Cell Complexes

1. For $n=1,2, \cdots$ let $f_{n}: S^{1} \rightarrow S^{1}$ be the map $z \mapsto z^{n}$. Define

$$
X(n)=S^{1} \cup_{f_{n}} e^{2}
$$

as the cell complex obtained by attaching a 2 -cell to the circle via the attaching map f_{n} (this is an example of a Moore space). Similarly, for $m, n=1,2, \cdots$ define

$$
X(m, n)=S^{1} \cup_{f_{m}} e_{1}^{2} \cup_{f_{n}} e_{2}^{2}
$$

as the cell complex obtained from the circle by attaching two 2 -cells, with attaching maps f_{m} and f_{n}.
(a) Show that if $m>n$ then the maps

$$
f_{m}, f_{m-n}: S^{1} \rightarrow S^{1} \hookrightarrow X(n)
$$

are homotopic as maps into $X(n)$.
(b) Show that for all m, n the space $X(m, n)$ is homotopy equivalent to the wedge sum $S^{2} \vee X(k)$ for a certain $k=k(m, n)$. Give an explicit formula for k in terms of m, n.
2. Let X be a cell complex, A, B two of its subcomplexes such that $X=A \cup$ B. Suppose $A, B, A \cap B$ are all contractible. Prove that X is contractible. N.B.: This is false for general spaces. E.g. the comb space

$$
[0,1] \times\{0\} \cup\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots 0\right\} \times[0,1]
$$

is contractible, but the union of two copies along $(0,1)$ is not.
3. Let X be a cell complex and

$$
X_{0} \subset X_{1} \subset X_{2} \subset \cdots
$$

a sequence of subcomplexes such that $X=\cup_{i} X_{i}$. Suppose that each X_{i} is a retract of X_{i+1}. Prove that X_{0} is a retract of X. Make sure you give an argument that your retraction is continuous.
4. Let X be the space obtained from the torus $S^{1} \times S^{1}$ by identifying three distinct points to one point. Find an explicit cell structure on X.
5. In the following exercise we will show that $S O(3)$ is homeomorphic to $\mathbb{R} P^{3}$.
(a) Using linear algebra show that every element of $S O(3)$ is a rotation about an axis in \mathbb{R}^{3}.
(b) For $x \in S^{2}$ and $\alpha \in[0,2 \pi]$ let $\phi_{x, \alpha}$ be the rotation about the axis $\mathbb{R} x$ by the angle α, where angles are measured using orientation of S^{2}.
(c) Observe that $\phi_{x, 0}=\phi_{x, 2 \pi}=\mathbb{1}$ so that ϕ defines a map

$$
S^{2} \times[0,2 \pi] / \sim \rightarrow S O(3)
$$

where $S^{2} \times\{0\}$ and $S^{2} \times\{2 \pi\}$ are collapsed to points. This quotient space can be identified with S^{3}.
(d) Show that this map $S^{3} \rightarrow S O(3)$ identifies antipodal points and induces a homeomorphism $\mathbb{R} P^{3} \rightarrow S O(3)$.

6 . Viewing the torus T as usual as the square $[0,1]^{2}$ with opposite sides identified, let X be obtained from T by removing the open disk centered at $\left(\frac{1}{2}, \frac{1}{2}\right)$ and with radius $\frac{1}{4}$. Find an explicit cell structure on X.
7. Show that \mathbb{R}^{2} with n points removed is homotopy equivalent to the wedge sum of n circles.

