Take Home Final

- 1. Let X be the space obtained from the 3-sphere S^3 by identifying antipodal points on the equator S^2 . Compute $\pi_1(X)$.
- 2. Let $p: X \to Y$ be a covering map between path-connected and locally path-connected spaces. Suppose p is homotopic to a constant map. Prove that X is contractible.
- 3. Let $p: \tilde{X} \to X$ be a *d*-sheeted covering map for some $1 \leq d < \infty$.
 - (a) Show that for every singular simplex $\sigma : \Delta^n \to X$ there are exactly d lifts $\tilde{\sigma}_i : \Delta^n \to \tilde{X}$.
 - (b) Show that the homomorphism $\tau_n : C_n(X) \to C_n(\tilde{X})$ defined by

$$\tau_n(\sigma) = \tilde{\sigma}_1 + \dots + \tilde{\sigma}_d$$

is a chain morphism $C_n(X) \to C_n(\tilde{X})$.

(c) Show that the induced homomorphism

$$\tau_*: H_n(X) \to H_n(X)$$

satisfies

$$p_*\tau_*(x) = dx$$

for every $x \in H_n(X)$. (τ_* is called *transfer*, a generic name for homomorphisms that go *the wrong way*).

(d) Assuming $H_n(X), H_n(X)$ are finitely generated, prove that

 $rank(H_n(\tilde{X})) \ge rank(H_n(X))$

. Thus passing to a finite-sheeted covering space can only increase homology.

- 4. Let X be the space obtained from two copies of $\mathbb{R}P^2$ by gluing them along standard copies of $\mathbb{R}P^1$.
 - (a) State Seifert-van Kampen's theorem and use it to compute $\pi_1(X)$.
 - (b) Using any method you like (Δ -homology, cellular homology, Mayer-Vietoris,...) compute homology and cohomology groups of X with both \mathbb{Z} and $\mathbb{Z}/2\mathbb{Z}$ coefficients.
- 5. Prove that every map $S^4 \to S^2 \times S^2$ has degree 0, i.e. the induced homomorphism in H_4 is 0.
- 6. Prove that no closed orientable 3-manifold is homotopy equivalent to $S_g \vee S^3$, where S_g is the orientable surface of genus $g \ge 0$.