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1. Introduction

This is a shorter version of [BBFS], and its goal is to present the main
ideas and techniques from that paper. Among the results from [BBFS], we
only include the fact that the projection complexes are quasi-trees, and the
perturbation of the projection distances.

2. Axioms

Let Y be a set and for each Y ∈ Y assume that we have a function

dY : Y2\{(Y, Y )} → [0,∞]

such that the following strong projection axioms are satisfied for some θ ≥ 0:

(SP 1) dY (X,Z) = dY (Z,X);
(SP 2) dY (X,Z) + dY (Z,W ) ≥ dY (X,W );
(SP 3) if dY (X,Z) > θ then dZ(X,W ) = dZ(Y,W ) for all W ∈ Y\{Z};
(SP 4) dY (X,X) ≤ θ;
(SP 5) #{Y |dY (X,Z) > θ} is finite for all X,Z ∈ Y.

The constant θ is the projection constant. Note that we allow dY (X,Z) =∞.
The most important axiom is arguably (SP 3), which is a version of the

Behrstock inequality [Beh06]. As in [BBF15], we will use it to order certain
subsets of Y, the idea being that if dY (X,Z) is large, then Y is between X
and Z. We note that (SP 3) is in fact a more precise version of the Behrstock
inequality because the conclusion is an actual equality, not an approximate
one. This allows us to know the exact value of certain dY , and it is the key
to our much simpler proofs, compared to [BBF15].

Lemma 2.1. (SP 3) and (SP 4) imply

min{dY (X,Z), dZ(X,Y )} ≤ θ

Proof. If dY (X,Z) > θ then letting W = Y in (SP 3) we have dZ(X,Y ) =
dZ(Y, Y ) ≤ θ by (SP 4). �

Define YK(X,Z) to be the collection of Y ∈ Y\{X,Z} such that dY (X,Z) >
K.

Lemma 2.2 and Proposition 2.3 below say that, for large enough K,
YK(X,Z) can be totally ordered using the idea, as mentioned above, that
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if dY (X,Z) is large then Y is between X and Z. The order has several
equivalent characterizations, which is good for applications, and they are
listed in Lemma 2.2:

Lemma 2.2. For Y0, Y1 ∈ Y2θ(X,Z) the following conditions are equiva-
lent:

(1) dY0(X,Y1) > θ;
(2) dY1(Y0,W ) = dY1(X,W ) for all W 6= Y1;
(3) dY1(X,Y0) ≤ θ;
(4) dY1(Y0, Z) > θ;
(5) dY0(W,Y1) = dY0(W,Z) for all W 6= Y0;
(6) dY0(Y1, Z) ≤ θ.

Proof. By Lemma 2.1, (1) ⇒ (3) and (4) ⇒ (6). By (SP 2), (3) ⇒ (4) and
(6) ⇒ (1). By (SP 3), (1) ⇒ (2) and (4) ⇒ (5). Since Y1 ∈ Y2θ(X,Z) by
letting W = Z we have (2)⇒ (4) and similarly (5)⇒ (1). �

Given Y0, Y1 ∈ Y2θ(X,Z) we define Y0 < Y1 if any one of (1)− (6) hold.

Proposition 2.3. The relation < defines a total order on Y2θ(X,Z) that ex-
tends to a total order on Y2θ(X,Z)∪{X,Z} with least element X and great-
est element Z. Furthermore if Y0 < Y1 < Y2 then dY1(Y0, Y2) = dY1(X,Z).

Notice that with a coarse version of (SP 3) there would be no hope to
obtain the last conclusion as stated.

Proof. By swapping Y0 and Y1 we see that Y0 < Y1 if and only if Y1 6< Y0.
So any two elements of Y2θ(X,Z) can be compared.

Now we check transitivity of the order. If Y0 < Y1 and Y1 < Y2 we apply
(2) for Y0 < Y1 with W = Y2 and then again to Y1 < Y2 with W = Z to see
that dY1(Y0, Y2) = dY1(X,Y2) = dY1(X,Z) > 2θ. Applying (SP 3) and then
(5) we have dY2(Y0, Z) = dY2(Y1, Z) = dY2(X,Z) > 2θ. Therefore Y0 < Y2
and the total order is well defined on Y2θ(X,Z). We can extend it to a total
order on Y2θ(X,Z) ∪ {X,Z} by declaring X to be the least element and Z
the greatest element.

Observe that we have also shown that dY1(Y0, Y2) = dY1(X,Z) if Y0 <
Y1 < Y2. �

Lemma 2.4. Let K ≥ 2θ. If Y0, Y1 ∈ YK(X,Z)∪{X,Z} and dY (Y0, Y1) >
K then Y ∈ YK(X,Z).

Proof. We assume Yi /∈ {X,Z}, since in those cases the proof is similar and
easier.

We can assume that Y0 < Y1. By (SP 3) dY0(X,Y ) = dY0(X,Y1), and the
latter is > θ by Lemma 2.2-(1). From the equivalence of (1) and (2) we get
K < dY (Y0, Y1) = dY (X,Y1).

Using (SP3) again we get dY1(Y, Z) = dY1(X,Z), and the latter is > K by
assumption. Hence, again by (SP3), dY (X,Z) = dY (X,Y1) = dY (Y0, Y1) >
K, as required. �
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3. The projection complex

Fix K ≥ 2θ and define the graph PK(Y) with vertex set Y and an edge
between any two vertices X and Z with YK(X,Z) = ∅. We denote the
distance in PK(Y) simply by d, even though it depends on K.

We first note that PK(Y) is connected.

Lemma 3.1. If K ≥ 2θ and X,Z ∈ Y then YK(X,Z) ∪ {X,Z} = {X <
X1 < · · · < Xk < Z} is a path in PK(Y).

Proof. By Lemma 2.4, if Y is the immediate predecessor of Y ′ in the total
order on YK(X,Z) ∪ {X,Z} then YK(Y, Y ′) = ∅ and therefore d(Y, Y ′) =
1. �

The following lemma says that, when moving outside the ball of radius 2
around a vertex Z of PK(Y), the projection to Z varies slowly, where slowly
is independent of K.

Lemma 3.2. If K ≥ 2θ then the following holds. Let X0, X1, Z ∈ Y with
d(X0, X1) = 1 and d(X0, Z) ≥ 2. Then dZ(X0, X1) ≤ θ.

Proof. Since d(X0, Z) ≥ 2 there exists a Y ∈ YK(X0, Z) and therefore by
(SP 3) dZ(X0, X1) = dZ(Y,X1). If dZ(Y,X1) = dZ(X0, X1) > θ then by (SP
3) dY (X0, X1) = dY (X0, Z) > K, a contradiction with YK(X0, X1) = ∅. �

The following lemma and its corollary are the key to proving that PK(Y)
is a quasi-tree. They say that, when moving outside the ball of radius 3
around a vertex Z of PK(Y), the projection to Z basically does not change.

Lemma 3.3. If K ≥ 3θ then the following holds. Let X0, . . . , Xk be a
path in PK(Y) and Z ∈ Y with d(Xi, Z) ≥ 3. Then greatest elements of
Y3θ(Xi, Z) all agree.

Proof. We can assume k = 1. Let Y0 and Y1 be the corresponding greatest
elements and assume they are distinct. By Corollary 2.4, Y3θ(Yi, Z) = ∅
so d(Yi, Z) = 1 and d(Xi, Yi) ≥ 2. Applying Lemma 3.2 we see that
dYi(X0, X1) ≤ θ and therefore by (SP 2), dYi(X1−i, Z) > 2θ. In particu-
lar, both Y0 and Y1 are in Y2θ(Xi, Z) for i = 0, 1. We can assume that
Y0 < Y1 in Y2θ(X0, Z). By Lemma 2.2(6) this means that dY0(Y1, Z) ≤ θ
and so we also have Y0 < Y1 in Y2θ(X1, Z). In particular, dY1(X0, Z) =
dY1(Y0, Z) = dY1(X1, Z) > 3θ, contradicting the assumption that Y0 is the
greatest element of Y3θ(X0, Z). �

Corollary 3.4. If K ≥ 3θ then the following holds. Let X0, . . . , Xk be a
path in PK(Y) and Z ∈ Y with d(Xi, Z) ≥ 3. Then dZ(Xi, Xj) ≤ θ for all
i, j.

Proof. By Lemma 3.3, there exists a Y ∈ Y that is the greatest element of
all of the Y3θ(Xi, Z). We now have dZ(Xi, Xj) = dZ(Xi, Y ) ≤ θ by (SP 3)
and Lemma 2.1. �
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We can now use Manning’s bottleneck condition [Man05] to show that
PK(Y) is a quasi-tree. We will use a variant of Manning’s condition that is
described in [BBF15]: Let X be a connected simplicial graph with its usual

combinatorial metric and D ≥ 0. Assume that for all vertices v0, v1 ∈ X(0)

there is a path p such that the D-Hausdorff neighborhood of any path from
v0 to v1 contains p. Then X is a quasi-tree.

Theorem 3.5. For K ≥ 3θ, PK(Y) is a quasi-tree.

Proof. By Lemma 3.1 YK(X,Z) ∪ {X,Z} = {X < X1 < · · · < Xk < Z} is
a path in PK(Y). Let X = Y0, Y1, . . . , Yn = Z be an arbitrary path from X
to Z. Since dXi(X,Z) > K ≥ 3θ by Corollary 3.4 there must be a Yj such
that d(Yj , Xi) ≤ 2. Therefore PK(Y) satisfies the bottleneck condition and
is a quasi-tree. �

4. Forcing sequences

Let Y = {(Y, ρY )} be a collection of metric spaces and for each distinct
Y,Z ∈ Y assume that we have sets πY (Z) ⊆ Y and πZ(Y ) ⊆ Z. The πY
are projection maps. Assume that for some θ ≥ 0 we have for any X 6= Y ,

(P0’) diam(πX(Y )) ≤ θ.
Denote by dπY (X,Z) the ρY -diameter of πY (X) ∪ πY (Z).
Consider the following axioms from [BBF15]. For each pairwise distinct

X,Y, Z ∈ Y, for some θ ≥ 0:

(P0) dY (X,X) ≤ θ.
(P1) if dY (X,Z) > θ then dX(Y, Z) ≤ θ.
(P2) {W 6= X,Z : dW (X,Z) > θ} is finite.
(P3) dY (X,Z) = dY (Z,X)
(P4) dY (X,Z) + dY (Z,W ) ≥ dY (X,W )

The dπY from projection maps πY satisfy (P3) and (P4). (P0’) is equivalent
to (P0). Families of metric spaces with projection maps satisfying (P1) and
(P2) as well occur naturally in many contexts. See the introduction to
[BBF15] for some examples.

The goal of this section is to prove the following theorem.

Theorem 4.1. Assume that Y = {(Y, ρY )} is a collection of metric spaces
with {dπY } satisfying (P0) - (P4) with constant θ.

Then there are {dY } satisfying (SP 1) -(SP 5) for the constant 11θ such
that

dπY − 2θ ≤ dY ≤ dπY + 2θ.

Mimicking the earlier section we let Yπ
K(X,Z) be the collection of Y ∈

Y\{X,Z} such that dπY (X,Z) > K.

4.1. Modifying the distance dπ. We assume dπY satisfy (P0) - (P4).
The first step is to modify dπ to achieve monotonicity (see Lemma 4.4).

Recall from [BBF15] that for X 6= Z we define H(X,Z) as the set of pairs
(X ′, Z ′) ∈ Y ×Y such that one of the following holds.
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• dπX(X ′, Z ′), dπZ(X ′, Z ′) > 2θ,
• X = X ′ and dπZ(X,Z ′) > 2θ,
• Z = Z ′ and dπX(X ′, Z) > 2θ,
• X = X ′ and Z = Z ′.

Lemma 4.2. If dπY (X,Z) > 2θ and (X ′, Z ′) ∈ H(X,Z) then dπY (X,X ′), dπY (Z,Z ′) ≤
θ. In particular, |dπY (X,Z)− dπY (X ′, Z ′)| ≤ 2θ.

Proof. By the triangle inequality (P4)

dπX(X ′, Y ) + dπX(Y, Z ′) ≥ dX(X ′, Z ′) > 2θ

and therefore max{dπX(X ′, Y ), dπX(Y,Z ′)} > θ. After possibly permuting
X ′ and Z ′ we can assume dπX(X ′, Y ) > θ and therefore by (P1) we have
dπY (X,X ′) ≤ θ. By another application of the triangle inequality

dπY (X,X ′) + dπY (X ′, Z) ≥ dπY (X,Z) > 2θ

and since dπY (X,X ′) ≤ θ this implies that dπY (X ′, Z) > θ. Therefore (P1)
implies that dπZ(X ′, Y ) ≤ θ. Now, replacing X with Z in the above applica-
tion of the triangle inequality (P4) we have max{dπZ(X ′, Y ), dπZ(Y,Z ′)} > θ
and therefore dπZ(Y, Z ′) > θ since we have just seen that the other term is
≤ θ. Another application of (P1) gives that dπY (Z,Z ′) ≤ θ.

The final inequality follows from the triangle inequality (P4). �

Corollary 4.3. If dπY (X,Z) > 4θ then H(X,Z) ⊆ H(X,Y ).

Proof. Suppose (X ′, Z ′) ∈ H(X,Z). We will again assume the first bullet
holds and leave the other cases to the reader. To show (X ′, Z ′) ∈ H(X,Y ) it
suffices to argue that dπY (X ′, Z ′) > 2θ, and this follows from dπY (X,Z) > 4θ
and the lemma. �

We now define the modified distance

d̃Y (X,Z) = sup
(X′,Z′)∈H(X,Z)

dπY (X,Z)

if dπY (X,Z) > 2θ, and d̃Y (X,Z) = 2θ otherwise. Thus

dπY (X,Z) ≤ d̃Y (X,Z) ≤ dπY (X,Z) + 2θ

The triangle inequality for d̃ holds only up to an error of 2θ. What we
gain with this modification is the following monotonicity property.

Lemma 4.4. If d̃Y (X,Z) > 5θ and d̃W (Y, Z) > 7θ then d̃Y (X,W ) ≥
d̃Y (X,Z).

Proof. We have dπW (Y, Z) > 5θ so dπY (W,Z) ≤ θ. Likewise, dπY (X,Z) > 3θ
so dπY (X,W ) ≥ dπY (X,Z) − dπY (W,Z) > 2θ and so dπW (X,Y ) ≤ θ. Thus
dπW (X,Z) ≥ dπW (Y,Z) − dπW (X,Y ) > 4θ. Corollary 4.3 gives H(X,W ) ⊇
H(X,Z). We saw above that dπY (X,W ) > 2θ and the statement follows. �
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4.2. The second (and final) modification of dπ. To prove the theorem
we need to modify the dπY so that they satisfy the projection axioms (SP
1)-(SP 5). The key notion to do so is that of a forcing sequence, which uses

the first modification d̃.
Also, if dπY are obtained from projections πY , this modification is realized

by modifications of πY .

Definition 4.5. A K-forcing sequence is a sequence Y = Y0, . . . , Yn = Z of
distinct elements of Y so that d̃Yi(Yi−1, Yi+1) > K (for all i = 1, . . . , n− 1).

Notice that if X 6= Z then X = Y0, Y1 = Z is a (usually non-maximal)
forcing sequence.

Lemma 4.6. Let Y0, Y1, · · · , Yn be a 4θ-forcing sequence. Then

(i) dπYn(Y0, Yn−1) ≤ θ,
(ii) |dπYj (Yi, Yk)− d

π
Yj

(Yj−1, Yj+1)| ≤ 2θ for all i < j < k.

Proof. We prove (i) by induction on n, starting with the obvious case n = 1.
Suppose that it is true for a given n and let us prove it for n + 1. Observe
that dπYi(Yi−1, Yi+1) > 2θ.

Since dπYn(Y0, Yn−1) ≤ θ, by the triangle inequality we have dπYn(Y0, Yn+1) >
θ, so that dπYn+1

(Y0, Yn) ≤ θ, as required.

To prove (ii) note that both Yi, Yi+1, . . . , Yj and Yk, Yk−1, . . . , Yj are 4θ-
forcing sequences. We apply (i) to each of them and (ii) then follows from
the triangle inequality. �

The lemma below tells us when we can insert elements in forcing se-
quences, and it will be used to show that if d̃W (X,Z) is large, then any
maximal forcing sequence from X to Z goes through W . Its proof uses the
monotonicity of d̃.

Lemma 4.7. Let Y0, . . . , Yn be a K-forcing sequence with K ≥ 7θ and
W ∈ Y such that d̃W (Yi, Yi+1) ≥ K. Then Y0, . . . , Yi,W, Yi+1, . . . , Yn is a
K-forcing sequence.

Proof. We need to argue that d̃Yi(Yi−1,W ), d̃Yi+1(W,Yi+2) > K. Both follow

from Lemma 4.4, e.g. d̃Yi(Yi−1,W ) ≥ d̃Yi(Yi−1, Yi+1) > K. �

Lemma 4.8. For K ≥ 7θ, any K-forcing sequence from X to Z can be
refined into a maximal one.

Proof. The obvious process of refinement, using Lemma 4.7, must terminate
by Lemma 4.6(ii) and (P2). �

Lemma 4.9. Let Y0, . . . , Yn be a maximal K-forcing sequence, K ≥ 7θ,
and let W ∈ Y with dπW (Y0, Yn) > K + 2θ. Then W = Yi for some i ∈
{1, . . . , n− 1}.

Proof. We assume that W is distinct from all the Yi and derive a contradic-
tion.
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By Lemma 4.6, dπYi(Y0, Yn) > 2θ. We first observe that if dπW (Yi, Yn) > θ
then dπYi(Y0,W ) ≥ dπYi(Y0, Yn)−dπYi(W,Yn) > θ since by (P1) dπYi(W,Yn) ≤ θ.
Again applying (P1) we have dπW (Y0, Yi) ≤ θ.

Let i be the smallest index from 1, . . . , n − 1 such that dπW (Yi, Yn) ≤ θ,
assuming such an i exists. Then dπW (Yi−1, Yi) ≥ dπW (Y0, Yn)−dπW (Y0, Yi−1)−
dπW (Yi, Yn) > K since dπW (Y0, Yi−1) ≤ θ by the previous paragraph and
dπW (Yi, Yn) ≤ θ by assumption. (If i = 1 then there is no middle term on the
right hand side of the inequality.) If no such i exists we let i = n and see
that dπW (Yi−1, Yi) = dπW (Yn−1, Yn) ≥ dπW (Y0, Yn)− dπW (Y0, Yn−1) > K + θ.

In all cases we have found an i such that d̃W (Yi−1, Yi) ≥ dπW (Yi−1, Yi) > K
and therefore Y0, . . . , Yi−1,W, Yi, . . . , Yn is a K-forcing sequence by Lemma
4.7, contradicting our maximality assumption. �

Lemma 4.10. Let Y0, . . . , Yn−1, Yn be a maximal K-forcing sequence with
K ≥ 7θ and suppose that X ∈ Y satisfies dπY0(X,Yn) > K + θ. Then there
exists a maximal K-forcing sequence from X to Yn with penultimate element
Yn−1.

Proof. By Lemma 4.6, dπY0(Y1, Yn) ≤ θ so

d̃Y0(X,Y1) ≥ dπY0(X,Y1) ≥ dπY0(X,Yn)− dπY0(Y1, Yn) > K.

Therefore X,Y0, . . . , Yn is a K-forcing sequence. Any maximal refinement
will have the required property for if in the refinement an element appeared
between Yn−1 and Yn then the original sequence would not be maximal. �

Definition 4.11 (Penultimate elements). For distinct elements X,Z ∈ Y
define a subset PZ(X) = {W} ⊂ Y, where W are all penultimate elements
of maximal 7θ-forcing sequences from X to Z. Note that PZ(X) is not
empty.

When Y 6= X,Z, we define

dY (X,Z) = sup dπY (W1,W2),

where W1 ∈ PY (X),W2 ∈ PY (Z).

Lemma 4.12. We have

dπY − 2θ ≤ dY ≤ dπY + 2θ.

Proof. By Lemma 4.6 if W is the penultimate element of a 7θ-forcing se-
quence from X to Z then dπZ(X,W ) ≤ θ. The inequalities follow from
triangle inequality of dπY . The second claim is clear. �

Lemma 4.13. If dY (X,Z) > 11θ then PZ(X) = PZ(Y ).

Proof. By Lemma 4.12 if dY (X,Z) > 11θ then dπY (X,Z) > 9θ. By Lemma
4.9 if X = Y0, . . . , Yn = Z is a maximal 7θ-forcing sequence then Y = Yi for
some i ∈ {1, . . . , n − 1}. Then Yi, . . . , Yn is a maximal 7θ-forcing sequence
from Y to Z and it follows that PZ(Y ) ⊇ PZ(X).
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By Lemma 4.10 any maximal 7θ-forcing sequence from Y to Z can be
extended to a maximal 7θ-forcing sequence from X to Z with the same
penultimate element so PZ(X) ⊇ PZ(Y ).

We showed PZ(X) = PZ(Y ). �

Remark 4.14. Set π′Y (X) = ∪πY (W ), where W ∈ PY (X). One can say
we perturbed the projection from πY (X) to π′Y (X), by at most θ in the
Hausdorff distance, which induces the new distance dY . In Lemma 4.13, we
have π′Z(X) = π′Z(Y ).

Proposition 4.15. If dπY satisfy (P0)-(P4), then dY satisfy the projection
axioms (SP 1)-(SP 5) with projection constant 11θ.

Proof. (SP 1) and (SP 2) are trivial. (SP 3) is exactly Lemma 4.13 and (SP
5) follows from (P2) and Lemma 4.12. The other axioms are clear. �

Lemma 4.12 and Proposition 4.15 complete the proof of Theorem 4.1.
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