Seifert-van Kampen

1. Let X, Y be spaces and $f: X \rightarrow Y$ a map. The mapping cone of f is the space C_{f} obtained from the mapping cylinder $X \times I \sqcup Y /(x, 1) \sim f(x)$ by collapsing $X \times\{0\}$ to a point.
(a) Now assume X, Y are path-connected. Express $\pi_{1}\left(C_{f}\right)$ as a pushout involving $\pi_{1}(X), \pi_{1}(Y)$ and $f_{*}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$.
(b) Let $X=Y=S^{1} \vee S^{1}$ with the 1-cells labeled a, b and let $f: X \rightarrow Y$ be given by $a \mapsto a b a^{-1} b^{-1}$ and $b \mapsto a^{2} b^{3}$. Compute $\pi_{1}\left(C_{f}\right)$ explicitly.
2. Let X be a space and $f: X \rightarrow X$ a map. The mapping torus of f is the space

$$
T_{f}=X \times I /(x, 1) \sim(f(x), 0)
$$

Now suppose that X is a connected cell complex with $x_{0} \in X$ the only 0 -cell and $f: X \rightarrow X$ is a cellular map with $f\left(x_{0}\right)=x_{0}$. Then T_{f} is also a cell complex with cells $e \times\{0\}$ and $e \times(0,1)$ for cells e of X (you don't have to prove this). Assume that $\pi_{1}\left(X, x_{0}\right)=\langle A \mid R\rangle$. Prove that

$$
\pi_{1}\left(T_{f}\right)=\left\langle A, t \mid R, t a t^{-1}=f_{*}(a), a \in A\right\rangle
$$

Hint: t corresponds to the loop $\left\{x_{0}\right\} \times I$. N.B.: The assumption that there is only one 0 -cell is for convenience, the general case can be reduced to this.
3. Let A, B be nontrivial groups. Prove that $A * B$ has trivial center.
4. Let X be the space obtained from S^{2} by identifying 3 points. Find an explicit cell structure and from it compute $\pi_{1}(X)$.

The following questions are harder (and more rewarding).
5. Problem 9 from Hatcher, p. 53.
6. Problem 10 from Hatcher, p.53. Hint: Look at Problem 22 for inspiration.
7. Problem 14 from Hatcher, p. 54.
8. Problem 15 from Hatcher, p. 54.
9. Problem 16 from Hatcher, p.54. Hint: Show that the surface deformation retracts to a graph by representing it as an increasing union of compact subsurfaces $X_{1} \subset X_{2} \subset \cdots$ and showing that X_{n+1} deformation retracts to X_{n} union a graph.

