The Mayer-Vietris method

Def: A colored gy theorem 'I a sepence
of controversat functors
$$h': \xi C u pairs ? \rightarrow \xi elelingments $n \in \mathbb{Z}_{1}$ and functors howomorphisms
 $\int: h''(A) \longrightarrow h'''(X, A)$
 $(A, 4)$$$

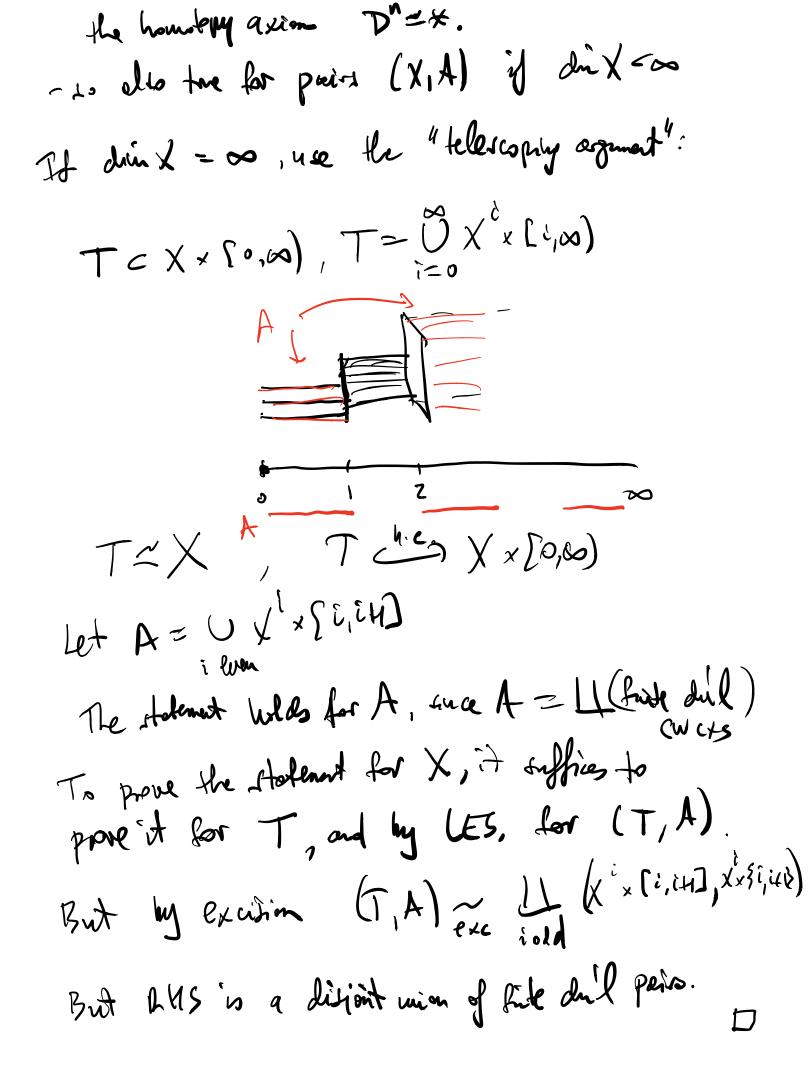
(1)
$$f \simeq g: (X|A) \longrightarrow (Y,B) \implies f^* = g^* : h^* (Y,B) \rightarrow h^*(X,A)$$

(2) (excition) If $f: (X,A) \longrightarrow (Y,D)$ only centres q

	in exact.		
(4)	X = II Xa	, $i_{\alpha}: \chi_{\alpha} \longrightarrow \chi$	inclusion.

Then
$$\operatorname{TT}_{X}^{*}: h'(X) \cong \operatorname{TT}_{h}^{*}(X)$$

Thus let h^{n} , K^{n} be two choseology theories
and $\mu: h^{*}(X|A) \longrightarrow k^{*}(X|A)$ a notical
transformation. If μ is an isomorphism
for $(X|A) = (\mu t, \phi)$, then it is an isomorphism
 $F(X|A)$.
Pf If due $X = 0$, follows for (4).
If due $X < \infty$, we argue by induction on $n = \dim X$.
From $L \in S + S$ -terms, it sufficient prove it for
 (X, X^{n-1}) .
Let $\overline{\Phi}: \coprod (D_{A}^{*}, \overline{P}_{A}) \longrightarrow (X, X^{n-1})$ be the
chosenticities maps of the n-celler of X .
By excition $\overline{\Phi}^{*}$ is one its in both h^{*}, h^{**} .
By (μ) we are reduced to proving the claim for the
pair (D, \overline{P}_{A}) .



$$\frac{kiimeth formula}{kiimeth} Y = cw ex, H^{n}(Y;R) f.g. free
R - module. In
Pren $\bigoplus_{i=1}^{n} H^{i}(X,A;R) \otimes H^{i}(Y;R) \xrightarrow{\times} H^{n}(X,Y;A,Y;H)$

$$\frac{F}{i+j=n} (X,A) := \bigoplus_{i=1}^{n} H^{i}(X,A;R) \otimes H^{i}(Y;R)$$

$$\frac{F}{i+j=n} H^{n}(X,Y;A,Y;R)$$

$$\mu : h^{n}(X;A) \longrightarrow K^{n}(X;A) \quad cross product.$$
To diech: h^{i}, K^{i} ere cohomology theorem.

$$(-\mu in lealy an ito for (X;A) = (\mu f, f)$$

$$hos K^{if} his 's eaty.$$
for h^{i} head to use the assumption on Y.

$$f = h^{i}(X;A) \longrightarrow H^{i}(X;A) \longrightarrow H^{i}(X) \longrightarrow H^{i}(X;A).$$

$$\lim_{R} H^{i}(Y;R) = H^{i}(X;A) \longrightarrow H^{i}(X) \longrightarrow H^{i}(X;A).$$
Take a divert con for $i+j=n$$$

$$\frac{Disj. \omega n}{d} (TT M_{d}) \otimes N \cong \Pi(M_{d} \otimes N)$$

$$N = H^{n}(Y)$$

$$N = R^{2} LMS = (\Pi M_{d}) \times (\Pi M_{d})$$

$$R = \Pi(M_{d} \times M_{d}) = \Pi(M_{d} \times M_{d})$$

$$\Pi$$

De Rham Theorem M smooth mfld then

$$H^{i}_{de}(M) \cong H^{i}(M; \mathbb{R})$$

 $f^{i}_{de}(M) \cong H^{i}(M; \mathbb{R})$
 f^{i}_{inplor} cohombegs.

(2)
$$M_{-V}$$
: $M = U \cup V$
 $\longrightarrow H^{n}(M) \longrightarrow H^{n}(U) \oplus H^{n}(V) \longrightarrow H^{n}(U \cap V) \longrightarrow H^{n+H}(h) \longrightarrow$
 (i^{*}, j^{*})
exact
(3) $TF M = \coprod U_{d}$, $i_{d} : U_{d} \longrightarrow H$ then $h^{n}(M) \xrightarrow{\cong} TT h^{n}(U_{d})$

The Suppose
$$K^*$$
, h^* ere the such cohomology
Heaves, $\mu: h^*(H) \longrightarrow K^*(H)$ which toneforted,
 $\mu: h^*(pt) \longrightarrow K^*(H)$. Then μ is an idomorphic
 $\mathcal{F}^{\mathcal{H}}$.

Then then in the for each Ui, also for UinViry. Let Ueven = III V:, Uode = III V. The be Ueven, Undl, Venn Allord. So than for 4 my M-V. In general: M collibrary smoth. Repeat the dove arguent replacing "Convex by a "chat".