De Rhan Theorem M smooth mfld then

$$H^{i}_{de}(M) \equiv H^{i}(M; R)$$

 $f^{i}_{singelier cohomology.$

(2)
$$M_{-V}$$
: $M = U \cup V$
 $\longrightarrow H^{n}(M) \longrightarrow H^{n}(U) \oplus H^{n}(V) \longrightarrow H^{n}(U \cap V) \longrightarrow H^{n+1}(h) \rightarrow \dots$
 (i^{*}, i^{*})
exact
$$exact$$

(3) If
$$M = \coprod U_d$$
, $i_d: U_d \longrightarrow H$ then $h(M) \equiv \Im h(0)$

$$\frac{\text{Thm Suppose } k^{*}, h^{*} \text{ ere two such cohomology}}{\text{Heories, } \mu: h^{*}(M) \longrightarrow k^{*}(M) \text{ notrol toneforted,}}, \\ \mu: h^{*}(pt) \longrightarrow k^{*}(M). \text{ Then } \mu \text{ in an idomorphin} \\ \neq M.$$

There is a homology cal version, consist functors,
(3) is replaced by
$$f(U_d) \cong h(\Pi U_d)$$
.

A singular simplex
$$\sigma: S \rightarrow M$$
 is smooth if
 σ can be extended to a smooth map of a
abid of S^n in $\mathbb{R}^m \supset S^n$.

Have
$$p: H_n^{dmoth}(n) \rightarrow H_n(M)$$
 intered by inclusion.
 p is an its for $M = pt$. (all simplifies are mostly.)
Need to check that H_n^{dmoth} setsifies the axions.
Need to check that H_n^{dmoth} setsifies the axions.
Since pf as in the continuous case, just insert the
word "supports".

Recoll:
$$\mathfrak{L}^{i}(M) = \operatorname{vect} \operatorname{space} \mathfrak{g} \operatorname{ell} \operatorname{smooth}$$

 $\operatorname{argle}^{i}(M) = \operatorname{vect} \operatorname{space} \mathfrak{g} \operatorname{ell} \operatorname{smooth}$
 $\operatorname{argle}^{i}(M) \longrightarrow \mathcal{N}^{0H}(M), \quad d^{1} = 0$
 $\operatorname{H}^{i}_{ak}(M) = \operatorname{cohomology} \mathfrak{g} \operatorname{sh} \operatorname{de} \operatorname{Rhom} \operatorname{complex}$
 $\operatorname{O} \longrightarrow \mathfrak{O} \longrightarrow \mathfrak{O}$

Very:

$$S: S^{i}(M) \longrightarrow C^{i}_{Jourth}(M; R)$$

 $W \longmapsto (\sigma \longmapsto Sw)$
 S is a cochoola marghain by the Stakes theman
 $\int dw = \int w$
 σ
 σ

Jo J induces
$$\int : H_{dR}^{i}(M) \longrightarrow H^{i}(H;R)$$

The This is an Homorphism $\mathcal{H}M$.
 $H_{dR}^{i}(M) \cong H_{dmoth}^{i}(H;R) \subset \mathcal{H}(M,R)$

Poincore duality
M closed (topological) n-nylld.

$$R = \mathbb{Z} \quad r \mathbb{Z}_2$$
. If $R = \mathbb{Z}$ assume M in oriented.
In alg. top, local onestation (over R) at KEM in n
Choice of a generator of $H_n(M, M-x; R) \cong R$,
An orientetism of M in a choice of a local onishtim
at loving XEM which is locally constant.

Jeff, U = Rⁿ
F cannot alled K>x in ll
and a ing singles
$$\Lambda^{-} \rightarrow U$$

with $\sigma(2D^{n}) \cap K$ where
reporter to $(U, U-y)$ gives the
loc. on the one for where $\Lambda^{-} \rightarrow U$
and the one for where
Fundamental Class If M is omitted there is a
may a class If M = cH_n(M;R) st.
Hun(M;R) → Hun(M, N-x, R) tobs [M] to the bool omitting.
This is the fundamental class.
M (Roundard class) M classed over R,
then H² (M; R) = H_n-i(M; R).
Some easy consequences
() N also converted \rightarrow H_n(M;R)=R

1)
$$b_{i} = \operatorname{reck} (H:(M))$$
 ith Betti number.
M oriektile => $b_{i} = b_{n-i}$
 \underline{Pt} : $b_{n-i} = \operatorname{rk} (H_{n-i}(M)) = \operatorname{rk} (H^{-1}(M)) = \operatorname{rk} (H^{-1}(M)) = \operatorname{rk} (H^{-1}(M)) = b_{i}$.
(\underline{rr} : in old => $\chi(M) = 0$.
 $b_{i} \cdot b_{i} + b_{n-1} + b_{n-1} - b_{n}$
Als the g when M is not oriektile.
 \underline{Pth} : Use $\mathbb{Z}_{2} - \operatorname{coeff}$.
 \underline{Pth} : Use $\mathbb{Z}_{2} - \operatorname{coeff}$.
 \underline{Pth} : Use $\mathbb{Z}_{2} - \operatorname{coeff}$.
 \underline{Pth} : $Use \ \mathbb{Z}_{2} - \operatorname{coeff}$.
 \underline{Pth} : $Use \ \mathbb{Z}_{2} - \operatorname{coeff}$.
 \underline{Pth} : $D = \chi(M) = \Im \chi(M) = 0$.
(1) $\underline{r} \times M^{-1}$ is the oriektion dubbe over
 $M = \frac{1}{M} = \frac{1}{$

