Cohomology

1. Let $p: \tilde{X} \rightarrow X$ be a double cover. Show that there is a long exact sequence (the Gysin sequence) of the form
$\cdots \rightarrow H^{k}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{k}(\tilde{X} ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{k}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{k+1}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow \cdots$
From this deduce that $H^{i}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2 \mathbb{Z}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ for $i=0,1, \cdots, n$ and is 0 otherwise.
Hint: $0 \rightarrow C_{n}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow C_{n}(\tilde{X} ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow C_{n}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow 0$.
2. Let X be a space and suppose that $H_{0}(X ; \mathbb{Z}) \cong \mathbb{Z}, H_{1}(X ; \mathbb{Z}) \cong H_{2}(X ; \mathbb{Z}) \cong$ $\mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}, H_{3}(X ; \mathbb{Z}) \cong \mathbb{Z}$ and $H_{i}(X ; \mathbb{Z})=0$ for $i>3$. Compute $H_{i}(X ; \mathbb{Z} / 2 \mathbb{Z}), H^{i}(X ; \mathbb{Z}), H^{i}(X ; \mathbb{Z} / 2 \mathbb{Z})$ for all i.
3. Compute the ring structure on $H^{*}(X ; \mathbb{Z} / n \mathbb{Z})$ where X is the Moore space $X=S^{1} \cup_{f} e^{2}$ with the attaching map f of degree n. Hint: First compute cohomology groups $H^{i}(X ; \mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} / n \mathbb{Z}$ for $i=1,2$ using the cellular chain complex. Then for the cup product use a Δ-complex structure on X and the definition of the cup product. Instead of doing a lot of linear algebra find a 1-cycle and a 1-cocycle whose Kronecker pairing over $\mathbb{Z} / n \mathbb{Z}$ is $1 \in \mathbb{Z} / n \mathbb{Z}$. This gives a generator in $H^{1}(X ; \mathbb{Z} / n \mathbb{Z})$. Note that the case $n=2$ recovers $H^{*}\left(\mathbb{R} P^{2} ; \mathbb{Z} / 2 \mathbb{Z}\right)$.
4. Let X, Y be connected Δ-complexes and consider $Z=X \vee Y$, the wedge sum along vertices in X and Y. Show, by using functoriality properties and the definition of the cup product (just the easy part that if ϕ, ψ are cocycles that don't evaluate 0 on the faces of the same simplex then $\phi \cup \psi=0)$, that the cohomology ring $H^{*}(Z ; \mathbb{Z})$ is obtained by taking the direct sum $H^{*}(X ; \mathbb{Z}) \oplus H^{*}(Y ; \mathbb{Z})$ of the two rings (with the product of elements in distinct coordinates 0) and then identifying the units $1_{X}=$ 1_{Y}. Hint: Consider inclusions $X, Y \hookrightarrow Z$ and retractions $Z \rightarrow X, Y$.
5. Consider the map $S_{2} \rightarrow T_{1} \vee T_{2}$ from the genus 2 surface to the wedge of two tori obtained by collapsing a separating curve. Use your knowledge of the ring structure on the cohomology of the torus, Exercise \#4, and cellular chain complexes to deduce the cohomology ring of S_{2}. Cf. Exercise \#1 in Hatcher Section 3.2.

In addition, do $\# 6,7,10,11,18$ from Hatcher Section 3.2.

