohomological dimension?

If G is not simple, but only semi-simple (and with finite center), then G/K
decomposes (see [Hel78, Proposition V.4.2, Proposition VIII.5.5]) as the direct
product X1×X2×· · ·×Xm of irreducible symmetric spaces and an irreducible
lattice Γ ⊂ G acts isometrically on each Xi with unbounded orbits. After
replacing (without loss of generality!) G by a finite cover, G also decomposes
as G1 × G2 × · · · × Gm × C where C is a compact group, Gi are simple and
Gi/Ki = Xi.

Theorem 4.3. Suppose that G = G1×G2×· · ·×Gm (m > 1) is the product of
noncompact simple Lie groups with finite center and that an irreducible lattice
Γ ⊂ G acts isometrically on a piecewise Riemannian contractible manifold M
with dimM < dimXi for all i = 1, 2, · · · ,m. Then all Γ-orbits are bounded.

Proof. Follow the proof above verbatim until the extension ρ̃ : G → PGLN+1(
�
)

is considered. Now the kernel is a closed normal subgroup and its Lie subalgebra
can be assumed, after reordering the factors, to be equal to the Lie subalgebra
of G1 × · · · × Gi for some 1 ≤ i < m (if the kernel is discrete the argument
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concludes the same way). It follows that the product

G → G1 × · · · ×Gi × PGLN+1(
�
)

of projections and of ρ̃ has finite kernel. Now [Got48] again implies that the
image of this map is closed, and hence the diagonal action of Γ on X1 ×X2 ×
· · ·×Xi×M is properly discontinuous. Theorem 1.1 now implies that dimM ≥
dimXi+1 + · · ·+ dimXm ≥ dimXm.

Remark 2. The metric on M can be allowed to be more general than Rieman-
nian in both theorems above. The proof only requires that the metric is proper
and that Isom(M) is a Lie group. The latter is satisfied e.g. if the Hausdorff
dimension of the metric is < dimM + 2 by [RS̆97]. Hilbert-Smith conjecture
implies that Isom(M) is a Lie group for any metric on M .

5 Examples

In the examples that follow (before and after the proof of Theorem 3.1) G will
be a semi-simple group of matrices, Γ a lattice in G and K a maximal compact
subgroup of G. If the dimension of the symmetric space G/K is m + 2, the
goal is to construct a proper expanding map cone(L) → G of an m-obstructor
complex L in G whose image is in a bounded neighborhood of Γ. To compute
the dimension of X = G/K we will make use of the Iwasawa decomposition
G = KAN that implies dimX = dimA + dimN .

6 SL3(
�
)

We now discuss the case Γ = SL3( � ) in detail. Here G = SL3( � ), K = SO3,
and the symmetric space X = G/K is 5-dimensional. We will construct the
3-obstructor complex L = S0

+ ∗ S1
+ in ∂Γ.

6.1 The cuspidal complex C

We will focus on the subgroup B ⊂ Γ consisting of upper-triangular matrices
with 1’s on the diagonal and on the 6 conjugates of B obtained by simultane-
ously permuting rows and columns. As we know (see Example 2.3) each copy of
B has a natural 2-sphere at infinity. To understand how different 2-spheres fit
together we define the simplicial complex C. Its vertices are the 6 off-diagonal
positions in a 3 × 3 matrix. A vertex ij can be viewed as an oriented arrow
from a point labeled i to a point labeled j (i, j ∈ {1, 2, 3}). A collection of
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vertices of C spans a simplex if there is a conjugate of B as above that has
non-zero entries in all the corresponding positions. In the language of arrows,
the condition is that there are no oriented cycles. See Fig. 1.

12 23 31 12

21 3232 13

Figure 1: The complex C is an annulus with a drum triangulation

6.2 The complex SC

We now define a functorial procedure that assigns a complex SC to the complex
C. Each simplex will be replaced by the sphere of the same dimension. A vertex
v of C corresponds to two vertices, thought of as v+ and v−, in SC. Thus the
vertex set SC(0) of SC is the vertex set C (0) of C crossed with {+,−}. There
is a natural projection π : SC (0) → C(0) that forgets the sign. A collection of
vertices of SC spans a simplex iff π is injective on this collection and the image
in C(0) is the vertex set of a simplex. The projection π extends to a simplicial
map π : SC → C. A simplex of dimension k in C has precisely 2k+1 lifts to
SC and the full preimage is a k-sphere triangulated as the (k + 1)-fold join of
0-spheres.

6.3 Two lemmas

Lemma 6.1 (Lemma A). SC contains a 3-obstructor complex L.

Lemma 6.2 (Lemma B). “L ⊂ ∂SL3( � )”

Remark 3. We don’t know if “SC ⊂ ∂SLn( � )”.

We will prove Lemma B for SLn( � ) in the next section. For Lemma A,
consider the subcomplex L of SC formed by the full preimage (which is a 2-
sphere) of one of the triangles in C, say < 12, 23, 13 >; add to it an equatorial
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disk which is half of the sphere π−1(< 13, 23, 21 >); finally add the vertex 32+
and edges joining it to the north and south poles and the center of the equatorial
disk. See Fig. 2.

��

12+

12−

21+
32+

23−

23+
13+

13−

Figure 2: A 3-obstructor subcomplex L ⊂ SC nearly embedded in � 3 .
The Van Kampen intersection point is indicated.

This subcomplex L is the join of the disjoint union of the circle π−1(<
13, 23 >) and the vertex 32+ and the three points 12+, 12−, 21+. By the Join
Lemma of [BKK], L is a 3-obstructor complex. This shows obdimSL3( � ) = 5.
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7 Γ = SLn(
�
)

Here G = SLn( � ), A is the group of diagonal matrices in G, and N is the group
of upper triangular matrices in G with 1’s on the diagonal. Thus dimX =
dimAN = (1 + 2 + · · ·+ n)− 1 = n2

2 + n
2 − 1. We let

L = S0
+ ∗ S1

+ ∗ · · · ∗ Sn−2
+

which is an m-obstructor complex for m = 0 + 1 + · · · + (n− 2) + 2(n − 2) =
n2

2 + n
2 − 3.

We again define the complex C with n2 − n vertices, one for every off-
diagonal position of an n×n matrix, and a collection of vertices spans a simplex
iff the corresponding positions are all above the diagonal after a simultaneous
permutation of rows and columns. Let SC be the corresponding complex whose
vertices are signed vertices of C and whose simplices are lifts of simplices of C.

Lemma 7.1 (Lemma A). SC contains the m-obstructor complex L.

Lemma 7.2 (Lemma B). “L ⊂ ∂SLn( � )”

Proof of Lemma A. The sphere Sk−2 is the full preimage of the (k−2)-simplex
< 1k, 2k, · · · , (k−1)k > of C and we add the vertex k(k−1)+ to form Sk

+. It is
straightforward to check that the subcomplex of SC spanned by the described
vertices is precisely a copy of L.

7.1 Lemma B – discussion

We first define a map from the cone on SC into G = SLn( � ). A simplex of
SC corresponds to a collection of positions with signs and the first guess might
be that the cone on such a simplex is sent to the subset of G having 1’s on
the diagonal, entries of appropriate sign in the positions corresponding to the
vertices of the simplex, and 0’s in all other positions. The problem with this
rule is that cones on disjoint simplices don’t diverge. For example (letting R
be large), let

A =





1 R 1
0 1 1
0 0 1





and

B =





1 0 −R
0 1 0
0 1 1




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Then

A−1B =





1 −1 −1
0 0 −1
0 1 1





so A and B are bounded distance apart. Instead, we separate the positions
below diagonal from the positions above the diagonal, thus obtaining two ma-
trices, one upper-triangular and the other lower-triangular. We then send the
point in the cone to the product of the two matrices. For example, the cone on
< 23+, 31+ > is thought of not as the set of matrices





1 0 0
0 1 x
y 0 1





with x, y ≥ 0 but as the set of matrices




1 0 0
0 1 x
0 0 1









1 0 0
0 1 0
y 0 1



 =





1 0 0
xy 1 x
y 0 1





with x, y ≥ 0.
In the example above, A is already upper-triangular and would represent

the image of the chosen point in the cone on < 12+, 23+, 13+ >, but the matrix
B would be replaced by the product





1 0 −R
0 1 0
0 0 1









1 0 0
0 1 0
0 1 1



 =





1 −R −R
0 1 0
0 1 1





If this matrix is denoted by B ′, then we compute that

A−1B′ =





1 −R− 1 −1
0 0 −1
0 1 1





so A and B′ are far apart. In this case it can be shown that this first guess for
the map suffices to prove that “L ⊂ ∂SLn( � )”; however, in general we find it
easier to deal with the map corresponding to separating the upper-triangular
from the lower-triangular part.

Lemma 7.3. For every n there is a function φ : [0,∞) → [0,∞) with the
following properties. Let Λ = (lij),Λ

′ = (l′ij) be two lower triangular matrices
with 1’s on the diagonal, and let U,U ′ be two upper-triangular matrices with 1’s
on the diagonal. Assume:

14



• If lij 6= 0 or if l′ij 6= 0 then either i = j or i = j + 1.

• lj+1,jl
′
j+1,j = 0 for all j.

If at least one of Λ,Λ′ contains an entry of absolute value > φ(R) then S =
(UΛ)−1U ′Λ′ has an entry of absolute value > R.

Proof. We can write UΛ = U ′Λ′S. Assume that the statement is false, and let
Uk, U

′
k,Λk,Λ

′
k, Sk be a sequence of examples with all entries of S bounded by

R and some entries of Λ or Λ′ going to infinity. By passing to a subsequence
we may assume that all entries converge in [−∞,∞]. Call a position of a
matrix ‘small’ if the corresponding entries stay bounded and otherwise call it
‘large’. For example, all positions of S are small. Note that by Cramer’s Rule
(det S = 1) all positions of S−1 are also small. For simplicity, we drop the
subscripts from Λk, Uk, · · · .

Consider the lowest nonzero off-diagonal entry x of Λ or Λ′, i.e. lj+1,j or
l′j+1,j such that lm+1,m = l′m+1,m = 0 for all m > j. There are two cases:

Case 1: The position of x is small. We can replace x by 0 without affecting
other entries of the same matrix by multiplying on the right by the elementary
lower-triangular matrix that has entry −x in the position j + 1, j. We can
compensate this operation by either multiplying S on the right by the same
matrix (in case that the entry x belongs to Λ) or by multiplying S on the left
by the inverse of this matrix (in case x belongs to Λ′). All entries of the new
matrix S are still small (though not bounded by R perhaps). Now proceed to
the next lowermost off-diagonal entry of Λ or Λ′.

Case 2: The position of x is large. Say x belongs to Λ (the other case is
analogous). We write

U ′−1
UΛ = Λ′S

The right hand side is obtained from the matrix S with small entries by applying
elementary row operations in which a multiple of the pth row is added to the
row below for certain p < j. Therefore all rows bellow row j of the matrix Λ′S
are equal to the corresponding entries of the small matrix S.

The left hand side is obtained from Λ by applying elementary row operations
in which a multiple of a row is added to some row above. It follows that the
entry of U ′−1UΛ in position (j + 1, j) is x, which is large. Contradiction

Proof of Lemma B. Let UΛ and U ′Λ′ be two matrices representing points in
cones on disjoint simplices of L. Assuming that the two points are far away
from the cone point, we have to show that the distance between UΛ and U ′Λ′

is large. If one of Λ,Λ′ has a large entry, this follows from Lemma 7.3. If both
Λ and Λ′ have small entries, then UΛ is close to U , while U ′Λ′ is close to U ′,

15



so we must show that U and U ′ are far apart. In this case U and U ′ will have
large entries, so the statement follows from Example 2.3.

We can see more concretely how the cone on L is mapped to G. The sphere
Sp−2 is identified with the unit sphere in � p−1 , which in turn is mapped to G
via

(x1, x2, · · · , xp−1) 7→





















1 x1

1 x2

xp−1

1

1





















and the extra point determines the ray of positive numbers in the (p, p − 1)-
position.

8 Γ = SLn(
�
[
√

2])

O = � [
√

2]) is a lattice in � 2 under the embedding a+b
√

2 7→ (a+b
√

2, a−b
√

2)
and likewise Γ is a lattice in G = SLn( � ) × SLn( � ) (with the same map
applied to each entry). Note that O is a ring and the group of units O∗ has
rank 1 (e.g. 1 +

√
2 has infinite order). The symmetric space is X × X with

X = SLn( � )/SOn . We define L as the join

L = Sn−2 ∗ S1
+ ∗ S3

+ ∗ · · · ∗ S2n−3
+ .

Then L is an m-obstructor complex for m = (n− 1) + 1 + 3 + · · ·+ (2n− 3) +
2(n− 2) = n2 + n− 4 while X ×X has dimension n2 + n− 2.

We define the map Ψ : cone(L) → G analogously to the SLn( � ) construc-
tion, with a new feature that there are diagonal entries different from 1 this
time.

Fix some p ∈ {2, 3, · · · , n} and consider the subgroup Γp of Γ consisting of
matrices that have any entry from � [

√
2] in positions (1, p), (2, p), · · · , (p−1, p),

1’s on the diagonal, and 0’s in the remaining positions.




















1 x1

1 x2

xp−1

1

1




















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To this subgroup (isomorphic to � 2p−2) we associate the subgroup Gp of G
isomorphic to � 2p−2 consisting of the set of pairs (A,B) of matrices as above
with real entries. Note that Γp is a cocompact lattice in Gp. We view Gp as the
cone on S2p−3 with the cone on a simplex of S2p−3 corresponding to the subset
of Gp where certain entries of A and B above the diagonal and in column p are
nonnegative, certain others are nonpositive, and the remaining entries are 0.

Next, we define a ray Rp in G to consist of pairs of matrices (Λ,Λ) with
Λ having 0’s above the diagonal, 1’s on the diagonal, entry x ≥ 0 in position
(p, p − 1) and 0’s in all other positions. This ray is also within a bounded
distance from Γ. We identify the cone on S2p−2

+ with Gp+ := Gp ∪Rp.

Finally, we define Γ0 to consist of diagonal matrices in Γ, and we define G0

to consist of pairs (D,D−1) ∈ G where D is a diagonal matrix with positive
diagonal entries. We have that Γ0 is an abelian group of rank n−1, G0

∼= � n−1 ,
and G0 is within a bounded neighborhood of Γ0. We identify G0 with the cone
on Sn−2 where the cone on a simplex of Sn−2 corresponds to the pairs (D,D−1)
with certain diagonal entries of D bounded below by 1, certain others bounded
above by 1, and the remaining diagonal entries equal to 1.

We now define the map Ψ : cone(L) → G. We are identifying cone(L) with
G0×G2+×· · ·×Gn+. Let ((D,D−1), (A2, B2), · · · , (An, Bn)) ∈ cone(L). From
this data we first form 3 pairs of matrices:

• diagonal pair (D,D−1),

• lower-triangular pair (Λ,Λ) – it is formed by superimposing (equivalently,
adding entries below the diagonal) all lower-triangular pairs (Λp,Λp) ap-
pearing in the sequence (Ap, Bp), and

• upper-triangular pair (U, V ) – it is formed by superimposing (equivalently,
adding entries above the diagonal) all upper-triangular pairs (Ap, Bp) ap-
pearing in the above sequence.

We define the image under Ψ of the given sequence to be the pair

(UDΛ, V D−1Λ) ∈ G.

Lemma 8.1 (Lemma B). “L ⊂ ∂SLn( � [
√

2])”.

The proof is similar to the proof in the case of SLn( � ) except for the added
complication of diagonal matrices. It will not be given here and we appeal to
the general case of Lemma B given is Section 11.
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9 Γ = SLn(O)

Here O is the ring of integers in a number field k. Let r be the number of
real places of k and s the number of complex-conjugate places. Then, as an
abelian group, O ' � r+2s. The group O∗ of units is a finitely generated group
of rank r + s − 1. For example, when O = � [i] then r = 0 and s = 1, and
when O = � [

√
2] then r = 1 and s = 0. O has r embeddings in � and

s embeddings in
�
, and there is an induced diagonal embedding Γ ⊂ G =

SLn( � )r ×SLn(
�
)s and Γ is a lattice there. The symmetric space associated to

SLn(
�
) has dimension equal to the dimension of A (= n−1) plus the dimension

of N (= 2(1 + 2 + · · · + (n − 1))), so it equals n2 − 1. Thus the dimension of
the symmetric space of G is

r(
n2

2
+

n

2
− 1) + s(n2 − 1)

We set

L = S
(r+2s)+(r+s−1)−1
+ ∗ S

2(r+2s)+(r+s−1)−1
+ ∗ S

3(r+2s)+(r+s−1)−1
+ ∗ · · · ∗

S
(n−1)(r+2s)+(r+s−1)−1
+

which is an m-obstructor complex for

m = (1 + 2 + · · ·+ (n− 1))(r + 2s) + (n− 1)(r + s− 2) + 2(n− 2)

= r(n2

2 + n
2 − 1) + s(n2 − 1)− 2

The complex S
(p−1)(r+2s)+(r+s−1)−1
+ is identified with the unit sphere in the

space � (p−1)(r+2s)+(r+s−1) union a ray. The Euclidean space is realized (as
an abelian group with that rank) by upper triangular matrices with entries
(1, p), (2, p), · · · , (p− 1, p) from O, entry (p, p) from O∗, entry (1, 1) the inverse
of entry (p, p), other diagonal entries are 1, and all other entries are 0. The
ray is realized by matrices with diagonal entries 1, and positive real entry in
position (p, p− 1).

10 Proof of Theorem 3.1

In this section we consider the case of arithmetic lattices. We use [Rag72],
[Bor91], and [Bor69] as general references on algebraic and arithmetic groups.
Let G ⊂ GLN (

�
) denote a connected semi-simple linear algebraic group defined

over
�

. If k is a subring of
�

(usually � ,
�

, � , or
�
) denote by Gk the group

G∩GLN (k) of k-points. It is a theorem of Borel-Harish-Chandra [BHC62] that
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G � is a lattice in G � . This is the standard arithmetic lattice. Let S be the
maximal torus in G which is split over

�
and let M be the largest connected

subgroup of the centralizer Z(S) which is anisotropic, i.e. does not have any
nontrivial

�
-split tori (in other words, the

�
-rank of M is 0). We also have

that the component of the identity Z(S)0 = S ·M , i.e. the multiplication map
S × M → Z(S)0 is surjective and has finite kernel. Further, M is reductive
[Bor91, IV.13.17 Corollary 2], i.e. after a finite cover it decomposes as the
product of a torus and a semi-simple

�
-group.

There is the usual decomposition of the Lie algebra � of G:

� = �
0 ⊕

⊕

α∈Φ

�
α

into root spaces. Each α ∈ Φ is a rational character α : S → GL1(
�
) and �

α is
the associated root space. It is customary to use additive notation in the group
of characters. Choose an ordering on Φ and denote by Φ+ the set of positive
roots and by ∆ the set of simple roots (those roots not expressible as sums of
other roots in Φ+). The cardinality r of ∆ is equal to the dimension of S and
is called the

�
-rank of G. Lattice G � is cocompact in G � if and only if the�

-rank is 0 (this statement holds even for reductive groups). Unlike in the case
of algebraically closed fields, the root spaces �

α may have dimension > 1 and
the root system Φ may not be reduced (we may have 0 6= α, 2α ∈ Φ). Of course,
Φ might not be irreducible (the Dynkin diagram could be disconnected). Every
irreducible component of Φ is either reduced (i.e. it is of type An (n ≥ 1), Bn

(n ≥ 3), Cn (n ≥ 2), Dn (n ≥ 4), E6, E7, E8, F4, or G2) or unreduced (i.e. it
is of type BCn (n ≥ 1)). See e.g. [Kna96].

The subalgebra of � corresponding to Z(S)0 is precisely �
0.

Lemma 10.1. M � acts cocompactly and properly discontinuously on a con-
tractible manifold XM and there is a sphere “SM ⊂ ∂M � ” with dimSM =
dimXM − 1.

Proof. M � is a lattice in M � by [BHC62, Theorem 9.4]. It is a cocompact lattice
since the

�
-rank of M is 0. The manifold XM can be taken to be the product of

the symmetric space of the semi-simple factor of M and of the Euclidean factor
corresponding to T � /KT (real points in the torus modulo maximal compact
subgroup). See Example 1.4.

The Lie algebra of a minimal
�

-parabolic subgroup P is �
0⊕

⊕

α∈Φ+
�

α and
P = Z(S)0 · U where U is the connected nilpotent subgroup with Lie algebra
⊕

α∈Φ+
�

α.
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Lemma 10.2. P � = P∩GLN ( � ) acts cocompactly and properly discontinuously
on a contractible manifold XP and there is a sphere “SP ⊂ ∂P � ” with dimSP =
dimXP−1 and dimXP = dimU � +dimXM . Moreover, dimXP = dimG � /K−
r.

Proof. Note that S intersects G � in a finite subgroup. After passing to a finite
cover, we have a split exact sequence

1 → U → P/S → Z(S)0/S → 1

and Z(S)0/S is a quotient of M with finite kernel. The image of P � is a lattice
in P � /S � . A maximal compact subgroup K ′ of Z(S)0� /S � lifts to a maximal
compact subgroup of P � /S � . We set XP = (P � /S � )/K ′ and apply Lemma 2.1
to K ′ � U � ⊂ P � /S � . To prove the last statement, recall [BS73] that G � acts co-
compactly and properly discontinuously on a contractible manifold with corners
whose interior can be identified with G � /K and P � is the stabilizer of a lowest
dimensional stratum, which is a contractible manifold and has codimension r
(and is really a copy of XP ).

We now note that if the
�

-rank r = 0 the theorem follows from Example
1.4. From now on we will assume that r ≥ 1.

We now state some lemmas. For every α ∈ ∆ set α̂ = 2α if 2α ∈ Φ and
otherwise set α̂ = α. Let ∆̂ = {α̂|α ∈ ∆}.

Lemma 10.3. Let Φ be a (possibly unreduced, possibly not irreducible) root
system, and let ∆ be the set of simple roots (with respect to some ordering).
There is an ordering of the set ∆̂ with the following properties. Let α̂ ∈ ∆̂.
Suppose that the elements of ∆̂ that precede α̂ in the order are labeled by one of
the letters “U” or “D”, and also label α̂ itself by “D”. We refer to the elements
of ∆̂ labeled “D” as D-nodes, and those labeled “U” as U-nodes. Then there
exist σ, µ ∈ Φ ∪ {0} such that:

1. µ− σ = α̂,

2. the difference σ − φ between σ and any φ ∈ Φ ∪ {0} is not a positive
multiple of a D-node,

3. the difference φ− σ between any φ ∈ Φ∪ {0} is not a positive multiple of
a U-node.

Label “U” means that it is not possible to go “up” from σ along the simple
root and reach a root or 0 and, similarly, “D” stands for “down”. We postpone
the proof of this lemma until the end of Section 11.
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Lemma 10.4. 1. If v ∈ �
α, w ∈ �

β then [v, w] ∈ �
α+β (the latter is defined

to be 0 unless α + β ∈ Φ ∪ {0}).

2. Suppose that α, β, α + β ∈ Φ ∪ {0} and α 6= 0. Then there exist v ∈ �
α

and w ∈ �
β such that [v, w] 6= 0.

Proof. Both statements are well-known over
�

(see e.g. [Kna96, Proposition
2.5] for (1) and [FH91, Claim 21.19] for (2)). (1) is proved the same way over�

, and statement (2) over
�

follows by decomposing each root space into 1-
dimensional subspaces which are root spaces with respect to a maximal torus
that contains S (but is split only over

�
, not over

�
).

Lemma 10.5.

exp(X)Y exp(−X) = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + · · ·

Lemma 10.6. [Rag72, Corollary 10.14] Let M be an algebraic group defined
over

�
and let ρ : M → GL(V ) be a homomorphism defined over

�
into the

general linear group of a vector space defined over
�
. If Γ ⊂ M is an arithmetic

lattice in M and if L is a lattice in V � then there is a finite index subgroup Γ′

of Γ such that ρ(Γ′) preserves L.

For each α̂ ∈ ∆̂ choose a rational vector ζα̂ ∈ �
−α̂ such that

[ζα̂, ·] : �
µ → �

σ

is nonzero whenever σ, µ ∈ Φ∪{0} are such that µ−σ = α̂. That such a vector
exists follows from Lemma 10.4 and it can be taken to be a rational vector
by perturbing (the set of bad choices is contained in a finite union of proper
subspaces).

Let α1, · · · , αr be the simple roots in ∆ ordered so that α̂1, α̂2, · · · , α̂r is the
ordering of ∆̂ from Lemma 10.3. Every root in Φ+ is an integral combination
with nonnegative coefficients of the simple roots. For i = 1, · · · , r denote by Φ+

i

the set of positive roots obtained as nonnegative integral linear combinations
of simple roots α1, α2, · · · , αi and involving αi with a positive coefficient. Note
that if α, α′ ∈ Φ+

i and if α + α′ is a root, then α + α′ ∈ Φ+
i . It follows

that � i =
⊕

α∈Φ+
i

�
α is a nilpotent subalgebra of � . The integral subgroup

Ni = exp( � i) is nilpotent and the intersection Ni ∩G � is a lattice in Ni ∩G � .
Thus by Corollary 2.2 we have an expanding map Ci → Ni ∩G � from the cone
Ci on a sphere Si with

dimCi = dimNi ∩G � =
∑

α∈Φ+
i

dim �
α
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where dim �
α is the complex dimension (or equivalently the real dimension

of the real points of �
α). The Ni’s play the role of the “column groups” in

our examples. The reader will note that the maps Ci → Ni ∩ G � have been
constructed as homeomorphisms and it will do no harm (and it will simplify
notation) to omit the name of the map and simply identify Ci with Ni.

Similarly, for i = 1, 2, · · · , r, consider the abelian subalgebra �
−α̂i

. By
Pi = exp( �

−α̂i
) denote the associated integral subgroup and again by Corollary

2.2 we know that Pi ∩ G � is a cocompact lattice in Pi ∩ G � . The latter is a
noncompact group and we define a proper embedding Ri : [0,∞) → Pi ∩ G �

(whose image we also denote by Ri) by

Ri(t) = exp(tζα̂i
)

The Pi’s play the role of the subdiagonal positions in our examples.
We now define

C = CM × (C1 ∪R1)× (C2 ∪R2)× · · · × (Cr ∪Rr).

This is the open cone on a finite complex L obtained by taking joins of a sphere
(for CM ) and spheres with a point added. We take the join triangulation on L.
Define also a map

Ψ : C → G �

as follows. Let (d, z1, z2, · · · , zr) ∈ C. Then each zi is either equal to some xi ∈
Ci or to some yi ∈ Ri. Say zi = xi ∈ Ci for i = i1, i2, · · · , ik and zi = yi ∈ Ri

for i = j1, j2, · · · , jl where we assume i1 < i2 < · · · < ik, j1 < j2 < · · · < jl and
k + l = r. Then set

Ψ(d, z1, z2, · · · , zr) = xi1xi2 · · · xikdyj1yj2 · · · yjl
.

Note that the image of Ψ is contained in a bounded neighborhood of G � in G �

– this is true for the components Ri, Ci and CM by construction and remains
true after taking pointwise products of such neighborhoods.

Remark 4. Suppose A and B are 3×3 elementary matrices with nonzero entries
in positions (1,2) and (2,3) respectively. Then AB is a matrix with a nonzero
(1,3) position, while BA is obtained from A and B by “superposition” (as in our
examples). This explains why we have to carefully arrange different components
of the map Ψ.

The proof of Theorem 3.1 is now reduced to the following two lemmas.

Lemma A. L is an m-obstructor complex with m = dimXG − 2.

Lemma B. Ψ is proper and expanding
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Proof of Lemma A. We have

L = LM ∗ L1 ∗ L2 ∗ · · · ∗ Lr

where LM is the sphere of dimension dimXM−1 and Li is the disjoint union of a
sphere of dimension

∑

α∈Φ+
i

dim �
α−1 and a point. Thus LM is a (dimXM−2)-

obstructor complex and Li is a
∑

α∈Φ+
i

dim �
α−1-obstructor complex. The Join

Lemma implies that L is an m-obstructor complex for

m = (dimXM − 2) +

r
∑

i=1

(
∑

α∈Φ+
i

dim �
α − 1) + 2r =

dimXM +
∑

α∈Φ+

dim �
α + r − 2 = dimXP + r − 2 = dimG � /K − 2

where the last two equalities follow from Lemma 10.2 and the observation that
dimU � =

∑r
i=1

∑

α∈Φ+
i

dim �
α.

11 Proof of Lemma B

Choose two disjoint simplices of L and a sequence of points in their cones.
To simplify notation, we omit the subscripts corresponding to the sequence
counters. We then have (d, z1, · · · , zr) and (d′, z′1, · · · , z′r). Say the indices of zi

corresponding to nontrivial points in the rays are j1 < j2 < · · · < jl and of z′i
they are k1 < k2 < · · · < kq. The two sets are disjoint. For concreteness, assume
jl > kq. If possible, pass to a subsequence such that the point zjl

= yjl
∈ Rjl

stays bounded. In this case we replace the point (d, z1, · · · , zr) by the point
in which the zjl

coordinate is replaced by 1. This results in a simpler pair of
sequences and their divergence is equivalent to the divergence of the original
pair. We may thus assume that either yjl

goes to infinity or that all yj and
y′j-coordinates are 1.

First consider the case when yjl
→∞. We will argue that the two sequences

diverge. It will not be important that the x-coordinates on the two sides belong
to disjoint simplices, so we will collect all x’s and x′’s into an element denoted
u, and we will let s be the difference between the two elements, so we write:

udyj1 · · · yjl
= d′y′k1

· · · y′kq
s (2)

where we assume, by way of contradiction, that the sequence s is bounded.
Consider the adjoint representation of G on Aut( � ). We will obtain a con-

tradiction by comparing the automorphisms of � the two sides induce.
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We label the roots α̂j1 , α̂j2 , · · · , α̂jl
by “D” and α̂k1 , α̂k2 , · · · , α̂kq

by “U”.
Lemma 10.3 (with α̂ = α̂jl

) provides us with σ, µ ∈ Φ ∪ {0}. We will focus on
the �

µ → �
σ component of the transformation (2). This component will play

the role of a “matrix position” in our examples.
First, we look at udyj1 · · · yjl

. Lemma 10.4(1) and Lemma 10.5 imply that
Ad(yjl

) maps �
µ into

�
µ ⊕ �

µ−α̂jl
⊕ �

µ−2α̂jl
⊕ · · ·

which, by Lemma 10.3(1) and (2) is just �
µ ⊕ �

σ, and further, Ad(yjl
) = I ⊕

[tζα̂jl
, ·] on �

µ. By Lemma 10.3(2) we have

Ad(yj1yj2 · · · yjl−1
)| �

σ = I

and
Ad(yj1yj2 · · · yjl−1

)| �
µ

has its image contained in

⊕{ �
φ|µ− φ is a nonnegative linear combination of α̂j1 , · · · , α̂jl−1

}. (3)

Next, Ad(d) preserves each �
φ and Ad(u) maps �

φ into

⊕

ν−φ∈Φ+∪{0}

�
ν .

We now claim that Ad(u) has �
σ-component equal to 0 when restricted to (3).

Otherwise, we get equations:

µ− φ =a1α̂j1 + · · ·+ al−1α̂jl−1

σ − φ =b1α̂1 + · · · + brα̂r

with all coefficients ≥ 0 which, together with µ−σ = α̂jl
, imply (by subtracting

the second and third from the first) that

b1α̂1 + · · ·+ brα̂r = a1α̂j1 + · · ·+ al−1α̂jl−1
− α̂jl

thus violating the linear independence of the simple roots.
Summarizing, we have

Lemma 11.1. The �
µ → �

σ-component of Ad(udyj1 · · · yjl
) is

Dσ ◦ [tζα̂jl
, ·]

where Dσ is the restriction of Ad(d) to �
σ.
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We now perform a similar analysis for the right hand side of (2).
We have that Ad(d′) preserves each root space. By Lemma 10.3 (3), the

only root space �
φ such that Ad(y′k1

· · · y′kq
) has a nontrivial �

σ-component when
restricted to it is �

σ and the component is I. We therefore have

Lemma 11.2. The �
µ → �

σ-component of Ad(d′y′k1
· · · y′kq

s) is

D′
σSµσ

where D′
σ is the restriction of Ad(d′) to �

σ and Sµσ is the �
µ → �

σ-component
of Ad(s).

We now conclude that

Dσ ◦ [tζα̂jl
, ·] = D′

σSµσ

i.e.
D ◦ [tζα̂jl

, ·]
is a bounded sequence of maps as t →∞ and D represents a sequence in M � .
Let L be a (rational) lattice in �

σ that contains a nonzero vector h in the
image of the map [ζα̂jl

, ·]. Lemma 10.6 yields a subgroup Γ of finite index in
M � such that Ad(Γ) preserves L. Since Γ is cocompact in M , it follows that
Ad(M) nearly preserves L in the sense that there is a neighborhood Ω of 0 ∈ �

σ

such that Ad(M) sends no nonzero element of L (in particular, h) into Ω (see
Mahler’s criterion, [Rag72, Corollary 10.9]). It follows that Ad(M) sends th
outside tΩ, so the composition D ◦ [tζα̂jl

, ·] is not a uniformly bounded map
as t →∞. This contradiction proves Lemma B under our original assumption
that yjl

→∞.
Now suppose that all yj and y′j coordinates are 1. Equation (2) becomes

ud = d′s (4)

This is an equation in the minimal parabolic subgroup P = Z(S)0 · U . After
passing to a finite cover, we may assume that P = Z(S)0 � U . Consider the
canonical homomorphism τ : P → Z(S)0. It maps ud to d and d′s to d′s′ where
s′ is a bounded sequence in M � . Thus d and d′ stay a bounded distance apart.
Since by construction they belong to divergent cones in M � , they both have to
stay bounded. It follows that u must stay bounded, i.e. that the sequence x
and the sequence x′ stay within bounded distance. But by Corollary 2.2 this
means that both x and x′ stay bounded, contradicting the assumption that
the original sequences were chosen to be unbounded. This contradiction proves
Lemma B.
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Proof of Lemma 10.3. Every root can be written as a linear combination of
simple roots. The key to this proof is the fact that the coefficients in such
linear combinations are explicitly known (and can be found e.g. in [Kna96,
Appendix C]).

We first note that if Φ is not irreducible, then the statement follows im-
mediately from the corresponding statements for the irreducible components.
The reason for this is that Φ is then the disjoint union of its irreducible com-
ponents, and any ordering of ∆̂ that restricts correctly to each component will
work. Moreover, if there are elements of ∆̂ that are not labeled at all (which
is the case when α̂ is not the highest node) then we may restrict our consider-
ation to the root system Φ′ generated by the labeled nodes (and in fact to the
irreducible component of Φ′ that contains α̂).

Here is one situation when we can take σ to be the negative of the largest
positive root: σ + α̂ ∈ Φ ∪ {0} and if we write σ = −mα̂ − · · · as a linear
combination of simple roots, then all other roots in Φ have their α̂-coefficient
> −m. These situations, together with the coefficients, are pictured below,
with the node α̂ circled.

� �� � � �� � � �� �� �� � � �	
 
�

-1 -2 -2 -2-2 -2

Figure 3: Bn, n ≥ 3
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Figure 4: Cn, n ≥ 2
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Figure 5: Dn, n ≥ 4
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Figure 6: Exceptional reduced root systems E6, E7, E8, F4, G2
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Figure 7: Unreduced root system BCn, n ≥ 2. The positive roots are
ei ± ej for i < j, ei, 2ei, i = 1, 2, · · · , n. The nodes correspond to the
roots (from left to right) e1 − e2, e2 − e3, · · · , en−1 − en, en, 2en with the
last two corresponding to the same (rightmost) node in the diagram.
The largest root is 2e1 and its coefficients with respect to the nodes
are 2, 2, · · · , 2, 1 if we take α̂n = 2en as the representative of the last
node.

In the case of BC1 (i.e. Φ = {−2α,−α, α, 2α}) we can take σ = −2α = −α̂
and µ = 0. This leaves us with type An. The ordering is the usual linear
ordering of the nodes. Say α is node k in this ordering and let a labeling by
“U”’s and “D”’s of nodes ≤ k be given as in the lemma. Let 1 ≤ l ≤ k be such
that the label of node l is “D” but the label of node l− 1 is not “D” (or l = 1).
Define σ as the negative of the sum of the nodes l, l + 1, · · · , k.

In general, to define the ordering on ∆̂, we follow this procedure: Work
separately on components. If a component is of type An order the nodes linearly.
Otherwise, define the highest root in the ordering to be the circled node in
the corresponding figure above. Then pass to the subdiagram consisting of
unlabeled nodes and repeat the procedure.

We finish the paper by looking at few more examples.

Remark 5. The ordering of ∆ was used in two places: to define Φ+
i (and the

associated nilpotent groups Ni) and in determining the order in which the yi’s
come in the definition of the map Ψ. The reader will observe that we can use
two different orders on ∆: an arbitrary order to define Φ+

i and the one from
Lemma 10.3 to order the yi’s. It is convenient to use the standard order for the
first purpose since then the Ni’s are standard nilpotent matrix groups. This is
the practice we follow in the examples.

12 Γ = Sp2n(
�
)

Consider V =
� 2n with the standard

�
-basis e1, e2, · · · , en, en+1, · · · , e2n. Let J

be the anti-symmetric bilinear pairing defined by J(ei, en+i) = 1 and J(ei, ej) =
0 if |j − i| 6= n. The group Sp2n(

�
) is the subgroup of GL2n(

�
) consisting of

matrices that preserve J . It is convenient to represent the matrices in Sp2n(
�
)
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and in its Lie algebra in 2 × 2 block form corresponding to the partition of
the basis for V into the first n and last n vectors. Thus J is represented by

J =

(

0 −I
I 0

)

. The Lie algebra consists of block matrices X =

(

A B
C D

)

such

that XJ +JX t = 0, i.e. B and C are symmetric matrices, and D is the negative
transpose of A. A maximal split torus S can be taken to consist of diagonal
matrices

diag[s1, s2, · · · , sn, s−1
1 , s−1

2 , · · · , s−1
n ] (5)

Denote by yi : S → �
the character that takes the above matrix to si. The

positive roots are
yi − yj , (i < j); yi + yj, (i 6= j); 2yi

and the simple roots are y1−y2, y2−y3, · · · , yn−1−yn, 2yn, so the root system is
of type Cn. The Lie algebra � i for i < n consists of matrices that in the column
i + 1 of the (1, 1)-block have arbitrary entries above the diagonal and 0 in all
other positions, the (2, 2)-block is the negative transpose of the (1, 1)-block,
and the (1, 2) and (2, 1)-blocks are 0. For i = n the Lie algebra � n consists of

matrices

(

0 B
0 0

)

with B symmetric. In this case Φ+
n consists of the roots in

classes 2 and 3 above. The obstructor complex in this case is

L = S0
+ ∗ S1

+ ∗ · · · ∗ Sn−2
+ ∗ S

(n+2)(n−1)
2

+

The Lie algebras � i are abelian and exponentiation (to obtain Ni) amounts to
adding the identity matrix.

13 Γ = Sp2n(O)

If r and s denote the numbers of real and complex places, then O ∼= � r+2s

as an abelian group so the dimensions of Ni’s above should be multiplied by
r + 2s. The centralizer Z(S) consists of the diagonal matrices (5) and M � is
commensurable with the group of such matrices with entries in O∗: it is an
abelian group of rank (n− 1)(r + 2s). The obstructor complex is thus

S(n−1)(r+2s)−1 ∗ Sr+2s−1
+ ∗ S

2(r+2s)−1
+ ∗ · · · ∗ S

(n−1)(r+2s)−1
+ ∗ S

n(n+1)(r+2s)
2

−1
+

14 Γ = SO(Q) for a nondegenerate form Q

Any nondegenerate quadratic form Q defined over
�

on a vector space V can
be represented as a direct sum of a certain number, say q, of hyperbolic planes
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and of an anisotropic quadratic form Q0 (i.e. Q0 does not take value 0 on
nonzero rational vectors). We follow notation from [Bor91, V.23.4], where the
reader can find more details about SO(Q). Choose a rational basis e1, e2, · · · , en

of V so that ei, en−q+i span a hyperbolic direct summand for i = 1, 2, · · · , q
(with < ei, ei >=< en−q+i, en−q+i >= 0, < ei, en−q+i >= 1 in the associated
symmetric pairing) and eq+1, · · · , en−q span the Q0-summand. The maximal
split

�
-torus S in SO(Q) is the group of diagonal matrices

diag[s1, s2, · · · , sq, 1, 1, · · · , 1, s−1
1 , s−1

2 , · · · , s−1
q ]

Denote by yi : S → �
the character that sends the above matrix to si. The

centralizer Z(S) is S × SO(Q0) and the positive roots are

yi − yj, (i < j); yi + yj, (i 6= j); yi

with the first two kinds having multiplicity 1 and the third kind of multiplicity
n − 2q (so the third kind is not present when n = 2q). The simple roots are
y1 − y2, y2 − y3, · · · , yq−1 − yq, yq which is type Bq (if n = 2q the type is Dq).
Every element of SO(Q) and of its Lie algebra is conveniently represented in a
(3, 3)-block form corresponding to first q, middle n−2q, and last q basis vectors.
A block matrix (Aij) is in the Lie algebra of SO(Q) if and only if the following
6 conditions are satisfied:

A13 + At
13 = A12F0 + At

23 = A11 + At
33 = 0

A22F0 + F0A
t
22 = A32F0 + At

21 = A31 + At
31 = 0

where F0 is the matrix of Q0.
We now describe the Lie algebras � i of the groups Ni, i = 1, 2, · · · , q − 1

(we are using the standard ordering of the simple roots): In the (1, 1)-block
consider the i positions above the diagonal in column i + 1. Any (complex)
entries are allowed. Then change the sign of these entries and transpose, and
write this row vector in the 3×3 block in row i+1 to the left of the diagonal. To
get Ni exponentiate – in this case this amounts to adding the identity matrix.
Intersecting with real points, this defines the space Ci from the proof of Lemma
B – it is the cone on the sphere of dimension i− 1.

The group Nq is not abelian – it is 2-step nilpotent. Its Lie algebra is
spanned by the positive roots in classes 2 and 3 above and it consists of block
matrices that have vanishing all 3 diagonal blocks and all 3 blocks below the
diagonal. The group of real points of Nq has dimension q(n − 2q) + (1 + 2 +
· · · + (q − 1)).

The ray corresponding to the root yi − yi+1 is obtained by exponentiating
matrices with entry t ≥ 0 in position (i + 1, i) of A11 and entry −t in position
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(i, i + 1) of A33 – in this case exponentiation amount to adding the identity
matrix. To define a ray corresponding to the root yq choose a nonzero rational
row vector v of length n− 2q and place it in the last row of A12 and then place
the column vector −F0v

t in the last column of A23. The ray is obtained by
exponentiating positive multiples of this matrix – this amounts to adding the
identity matrix and the entry − 1

2vF0v
t in position (q, q) of A13.

If the form Q0 is definite, then M � = SO(Q0)� is a compact group and
CM will be a point. If Q0 is not definite, then CM can be identified with the
symmetric space of SO(Q0)� .
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