$$
\begin{gathered}
H^{*}\left(\mathbb{C} P^{n}\right) \cong \mathbb{Z}[\alpha] / \alpha^{n+1}=0, \\
\operatorname{deg} 2
\end{gathered}, \quad H^{*}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z}_{2}\right) \cong \mathbb{E}_{2}[\alpha] / \alpha_{1}^{\alpha+1}=0
$$

Recall M siosed moth n- meded orvated, $R=z$; otherice $R=z_{2}$.
NCM cloed sumoth s.lunaifle o coduck
$R=Z \rightarrow N$ outd nomed bulle.
$\tau \in H^{*}(L, \partial L)$ Thon class, $L=$ tabler athe on N

Thum If $Z_{1}, Z_{2} \subset M^{n}$ are the sumaifetes as alore of codim n_{1}, n_{2} s.t. $Z_{1} \cap Z_{2}=1 \mathrm{Nt}$, and intesection is tronivere. Then $P D\left(Z_{1}\right) \cup P D\left(Z_{2}\right) \in H^{n}(M) \quad\left(n_{1}+n_{2}=n\right)$ generates $H^{n}(M) \approx Z \quad\left(\right.$ or $\left.Z_{2}\right)$

Ex

$$
\begin{aligned}
& \mathbb{C} P^{i} \not \underset{C}{ } \mathbb{C} P^{n-i}<\mathbb{C} P^{n} \\
& \text { one poit } \\
& \mathbb{R} P^{i} \notin \mathbb{R} P^{n-\hat{i}} \subset \mathbb{R} P^{n}
\end{aligned}
$$

Pf. $N_{i}=\operatorname{reg}$. nblod of z_{i}

$$
\begin{aligned}
& H^{n_{1}}\left(I^{n_{1}}, \partial I^{n_{1}}\right) \otimes H^{n_{2}}\left(T^{n}, \partial \vec{E}^{n_{2}}\right) \xrightarrow[\cong]{\cong} H^{n}\left(I^{n_{1}} \times I^{n_{2}}, \partial\right) \\
& \cong \uparrow \text { reforblies } \\
& \tau_{1} \in H^{n}\left(N_{1}, \partial N_{1}\right) \\
& \otimes H^{\eta_{2}}\left(N_{2}, \partial N_{2}\right) \geqslant c_{2} \\
& \cong \gamma_{\text {exe }} \\
& \cong \text { 个exc } \\
& H^{n}\left(M, \overline{M-N_{1}}\right) \\
& \otimes H^{n_{2}}\left(\overline{M,} \overline{M-N_{2}}\right) \rightarrow H^{n}\left(M, \overline{M-I^{n} \times I^{n_{2}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& H_{a}^{n_{1}}(M) \otimes H^{n_{2}}(M) \xrightarrow{u} H^{n}(M) \\
& P D^{4}\left(N_{2}\right)
\end{aligned}
$$

Application to $\mathbb{C P} P^{n}$

$$
H^{*}\left(\mathbb{C} P^{n}, \mathbb{Z}\right)=\mathbb{E}[\alpha] / \alpha^{n+1}=0 \quad \begin{aligned}
& \left\langle 1, \alpha, \alpha^{2}, \ldots, \alpha^{n}\right\rangle \\
& \operatorname{dog} 0 \operatorname{dog} 2 \operatorname{deg} 4 \quad \operatorname{dep} 2 n
\end{aligned}
$$

Pf by induction on n

$$
\frac{f \text { by induction on } n}{H^{*}\left(S^{2}, \mathbb{Z}\right)}=\left\langle 1,{\underset{\sim}{\operatorname{deg} 2}}^{\lim ^{2}}=\left.\mathbb{Z}[\alpha]\right|_{\alpha=0}\right.
$$

Consider inclusion $\mathbb{C} P^{n} \longrightarrow \mathbb{C} P^{n+1}$
By cellular cohomolayy

$$
\begin{aligned}
& H^{i}\left(\mathbb{C} n^{\eta}\right) \stackrel{\cong}{\leftrightarrows} H^{0}\left(\mathbb{C} P^{n+1}\right) \\
& i=0,1,-z n,
\end{aligned}
$$

Denote by $\alpha \in H^{2}\left(\mathbb{C} P^{n+1}\right)$ a gereoder.
Then by induction $1, \alpha,-1 \alpha^{n}$ geverte

$$
H^{0}\left(C P^{n+1}\right), H^{B}\left(\mathbb{C} P^{n+}\right), \ldots, H^{2 a}\left(C P^{n+1}\right)
$$

we need to show that α^{n+1} geventes $H^{2 n+2}\left(\mathbb{C} P^{n+1}\right)$.
リ $\alpha \cup \alpha^{n}$
By the theorem, there is a class in H^{2} at a class in $H^{2 a}$ whose cup product gerentes $H^{2 n} 2$. It follows that these classes are $\pm \alpha$ and $\pm \alpha^{n}$,
so $\alpha \cup \alpha^{n}$ gereates $\ell^{2 a+2}$.

$$
\begin{aligned}
& -\alpha \text { is rally } P D\left(\mathbb{C} P^{n-1}\right) \\
& \alpha^{i}=P D\left(\mathbb{P} P^{n-i}\right)
\end{aligned}
$$

\&8 for $\mathbb{R} P^{n}$ in sinilar.
Application:
Borsuk-Mlam Theoven Thare is ne wap $\mathbb{R} P^{n} \rightarrow \mathbb{R} P^{n-1}$ which is nontrival in $\pi_{1}, n \geqslant 2$.
Pf. $n=2 \quad \pi_{1}\left(\mathbb{R} P^{2}\right) \rightarrow \pi\left(\mathbb{R} P^{\prime}\right)$

$$
z_{2}^{\prime \prime} \rightarrow z^{\prime \prime}
$$

$n>2$ Then $f: \mathbb{R} \mathbb{P}^{n} \rightarrow \mathbb{R} \mathbb{P}^{n-1}$ is an isomortlin in π_{1}, hence in $H_{1}(; Z)$, hence in

$$
H^{\prime}\left(; Z_{2}\right)=\operatorname{Hom}\left(H_{1}, z_{2}\right)
$$

let $\alpha_{n} \in H^{\prime}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right), \alpha_{n-1} \in H^{\prime}\left(\mathbb{R} P^{n-1}, \mathbb{Z}_{2}\right)$ b_{2} the gmedons,
Ton

$$
\begin{aligned}
& f^{*}\left(\alpha_{n-1}\right)=\alpha_{n} \\
& f^{*}\binom{\alpha_{n-1}^{n}}{0}=\alpha_{n}^{n} \quad * .
\end{aligned}
$$

Ansther Version There is no z_{2}-equiverint map $S^{n} \longrightarrow S^{n-1}$, wrt antipdal actio.

Yet another vesian For every mop $f: S^{n} \rightarrow \mathbb{R}^{n}$

$$
7 * \in s^{n} \text { s.t. } \quad f(x)=f(-x) \text {. }
$$

Pf, Othenie $h: S^{n} \rightarrow S^{n-1}$

$$
x \longmapsto \frac{f(x)-f(-x)}{n f(x)-f(-x) \|}
$$

vidotes the previens version.
The Majer-Vietors method

Def. A colomology theoreye is a sepence of controvenat suctors $h^{n}:\{C \omega$ pairs $\} \rightarrow\{$ akelion smp $\}$ $n \in Z$, and funtaril homomapplimes

$$
\begin{gathered}
\delta: h^{n}(A) \longrightarrow h^{n+1}(X, A) \\
(A, \phi)
\end{gathered}
$$

s.t.
(1) $f \simeq g:(X, A) \rightarrow(Y, B) \Rightarrow f^{*} \approx g^{*}: h^{n}(Y, B) \rightarrow h^{4}(X, 1)$
(2) (excition) If $f:(X, A) \rightarrow(Y, B)$ ondaces a
homes $X / A \rightarrow Y / B$ then $f^{*}: h^{n}(Y, B) \rightarrow n^{n}\left(x_{1}, 1\right)$
(3) LES

$$
\rightarrow h^{n}(x, A) \rightarrow h^{n}(x)_{\lambda} h^{n}(A) \xrightarrow{\delta} h^{n+1}(x, A) \rightarrow .
$$

in exact.
(4) $\quad X=\frac{11}{\alpha} x_{\alpha}, i_{\alpha}: x_{\alpha} \hookrightarrow X$ incurs. Than $\prod_{\alpha} i_{\alpha}^{*}: h^{n}(x) \cong \prod_{\alpha} h^{n}\left(x_{\alpha}\right)$
Thus let h^{n}, k^{n} be two colomology their's and $\mu: h^{*}(X, A) \rightarrow k^{*}(X, A)$ a notual transformation. If μ is an isomarlioin for $(X, A)=(p t, \phi)$, then it wan isouotlion. $\forall(x, A)$.

