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1 Knots

Informally, a knot is a knotted loop of string. You can create one easily
enough in one of the following ways:

• Take an extension cord, tie a knot in it, and then plug one end into the
other.

• Let your cat play with a ball of yarn for a while. Then find the two ends
(good luck!) and tie them together. This is usually a very complicated
knot.

• Draw a diagram such as those pictured below. Such a diagram is a
called a knot diagram or a knot projection.

Trefoil and the figure 8 knot
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The above two knots are the world’s simplest knots. At the end of the
handout you can see many more pictures of knots (from Robert Scharein’s
web site). The same picture contains many links as well. A link consists of
several loops of string. Some links are so famous that they have names. For
example, 22

1 is the Hopf link, 52
1 is the Whitehead link, and 63

2 are the Bor-
romean rings. They have the feature that individual strings (or components
in mathematical parlance) are untangled (or unknotted) but you can’t pull
the strings apart without cutting.

A bit of terminology: A crossing is a place where the knot crosses itself.
The first number in knot’s “name” is the number of crossings. Can you figure
out the meaning of the other number(s)?

2 Reidemeister moves

There are many knot diagrams representing the same knot. For example,
both diagrams below represent the unknot.

Two projections of the unknot

In fact, convince yourself that any of the following moves on a knot dia-
gram will not change the knot it represents.
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Type I Reidemeister move

Type II Reidemeister move

Type III Reidemeister move



1. Start with the knot diagram for the trefoil and change one of the crossings
(i.e. make the upper strand go under the other one). Show that this new knot
is an unknot by finding a sequence of Reidemeister moves that transforms it
to a round circle.

2. Do the same with the figure 8 knot diagram.

3. Start with a round circle and then perform 4 Reidemeister moves in order
to make the knot diagram more complicated. Then hand the picture to a
friend to untangle it by finding simplifying Reidemeister moves.

There is a famous theorem proved by the German mathematician Kurt
Reidemeister in 1920’s that says:

If two knot diagrams represent the same knot (or a link) then one can be
transformed to the other by a sequence of Reidemeister moves.

The catch here is that we don’t know in advance how many moves will
be needed.

4. The mirror image of a knot is obtained by reversing all crossings. Show
that the mirror image of the figure 8 knot is the same knot as the figure 8
knot. It takes 9 Reidemeister moves to see this. You may want to experiment
with a piece of string first.

It turns out that the mirror image of the trefoil is different from the
trefoil.

Knot theory tries to answer questions such as:

How to tell knots apart? How can we be sure that say the trefoil is really
knotted and that there is no sequence of Reidemeister moves that transforms
it to the unknot? Are the trefoil and the figure 8 knot really different? Can
you pull Borromean rings apart without breaking them?

3 Tricolorability

A strand in a knot diagram is a continuous piece that goes from one under-
crossing to the next. The number of strands is the same as the number of
crossings.

A knot (or a link) is tricolorable if each strand can be colored in one of
three colors with the following rules:
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• At least two colors are used.

• At each crossing, either all three colors are present or only one color is
present.

Trefoil and 74 are tricolorable

5. Decide which of the following are tricolorable: unknot, figure 8 knot,
2-component unlink, Hopf link, Whitehead link, 3-component unlink, Bor-
romean rings. Which knots with 5, 6, 7 crossings?

6. Show that if you start with a tricolorable knot diagram and you perform
a Reidemeister move, the new knot diagram is also tricolorable.

Conclude the following:

Some knots are tricolorable and some are not, but to find out it is enough
to check a single knot diagram for this knot.

7. Show that the trefoil is really a knot. Also show that the figure 8 knot
is different from the trefoil, that the Hopf and Whitehead links cannot be
pulled apart, and that Borromean rings cannot be pulled apart.

8. Show that “True Lover’s Knot” is tricolorable. Can you use tricolorability
to tell this knot apart from “False Lover’s Knot” (reverse the two middle
crossings).
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True lover’s knot
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4 n-colorability

Let n = 3, 4, · · ·. A knot (or a link) is n-colorable if each strand can be
labeled with a number 0, 1, 2, · · · , n − 1 with the following rules:

• At least two different numbers are used.

• At each crossing, if a is the label of the strand that is crossing over,
and b, c are the labels of the other two strands, then

2a ≡ b + c mod n

9. Convince yourself that the case n = 3 amounts to tricolorability.

10. Imitate the proof that tricolorability is invariant under Reidemeister
moves and show that n-colorability is also invariant under Reidermeister
moves.

a

b

c

a

b

c

d

In the case of the trefoil, with labels as in the picture, the equations
corresponding to the 3 crossings are 2a = b+c, 2b = a+c, 2c = a+b. Notice
that one equation is redundant since the sum reads 2a+2b+2c = 2a+2b+2c
(one equations is always redundant). Solving for c in the second equation
and substituting in the first, we get 3a = 3b (mod n of course). If n is not
divisible by 3 this implies a ≡ b and similarly a ≡ c, so that the trefoil is
not n-colorable. If n is divisible by 3, say n = 3k, then 3a ≡ 3b always



holds when a, b are divisible by k and we are down to just one equation,
say 2a = b + c, and this equation has solutions mod n with not all a, b, c

equal, e.g. a = k, b = 0, c = 2k. We conclude that the trefoil is n-colorable
precisely when n ≡ 0 mod 3.

11. Show that the figure eight knot is n-colorable precisely when n is divisible
by 5. Deduce that figure eight knot is a nontrivial knot.

12. Examine n-colorability for some of the knots in the list at the end of
the handout. For example, show that 51 is n-colorable when 5|n and 52 is
n-colorable when 7|n. Is there a knot on the list which is not n-colorable for
any n ≥ 3, other than the unknot?

13. Prove that if a knot is n-colorable then its composition (connected sum)
with any other knot is also n-colorable. Deduce that such knots do not have
“inverses”, i.e. the composition with any other knot is not an unknot.
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5 The linking number

Now let’s think about 2-component links. We will color one component red
and the other blue. We will also choose a sense of traversing each string (an
orientation in the parlance of knot theory).

Hopf and Whitehead links

The idea is that we want to measure how many times one component
“wraps around” the other. This is called the linking number and can be
computed as follows. Look for those crossings where the red string is above
the blue string. To each such crossing assign either a +1 or a −1 according to
the right-hand rule (+1 if you can place the thumb of your right hand along
the red string so that the other fingers point along the blue string; otherwise
−1). The linking number is then equal to the sum of the numbers assigned
to such crossings.

+1 −1

Right-handed rule

14. Find a sequence of Reidemeister moves showing that the above picture
of the Whitehead link and 52

1 represent the same link.

15. Compute the linking number for the unlink of 2 components, for the Hopf
link, and for the Whitehead link.
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16. What happens to the linking number if we reverse the orientation of one
of the components?

17. What happens to the linking number if we perform a Reidemeister move?

18. Conclude that the Whitehead and Hopf links are really different.

19. What happens to the linking number if we switch the colors? Hint: Look
at it from behind.

20. Examine the list of 2-component links at the end of the handout. Using
the linking number and tricolorability, how many can you tell apart? For
example 82

1 and 62
3 have different linking numbers.

21. Use linking numbers to show that 73
1 and 83

2 are different links. Find
other pairs of 3-component links that you can tell apart.
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6 The Jones’ polynomial

In the early 90’s a mathematician at UC Berkeley named Vaughn Jones
(a native of New Zealand) discovered a new way to tell knots apart. For
this work he received the Fields Medal, the highest award in mathematics
(equivalent to the Nobel Prize). He assigns a polynomial to every knot. If
the polynomials are different, the knots are also different. It is possible for
different knots to have the same Jones’ polynomial, but it happens rarely.
This polynomial is a remarkably good method of distinguishing knots. We
will go through the construction of this polynomial that is due to Louis
Kauffman.

The first step is to assign a bracket < K > to every knot (or link) diagram
K. This is going to be a polynomial, initially in variables A,B,C, and it will
satisfy the following rules.

<     >=1

<     >=A<     >+B<      >

<     >=A<     >+B<      >

<L       >=C<L>

Rule 1:

Rule 2:

Rule 3:
Bracket rules

Now we want to make sure that things don’t change when we perform a
Reidemeister move.

22. Using Rules 1-3 express <     > in terms of <    > and <     >. Deduce: To
ensure that the bracket does not change under the Reidemeister move of type
II we need the following relations between A,B,C:

A2 + ABC + B2 = 0, BA = 1

We will now put B = A−1 and C = −A2−A−2 and our Rules 1-3 become:
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<     >=1Rule 1:

Rule 2:

Rule 3:

<     >=A<     >+A  <      >

<     >=A<     >+A  <      >

−1

−1

2<L       >=(−A  −A  )<L>−2

Bracket rules

23. Check that the bracket does not change after a Type III Reidemeister
move.

24. Compute the bracket of the unlink with 2 components and with 3 com-
ponents.

25. Compute the bracket of the Hopf link. You should get −A4 − A−4.

There is still the Type I Reidemeister move to worry about.

26. Express
<      >

in terms of
< >

You should get

<      >=−A  <    >3

OK, so we have a problem! The bracket is not invariant under the Type
I Reidemeister move. There are several possible remedies.

• We could find a number A so that −A3 = 1. This would give us a
numeric invariant of knots. For example A = −1 would work. There
are more interesting choices for A; however, you would have to know
about complex numbers.

• Another numeric invariant would be the span of the bracket polynomial,
i.e. the difference between the highest and the lowest powers of A.

• The most interesting resolution of this problem involves the notion of
the writhe of a knot projection.
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7 Writhe

This is very similar to the concept of the linking number except that we
are “color-blind”. Orient all strings in the diagram and count with signs
according to the right-hand rule.

+1 −1
The writhe

27. What is the writhe of the standard picture of the trefoil? What is the
writhe of the unknot?

28. How does the writhe change if we reverse all orientations?

29. How does the writhe change under the Reidemeister moves?

30. Show that no matter how hard you try you will not be able to transform

into the circle (with no crossings) without using at least one
Reidemeister move of Type I.

31. Show that
X(L) = (−A3)−w(L) < L >

is unchanged under all Reidemeister moves. Here L is a knot projection and
w(L) is the writhe of L.

32. Compute X(L) for the trefoil.

33. Compute X(L) for the figure 8 knot. Deduce that the figure 8 knot is
really a knot!

34. What happens to X(L) if we reverse all crossings?

Deduce that the trefoil is not the same as its mirror image. We say that
trefoil is chiral. Recall that the figure 8 knot is the same as its mirror image.
It is achiral.
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The polynomial X(L) is essentially the same as the original Jones’ poly-

nomial (replacing A by t−
1

4 would give the original version). You have seen
that it is hard work to compute it, particularly if there are many crossings.
But computers can handle this computation without much trouble. There is
a program called knotscape (mathematicians’ sense of humor) that performs
this task.

8 Resources

• Colin C. Adams: The knot book, W.H. Freeman and Company, New
York, 1999

Most topics we discussed and many more are in this very accessible
book. Pick up a copy and have fun!

• http://knotplot.com

Robert Scharein’s excellent web site, packed with cool pictures, movies,
and further links (no pun intended!). He is the author of knotplot,
software that produces such pictures. You can download the program
for free. The pictures on the next page are from this website.

• http://www.math.utk.edu/∼morwen/knotscape.html

Morwen Thistlethwaite’s program that computes various knot polyno-
mials. You draw a knot with the mouse and it computes the polyno-
mials.

• http://www.math.uic.edu/∼kauffman/Tots/Knots.htm

Louis Kauffman’s tutorial on knots and “bracketology”. Try to read it.
At least the first half should be accessible.
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